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1. INTRODUCTION 

 

In September 2016, world leaders have met at the United Nations (UN) to discuss the problem 

of antimicrobial resistance (AMR) (www.who.int). It was only the fourth time ever a health 

issue had been discussed at the UN General Assembly Combined with the fact that the World 

Health Organisation (WHO) has warned that “antimicrobial resistance threatens the very core 

of modern medicine and the sustainability of an effective, global public health response to the 

enduring threat from infectious diseases” (WHO, 2015), there are strong indications that 

antimicrobial resistance will be a major problem in future. Simultaneously, World Bank has 

reported that the worldwide increase of health system costs caused by AMR could cause 

similar effects on global economy to those of the 2008 financial crisis (World Bank, 2016). 

 

Therefore, it is clear that measures need to be taken to rationalise the use of currently known 

antimicrobial drugs, as well as to develop new antimicrobials, in particular new antibiotics 

which could cure multiple drug resistant (MDR) bacterial infections. One class of chemical 

compounds that have antibiotic properties are antimicrobial peptides (AMPs), which are 

naturally occurring defence mechanisms against pathogens of most living organisms. These 

peptides act against a wide range of microorganisms, including Gram-positive and Gram-

negative bacteria, mostly by disrupting the plasma membrane, which leads to cell lysis 

(Reddy et al., 2004). These peptides can then be used as models for synthesis of new peptides 

with different, new or enhanced properties. 
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1.1. ABOUT AMPs IN GENERAL AND THEIR APPLICATION AS THERAPEUTIC 

AGENTS IN TREATMENT OF BIOFILM ASSOCIATED INFECTIONS 

 

Antimicrobial peptides offer protection to various organisms against pathogens such as 

viruses, bacteria and fungi. Considering their antibacterial activity, the majority of peptides do 

not target a single target as conventional antibiotics, but instead act directly on the 

cytoplasmic membrane. Therefore, their activity is independent of bacterial metabolic 

activity. They act as microbicides within minutes of contact and, since they have no specific 

target on which they act, bacterial resistance is less likely to be developed (Zasloff, 2002). 

They are also biodegradable. 

 

In addition to having antimicrobial properties, some of these peptides also possess other 

properties, such as immunomodulatory and anti-inflammatory action, bacterial cell 

components–neutralising activity and biofilm–eradicating properties (Hancock and Sahl, 

2006). Considering their structure, they are usually short (up to 40 amino acid residues), 

cationic, amphipathic and often helical. (www.bali-consortium.eu) 

 

It has been found that certain AMPs have anti-biofilm properties (Batoni et al., 2016). 

Biofilms are aggregates of microorganisms in which cells are embedded within a self-

produced matrix of extracellular polymers and in which they adhere to each other and/or the 

surface (Vert et al., 2012). Infections involving biofilms are very hard to eradicate as the 

biofilm offers protection against both the host’s immune system and conventionally applied 

antibiotics. Biofilms can form on prosthetic medical devices that are surgically implanted into 

a patient’s body, such as artificial heart valves, artificial hips, joints etc. It can be especially 

dangerous if an infection occurs with a resistant or multiple-resistant bacterial strain, such as 

methicillin-resistant Staphylococcus aureus (MRSA). This can cause chronic, severe 

infections.  

 

An international consortium called Biofilm Alliance (BALI) has been established with the 

goal of developing antimicrobial peptides that would be coated on prosthetic implants with 

controlled release in hope of preventing biofilm-associated infections and improving patients’ 

quality of life (www.bali-consortium.eu). Biofilm Alliance (BALI) project uses OP-145 as a 

model for the development of novel AMPs with better properties to fight against biofilm-

associated infections (www.bali-consortium.eu). OP-145 (previously known as P60.4Ac) is 
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an antimicrobial peptide that was developed from LL-37 (Nell et al., 2006). LL-37 belongs to 

a family of the naturally occurring peptides called cathelicidins (Zanetti et al., 1995). It is a 

37-residue product of proteolytic degradation of the human cathelicidin hCAP-18 (Sørensen 

et al., 1997). LL-37 is an amphipathic, α-helical peptide found throughout the body with 

antibacterial, immunomodulatory and lipopolysaccharide (LPS)-neutralising activity (Bucki et 

al., 2008; Dürr et al., 2006).  

 

 

1.2. MEMBRANE COMPOSITION AS A KEY FACTOR OF PEPTIDE 

SPECIFICITY: MODEL MEMBRANES 

 

As mentioned before, most antimicrobial peptides manifest their effect by acting upon the cell 

membrane Therefore, membranes and their composition are of special interest when 

discussing AMPs. 

 

Prokaryotic and eukaryotic membranes have different lipid composition. Indeed, even 

different bacterial species may differ in lipids present in their membranes. It is this 

composition that is crucial to AMPs activity, in addition to the nature of the peptide, as they 

may be more selective towards certain kinds of lipids because of their charge or 

hydropathicity (Koller and Lohner, 2014; Lohner, 2009). 

 

Gram-negative cell envelope consists of two lipid bilayers, the outer membrane and the inner 

membrane. The outer membrane is highly asymmetrical, with lipopolysaccharides located 

exclusively on the outer side, and phospholipids, most of which phosphatidylethanolamine 

(PE), on the inner side. On the other hand, the inner membrane is composed mostly of PE 

and, to a lesser extent, negatively charged lipids such as phosphatidylglycerol (PG). In 

between them lies a layer of peptidoglycan (PGN). Gram-positive bacteria have only the inner 

membrane of similar composition, but with more PG than PE and with a thick layer of PGN 

and lipoteichoic acid (LTA) on the outside (Lohner et al., 2008). 

 

Eukaryotic cell membranes show high asymmetry, with amino phospholipids such as PE and 

phosphatidylserine (PS) occupying almost exclusively the inner side, while the outer side is 

rich in choline phospholipids, mostly zwitterionic phosphatidylcholine (PC) and 

sphingomyelin (SM). This asymmetry is maintained by an ATP-dependent translocase. In 
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physiological conditions, PS presence on the surface of a cell membrane is an apoptotic signal 

for the immune system to get rid of the cell. However, PS is present on cell surface also in 

certain pathological conditions, primarily in cancerous cells. Therefore, it has been 

investigated as a target for anticancer therapy (Riedl et al., 2015). A high content of 

cholesterol of around 25% is also characteristic for animal membranes (Lohner et al., 2008). 

 

It is also worthy to note that bacterial and mammalian membranes alike are a complex 

mixture not just of various lipids, but of different peptides and polysaccharides also. While 

lipid composition is the main factor, other membrane components may add or subtract to 

AMP’s activity. Membrane domains are also something worth describing. An AMP may 

prefer to interact with one lipid species over the other. Therefore, in a membrane composed of 

various lipids, it may happen that a membrane domain composed only of one lipid species is 

formed beneath the peptide, such as in a carpet model. Such lipid segregation may lead to 

membrane destabilisation and consequently disruption because of, for example, changed 

surroundings of membrane proteins or different curvature of the membrane (Lohner et al., 

2008). 

 

Bacterial cell envelope also needs to be taken into consideration. It has recently been 

discussed that the PGN layer of Gram-positive bacterial cells does not have an influence on 

antimicrobial activity, whereas interaction with LTA diminishes the concentration of peptide 

on the membrane itself, possibly by the mostly positive AMPs binding to the negatively 

charged LTA (Malanovic and Lohner, 2016). 

 

Given the complexity of biological membranes, there is a need for their simplification in 

biophysical research. In this thesis, the membrane activity of peptides was studied on 

prokaryotic and eukaryotic model membranes. PG liposomes were used to mimic Gram-

positive bacterial cell membranes, and PC liposomes to mimic mammalian cell membranes. 

These lipids were prepared in such a way that they formed liposomes. Liposomes can come in 

the form of multilamellar vesicles (MV), oligolamellar vesicles (OV) and unilamellar vesicles 

(UV), depending on the number of lipid bilayers inside one vesicle. For certain experiments it 

is vital that the liposomes are unilamellar, so they need to be extruded through membrane 

filters (Zweytick et al., 2011). SDS and DPC micelles, which are good approximations of 

bacterial and mammalian model membranes, respectively, were used too (Manzo et al., 2013). 

However, care needs to be taken when results taken from research on model systems are 
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compared to the activity on real cells as the role of individual lipid species and the affinity 

with which AMPs bind to them is not yet fully understood (Lohner et al., 2008). 

 

 

1.3. MECHANISM OF ACTION OF AMPs: THE CASE OF OP-145 – MEMBRANE 

INTERACTION 

 

It has been shown that AMPs exert their action mostly by acting upon bacterial cytoplasmic 

membrane, causing it to destabilise and disrupt (Lohner, 2009; Reddy et al., 2004). Two 

major models are discussed in literature: the carpet mechanism and transmembrane pore-

forming mechanism (Lohner et al., 2008). In the carpet mechanism, peptides gather on the 

membrane surface because of electrostatic interactions and, upon reaching a critical 

concentration, exert their action by either a detergent-like effect or some other destabilising 

mechanism. In the other model, peptides arrange themselves through the membrane in a way 

a pore is formed which causes cell content leakage, whereas the membrane itself might stay 

intact, although membrane thinning through mechanisms such as interdigitation or trans-

gauche isomerisation might precede pore formation (Koller and Lohner, 2014; Lohner et al., 

2008). An overview of these modes of action is given on Figure 1. It is the phenomenon of 

interdigitation that is of special interest as it has been shown that OP-145 interacts with model 

membranes in such a way. In essence, in a lipid bilayer, lipids are oriented with their 

hydrocarbon chains towards one another to form a hydrophobic core. When interdigitation 

occurs, lipids are pushed towards each other vertically so that long hydrocarbon chains of 

lipids from opposite sides are intertwined, either partially or completely. This causes 

membrane thinning and destabilisation (Smith and Dea, 2013). A graphical representation of 

this process is provided on Figure 2. Other mechanisms may be involved, too, and it is 

suggested that these different mechanisms are gradual steps in the process of membrane 

destabilisation (Lohner and Prenner, 1999). 
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Figure 1. An overview of AMPs modes of action (retrieved from www.bali-consortium.eu). 

Figure 2. A simplified scheme of interdigitation process. 

 

 

1.4. RATIONALE BEHIND DESIGN OF AMPs BASED ON OP-145 

 

OP-145 is a 24-residue peptide developed at the Leiden University Medical Center (LUMC), 

Leiden, The Netherlands (Nell et al., 2006) with the sequence acyl-

LKRVWKRVFKLLKRYWRQLKKPVR-amide. It has been shown that OP-145 possesses 

activity against Gram-positive bacteria such as methicillin-resistant S. aureus (MRSA) 

(Haisma et al., 2014) and that it has low toxicity towards mammalian cells (Malanovic et al., 

2015). Moreover, it has anti-inflammatory and biofilm-eradicating properties (Nell et al., 

2006) and has been shown to be safe and efficient in the treatment of chronic otitis media in 

clinical Phase I and II trials (Peek et al., 2009). It has been suggested for use in prosthetic 

implants as a coating which would protect both against infection and biofilm formation (de 

Breij et al., 2016). However, it also has certain disadvantages, such as propensity towards 

bacterial enzymatic degradation and, especially, considerably low level of activity in presence 
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of blood plasma. LC99.9 (the lowest concentration that kills 99.9% of bacteria) of OP-145 in 

phosphate-buffered saline (PBS) was determined to be 1.6 μM, whereas in 50% plasma in 

PBS it was about 204.8 μM (Nibbering, 2015). 

 

As mentioned earlier, BALI project aims to develop new, improved AMPs based on OP-145 

with better properties: greater specificity for prokaryotic membranes, resistance to 

degradation, improved antimicrobial, antibiofilm and immunoorchestrating activities, lower 

cytotoxicity, resistance to proteolysis by bacterial enzymes, larger level of activity in presence 

of blood plasma and improved safety and efficacy. Among the peptides developed by this 

consortium are P148 and P276, whose characterisation is the main subject of this thesis. 

 

 

1.5. P148 AND P276: NOVEL PEPTIDES WITH IMPROVED PROPERTIES 

 

P148 and P276 are peptides derived from OP-145 with following sequences: 

 

P148: acyl-LKRVWKRVFKLLKRYWRQLKKPVR-amide and 

P276: acyl-LKRVWKAVFKLLKRYWRQLKKPVR-amide. 

 

They differ mutually only in the 7th amino acid residue (alanine in P276 instead of arginine 

found in P148), as P276 was developed from P148 via alanine scanning (Nibbering, 2015). 

P148 and P276 were designed to fold into an alpha helix with all the hydrophobic residues on 

one side of the helix and the cationic ones on the other – an amphipathic helix (Nibbering, 

2015). In comparison to OP-145, both novel peptides are characterized by higher net positive 

charge and higher total hydrophobicity, which is considered to be important for initial binding 

to anionic membrane phospholipids and higher partitioning into membrane. This certainly 

would lead to stronger membrane disruption. 

 

Both novel peptides, P148 and P276, exhibit similar antimicrobial activity in PBS as tested in 

comparison to OP-145 (Nibbering, 2015). Interestingly, they show significant increase in 

killing of both Gram-positive and Gram-negative bacteria in the presence of 50% plasma. 

This is an advantage of the novel peptides compared to OP-145 which loses its activity in 

presence of blood plasma. Their haemolytic activity on human erythrocytes (experiments 

were performed in a cooperating laboratory: Anna de Breij, Leiden University Medical 
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Centre, Leiden, The Netherlands) is higher than for OP-145, but they are not haemolytic at the 

concentration where they exert antimicrobial activity. In conclusion, this observation suggests 

the novel peptides as better candidates for applications in humans.  

 

Table 1. OP-145, P148 and P276 activity against Staphylococcus aureus and Pseudomonas 

aeruginosa. The results are expressed as a lethal concentration (LC99.9) that kills 99.9% 

bacterial cells within 2 h. 

 

  LC99.9 (μM) 

PBS 50% plasma 

OP-145 P148 P276 OP-145 P148 P276 

S. aureus 

JAR060131 (G+) 1.60 1.60 0.80 204.8 12.8 6.4 

P. aeruginosa 

PAO1 (G-) 3.2 1.6 0.8 >204.8 12.8 51.2 

 

 

Table 2. OP-145, P148 and P276 haemolytic activity. Results are presented as median 

maximal non-haemolytic concentration (MMNHC). 

 

 

Median maximal non-haemolytic 

concentration (μM) 

PBS 50% plasma 

OP-145 1.6 (0.8-3.2) 51.2 

P148 0.3 (0.2-0.8) 12.8 (6.4-25.6) 

P276 0.2 12.8 
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2. RESEARCH OBJECTIVES 

 

Resistance to antimicrobial drugs is an ever-growing problem in modern healthcare. Since the 

introduction of penicillin in 1943, nearly every antibiotic has seen at least one bacterial strain 

develop a resistance (http://www.cdc.gov). Therefore, there is a need for research of new 

antibiotics. One approach in this area is researching novel antimicrobial peptides (AMPs) 

(Lohner, 2009). These peptides are often derivatives of naturally occurring peptides, which 

exhibit action against microorganisms. One such peptide is a human cathelicidin LL-37 

derivative, OP-145 (Malanovic et al., 2015; Nell et al., 2006), whose derivatives P148 and 

P276 were studied in this thesis. 

 

The goal of this thesis was to study the biophysical properties of P148 and P276 and the way 

they interact with bacterial and mammalian model membranes, simulating their action on 

prokaryotic and eukaryotic cell membranes. These properties were then compared with those 

of OP-145. In addition, the purpose was to deepen the knowledge of antimicrobial peptides 

and to contribute to the global fight against microbial antibiotic resistance. 
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3. MATERIALS AND METHODS 

 

3.1. MATERIALS AND INSTRUMENTS 

 

The experiments that laid foundation for this thesis were performed using the following 

equipment: 

 

 Heidolph MR 3001 K magnetic stirring hotplate, Heidolph Instruments GmbH & Co. 

KG, Germany 

 Heidolph Reax top shaker/vortex, Heidolph Instruments GmbH & Co. KG, Germany 

 Heraeus VTR5022 vacuum oven, Heraeus Holding GmbH, Germany 

 Binder ED-53 and Binder FD-53 drying ovens, Binder GmbH, Germany 

 Techne Dri-Block® DB200/3 sample concentrator, Bibby Scientific Ltd, UK 

 Malvern Zetasizer Nano ZEN5600, Malvern Instruments Ltd, UK 

 VP-DSC microcalorimeter, Microcal Inc., USA 

 NanoDrop® spectrophotometer ND-1000, NanoDrop Technologies Inc., USA 

 J-715-150S spectropolarimeter, JASCO Corp., Japan 

 Cary Eclipse fluorescence spectrophotometer, Varian Australia Pty Ltd, Australia 

 Electronic balance ABJ 220-4M, KERN & Sohn GmbH, Germany 

 FiveEasy™ FE20 pH meter, Mettler-Toledo AG, Switzerland 

 Avanti Mini Extruder with 0.1 µm polycarbonate membrane filters, Avanti Polar 

Lipids, Inc., USA 

 Whatman™ 0.1 µm pore size nylon syringe filter, GE Healthcare Life Sciences, UK 

 PIPETMAN® pipettes, Gilson S.A.S., France 

 Elga LabWater PURELAB UHQ water purification system, Veolia Water, France. 

 

Data was processed using the following software: 

 

 Origin®, versions 7E and 9.3, OriginLab™, Microcal Inc., USA 

 Zetasizer Software 7.02, Malvern Instruments Ltd, UK 

 NanoDrop® ND-1000 v3.5.2, Coleman Technologies, Inc. for NanoDrop 

Technologies, Inc., USA 

 Spectra Manager for Windows 95/NT, JASCO Corp., Japan 
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 Cary Eclipse Kinetics Applicaton v1.1 (133), Varian Australia Pty Ltd, Australia 

 WebLab ViewerPro 4.0, Molecular Simulations Inc., USA 

 DichroWeb, Institute of Structural and Molecular Biology, Birkbeck College, 

University of London, UK. 

 

Following chemicals were used in the experiments: 

 

 OP-145, P148 and P276, peptides (Nell, et al., 2006; Nibbering, et al., 2015) 

 Sodium dihydrogen phosphate monohydrate p.a., Merck KGaA, Germany 

 Disodium hydrogen phosphate ≥99% p.a., Carl Roth GmbH & Co. KG, Germany 

 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) min. 99.5%, Sigma-

Aldrich Co., USA 

 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), Avanti Polar Lipids, Inc., USA 

 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DPPG), Sigma-

Aldrich Co., USA 

 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), Avanti Polar Lipids, Inc., 

USA 

 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (POPG), 

Sigma-Aldrich Chemie GmbH, Germany 

 8-aminonaphthalene-1,3,6-trisulfonic acid, disodium salt (ANTS) and p-xylene-bis-

pyridinium bromide (DPX), Molecular Probes™, Thermo Fisher Scientific, USA 

 Sephadex™ G-75, GE Healthcare Life Sciences, UK 

 Cholesterol, Sigma Grade, ≥99%, Sigma-Aldrich Co., USA 

 Peptidoglycan (PGN) from Bacillus subtilis, Sigma-Aldrich Co., USA 

 Triton™ X-100, laboratory grade, Sigma-Aldrich Co., USA 

 Dodecylphosphocholine (DPC), Avanti Polar Lipids, Inc., USA 

 Sodium lauryl sulfate (SDS) ≥99%, for biochemistry, Carl Roth GmbH & Co. KG, 

Germany 

 Sodium lauryl sulfate ≥98.5%, BioReagent, suitable for electrophoresis, for molecular 

biology, Sigma-Aldrich Chemie GmbH, Germany 

 2-propanol ROTIPURAN® ≥99.8% p.a., ACS, ISO, Carl Roth GmbH & Co. KG, 

Germany 

 Ethanol absolute p.a., AustrAlco Österreich Alkoholhandels GmbH, Austria 
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 Chloroform HPLC grade, J.T. Baker®, Mallinckrodt Baker B.V., Holland 

 Bovine serum, Sigma-Aldrich Handels GmbH, Austria 

 Bovine serum albumin (BSA) standard, Thermo Scientific, USA. 

 

 

 

3.2. METHODS: PRINCIPLES OF TECHNIQUES USED IN EXPERIMENTS 

 

In biophysical research of peptides and their interactions with model membranes a number of 

techniques are used. These include, but are not limited to, differential scanning calorimetry 

(DSC) (Smith and Dea, 2013), dynamic light scattering (DLS) (Stano et al., 2005), circular 

dichroism (CD) (Malanovic and Lohner, 2016) and fluorescent spectroscopy (Zweytick et al., 

2011). These techniques were used to conduct experiments for this thesis and an overview of 

principles of their action is given below. 

 

 

3.2.1. DIFFERENTIAL SCANNING CALORIMETRY (DSC) 

 

DSC is a versatile thermoanalytical technique that can be used to analyse both solid and liquid 

samples in order to detect phase transitions. In analyses of liposomes, it can easily detect 

phase transitions and thermodynamic behaviour of pure lipids and lipid mixtures, including 

lipids organised into liposomes (Smith and Dea, 2013). DSC measures the difference in the 

amount of heat required to maintain both the sample and the reference at the same 

temperature. As phase transitions are either endothermic or exothermic processes, they require 

additional or reduced energy to keep the sample at the same temperature as the reference, and 

this difference is recorded in the thermogram. Both transition temperature and heat capacity 

can be determined this way (Atkins and de Paula, 2006). 

 

Disaturated lipids organised in bilayers exhibit two different transitions: the so-called pre-

transition in which they pass from the planar gel phase into the rippled gel phase and the main 

transition, when lipids pass from the gel phase into the fluid phase. The temperature range of 

the pre-transition is quite broad and is characterized by a lower enthalpy change than the main 

transition, which occurs at a higher temperature, is much sharper and more prominent on the 

thermogram and has higher enthalpy. Both pre-transition and main transition are affected 
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when lipids, i.e. liposomes interact with peptides: there can be a shift in temperature, an 

increase or a decrease in enthalpy and/or peak splitting, the last change indicating that 

different lipid domains have formed (Lohner and Prenner, 1999). 

 

 

3.2.2. CIRCULAR DICHROISM (CD) 

 

CD is the difference in the absorption of left- and right-hand polarised light. The difference is 

due to the properties of optically active molecules and to the three-dimensional structure of 

the polymer, if it is a polymer’s such as a peptide’s CD spectrum that is measured. Most 

notable use of this technique is the determination of secondary structure of peptides. Different 

secondary structures give different spectra in the UV region; therefore, from the relevant 

spectra of protein or peptide samples, their secondary structure can be determined (Atkins and 

de Paula, 2006). The results are usually expressed as mean residue molar ellipticity, [θ]MR, 

which is defined as ellipticity of the resultant polarised light vector per concentration of 

sample, cell pathlength and number of peptide bonds in the molecule 

(www.photophysics.com). Since it has been shown that the secondary structure of peptides 

influences the way peptides interact with membranes, it is often useful to determine secondary 

structure of AMPs in the presence and absence of lipid membranes in order to assess their 

activity (Arouri et al., 2013). 

 

 

3.2.3. DYNAMIC LIGHT SCATTERING (DLS) 

 

DLS, also known as quasi-elastic light scattering (QELS), is a technique used for measuring 

the size and size distribution of particles in the submicron range. It measures the 

hydrodynamic (Stokes) diameter of a given particle, meaning the diameter of a perfect sphere 

that diffuses in the same manner as the particle being measured. It takes into account 

solvatisation of the particle. DLS measuring results are expressed as Z-Average size, which is 

defined as the “harmonic intensity averaged particle diameter” (www.malvern.com) and given 

by default as intensity distribution. Polydispersity index (PDI) is a number between 0 and 1 

and defines the measure of size distribution width, with lower values indicating a more 

uniform particle size distribution (www.malvern.com). 
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3.2.4. FLUORESCENCE SPECTROPHOTOMETRY (FLUOROMETRY) 

 

This assay is based upon the principle of measurement of fluorescence from a fluorescent 

molecule (a fluorophore) when excited by exterior electromagnetic radiation. The exciting 

photons are generally from the UV range, while emission typically occurs in the visible part 

of spectrum (Watson, 1999). 

 

One well-established assay uses 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS) as a 

fluorophore and p-xylene-bis-pyridinium bromide (DPX) as a quencher. A quencher is a 

molecule that shortens the lifetime of the excited state of a fluorophore, that is, quenches 

fluorescence (Atkins and de Paula, 2006). ANTS and DPX are present together in a liposome 

that is to be analysed; therefore, the fluorescence is quenched. When the liposome is degraded 

or its contents leak through the membrane, ANTS and DPX are diluted in such a way that the 

quencher’s concentration is not sufficient to quench the fluorescence anymore, and the 

increase in fluorescence is quantitatively interpreted as leakage from liposomes, that is, 

liposome disintegration (Ellens et al., 1985). ANTS and DPX structures are shown on Figures 

3 and 4, respectively. 

 

 

Figure 3. ANTS (fluorophore) structure (retrieved from www.sigmaaldrich.com) 

 

 

 

Figure 4. DPX (quencher) structure (retrieved from www.sigmaaldrich.com) 
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3.3. EXPERIMENTAL PROCEDURES 

 

3.3.1. PREPARATION OF PEPTIDE SOLUTIONS 

 

First, two buffers were prepared: 20 mM phosphate + 130 mM sodium chloride, pH=7.4 

phosphate-buffered saline (PBS) and 10 mM HEPES (salt-free), pH=7.0 (HEPESSF). OP-145, 

P148 and P276 were available in pre-weighed quantities in small cuvettes. The appropriate 

buffer, depending on further use, was added to achieve a peptide concentration of 10 mg/ml 

(OP-145) or 2 mg/ml (P148 and P276). Unless otherwise indicated, all subsequent 

experiments were performed using all three peptides separately. 

 

 

3.3.2. PREPARATION OF LIPOSOMES  

 

DPPG and DPPC films used in DSC assays were prepared by first dissolving separately 10 

mg each in 1 ml of the appropriate solvent. 100 μl aliquots of these solutions were then 

transferred to glass vials and the solvent was evaporated under a stream of nitrogen. POPG 

and POPC films used in CD and size measurements were prepared by dissolving separately 

26 mg and 24 mg of lipid, respectively, in 1 ml of the appropriate solvent and subsequent 

evaporation of the solvent under a stream of nitrogen. Prepared films were kept overnight 

under vacuum at room temperature and afterwards stored at 4ºC. When ready to use, films 

were hydrated by adding 1 ml of buffer and vortexing at maximum speed for 1 min, incubated 

at temperature about 10 ºC above the main transition temperature for the given period of time 

and vortexed at maximum speed at given intervals for 1 min during the incubation period. 

Thus prepared liposomal suspensions were allowed to cool and used in further experiments. 

POPG and POPC liposomes were extruded 15 times through a 0.1 µm pore size membrane 

filter to gain unilamellar vesicles and size homogeneity. Prior to all further handling the 

suspensions were briefly vortexed to resuspend the liposomes. The necessary parameters for 

liposome preparation are given in Table 3. An overview of buffers and types of lipids used in 

different analytical methods is given in Table 4. 
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Table 3. Liposomes preparation parameters; RT = room temperature 

 

Lipid 

solvent 

CHCl3:CH3OH 

(V/V ratio) 

incubation 

temperature 

(ºC) 

incubation 

period 

vortexing 

intervals 

DPPG 
9:1 

65 
1 h 

5’, 10’, 20’, 

30’, 60’ POPG 25 (RT) 

DPPC 
2:1 

50 
2 h every 15’ 

POPC 25 (RT) 

 

Table 4. Lipids and buffers used in different methods. PBS – phosphate-buffered saline; 

HEPESSF – salt-free HEPES; HEPESF, HEPESE – see section 3.3.7.1. 

 

Lipid Technique 

 DSC DLS CD fluorometry 

DPPG PBS - - - 

POPG - PBS HEPESSF HEPESF/HEPESE/PBS 

DPPC PBS - - - 

POPC - PBS HEPESSF HEPESF/HEPESE/PBS 

 

For DSC analyses DPPG and DPPC were used because they form lipid bilayers that are in the 

planar gel phase at room temperature. Therefore, by heating them, both pretransition and main 

transition can be observed. These multilamellar vesicles were prepared both without and with 

the analysed peptides. Peptides were dissolved in PBS prior to film hydration, with the 

combined volume of peptide solution and buffer being 1 ml. Different peptide concentrations 

were prepared, as described in paragraph 3.3.5. In other assays, peptides were added to pre-

formed liposomes. 

 

On the other hand, POPG and POPC were used in other experiments because they form 

bilayers that are fluid already at room temperature, so they mimic real biological membranes 

in a better fashion. 

 

For leakage assay, 20 mg of lipids or lipid mixtures was used per film. POPC vesicles were 

prepared both with and without cholesterol (25% molar cholesterol relative to POPC amount; 
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cholesterol was added during the film formation stage), while POPG vesicles were prepared 

both with and without peptidoglycan (PGN was added after liposomes formation), both using 

fluorescent buffer, as described in paragraph 3.3.7.1. 

 

 

3.3.3. COMPUTER-BASED MODELLING: IN SILICO PREDICTION OF PEPTIDE 

PROPERTIES  

 

The following programmes were used to model OP-145, P148 and P276 and to predict their 

properties based on their amino acid sequences: 

1. PEP-FOLD 2.0 (Shen et al., 2014; Néron B, 2009), used to predict secondary structure 

and make a 3D model of peptide and 

2. WebLab ViewerPro to visualise data generated by PEP-FOLD 2.0. 

 

 

3.3.4. SECONDARY STRUCTURE DETERMINATION OF PEPTIDES 

 

Secondary structure of peptides alone and in membrane mimetic systems was determined by 

measuring circular dichroism (CD) in a spectropolarimeter at room temperature. 10 mM 

HEPES buffer was first measured as a blank in a 0.02 cm quartz cuvette with parameters 

defined in Table 5. Samples were then measured under same conditions in five groups, 

peptide concentration being kept constant at 200 μM: 

1. Sole peptides in HEPES: OP-145, P148 and P27; 

2. Peptides with SDS in 100:1, 25:1 and 6.25:1 SDS:peptide molar ratios; 

3. Peptides with DPC in 100:1, 25:1 and 6.25:1 DPC:peptide molar ratios; 

4. Peptides with POPG in 100:1, 25:1 and 6.25:1 POPG:peptide molar ratios and 

5. Peptides with POPC in 100:1, 25:1 and 6.25:1 POPC:peptide molar ratios. 

Samples were measured at 0, 15, 30 and 60 minutes from adding peptides. Blank signal was 

subtracted from the respective sample spectra. Data obtained from CD measurements was 

expressed as mean residue molar ellipticity, [θ]MR. Such data files were uploaded to 

DichroWeb server for analysis in order to determine secondary structure of peptides 

(Whitmore and Wallace, 2004). CDSSTR programme was used to analyse data (Compton and 

Johnson, 1986) with Set 4 as a reference set. Results were expressed as percentage of 
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particular secondary structure in total peptide. Data was processed using JASCO’s Spectra 

Manager and DichroWeb. 

Table 5. Parameters for CD scans 

Parameter Value 

Sensitivity Standard (100mdeg) 

Start 260 nm 

End 180 nm 

Data Pitch 0.2 nm 

Scanning Mode Continuous 

Scanning Speed 100 nm/min 

Response 1 s 

Band Width 1.0 nm 

Number of 

Accumulations 
3 

 

3.3.5. CALORIMETRIC MEASUREMENTS 

 

DPPG and DPPC multilamellar liposomes suspended in PBS were subjected to differential 

scanning calorimetry (DSC) analysis in a microcalorimeter, both alone and with different 

concentration of peptides that were added during the film hydration stage. PBS was used as 

reference. Scan parameters are shown in Table 6. Sample preparation is specified in Table 7. 

After measurements, thermogram baseline was corrected and normalised to the mass of 

phospholipid. The phase transition temperature was defined as the temperature at the peak 

maximum. Phase transition enthalpies were calculated by integration of the peak areas. Data 

was processed using Origin software. 

 

Table 6. Parameters for DSC scans 

Number of Scans 6 (3 heating and 3 cooling) 

Starting Temperature 10 ºC 

Final Temperature 55 ºC 

Scan Rate 30 ºC/min 

Prescan Equilibration 15 min 

Postscan Thermostat 0 min 
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Table 7. Samples analysed with DSC. 

Sample (V=1 ml) 

lipid 

concentration 

(mg/ml) 

lipid 

concentration 

(µmol/ml) 

peptide 

concentration 

(µmol/ml) 

lipid-to-

peptide 

molar ratio 

         

DPPG pure 

1 1.34 

- - 

DPPG + OP-145 2% 0.027 50:1 

DPPG + OP-145 4% 0.054 25:1 

DPPG + P148 1% 

1 1.34 

0.013 100:1 

DPPG + P148 2% 0.027 50:1 

DPPG + P148 4% 0.054 25:1 

DPPG + P276 1% 0.013 100:1 

DPPG + P276 2% 0.027 50:1 

DPPG + P276 4% 0.054 25:1 

 
   

  DPPC pure 

1 1.36 

- - 

DPPC + OP-145 4% 0.054 25:1 

DPPC + P148 4% 0.054 25:1 

DPPC + P276 4% 0.054 25:1 

 

 

3.3.6. SIZE MEASUREMENT OF LIPOSOMES 

 

Liposomes size was measured using dynamic light scattering (DLS) with Zetasizer Nano at 

automatic mode. POPG and POPC liposomes in concentrations of 1 mg/ml of PBS buffer 

were extruded through 0.1 µm membranes prior to measurement to reduce them to 

unilamellar vesicles. 1 ml of PBS filtered through a 0.1 µm filter was put in a quartz cuvette. 

50 µl of liposome suspension, with or without peptide, was added to the cuvette, mixed by 

pulling the liquid in and out of the pipette and the sample was measured. Both types of 

vesicles were analysed alone and with all three peptides at different concentrations (100:1, 

25:1 and 6.25:1 lipid:peptide molar ratios). Measurements were made at 0, 15, 30 and 60 

minutes from adding peptides at room temperature. 
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3.3.7. VESICLE LEAKAGE ASSAY - FLUOROMETRY 

 

A modified assay by Ellens et al. was performed to establish the degree of vesicle leakage 

induced by the peptides (Ellens et al., 1985). 

 

 

3.3.7.1. PREPARATION OF FLUORESCENT DYE-CONTAINING VESICLES 

 

20 mg POPC, POPC/cholesterol and POPG films were hydrated with 1 ml of 12.5 mM 

ANTS, 45 mM DPX, 68 mM sodium chloride, 10 mM HEPES, pH=7.4 buffer (HEPESF) and 

incubated for 1.5 h at 30 ºC with intermittent vortexing at 5, 10, 25, 40, 55, 75 and 85 minutes 

from start. After cooling to room temperature fluorescent dye-containing liposomes were 

extruded 15 times through a 0.1 µm pore size membrane filter to achieve unilamellarity and 

subjected to gel filtration (size-exclusion chromatography – stationary phase: Sephadex™ G-

75; eluent: 10 mM HEPES, 140 mM sodium chloride, 1 mM EDTA, pH=7.4 buffer 

(HEPESE)). First 40 drops were discarded; subsequently, every 10 drops were separately 

collected into fractions. These fractions were subjected to a Cary Eclipse fluorescence 

spectrophotometer with excitation at 360 nm and emission at 530 nm to determine which ones 

have the highest concentration of liposomes. The most adequate fractions were combined and 

used thereafter. Exact phospholipid concentration was determined by phosphate analysis 

(Bartlett, 1959). 

 

 

3.3.7.2. FLUORESCENCE MEASUREMENT – VESICLE LEAKAGE ASSAY 

 

All measurements were performed at 37 ºC with magnetic stirring at constant speed. Required 

volume of liposome sample was added into 2 ml of PBS in a quartz cuvette to achieve a final 

lipid concentration of 50 µM and measured using an excitation wavelength of 360 nm, 

emission wavelength of 530 nm and a 10 nm slit width for both excitation and emission 

monochromators to determine initial fluorescence. Next, increasing concentrations of 

different peptides were added and fluorescence was measured after 15 min of incubation. At 

the end, 10 µl of 10% Triton™ X-100 detergent was added to determine total fluorescence. 

Peptide concentrations are specified in Table 8. Fluorometry results were expressed in 

arbitrary units. To show the degree of fluorophore leakage from vesicles, data was presented 
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in terms of fluorescence intensity and expressed as percentage according to the following 

formula (Zweytick et al., 2011): 

𝑰𝑭 =
𝑭 − 𝑭𝟎

𝑭𝒎𝒂𝒙 − 𝑭𝟎
∙ 𝟏𝟎𝟎% 

where F is the measured fluorescence, F0 is initial fluorescence (without peptides) and Fmax is 

total fluorescence after liposome disintegration with detergent. 

 

To prepare POPG vesicles with peptidoglycan, PGN was first dissolved in PBS, heating it for 

15 min at 95 ºC, to a concentration of 0.5 mg/ml. Heating is used to deactivate proteases that 

have previously been found in commercial PGN samples, so as not to degrade the peptides. 4 

µl of this solution was added together with the required volume of POPG sample into 2 ml of 

PBS to a final concentration of 50 µM POPG and 0.01% weight PGN. It was then proceeded 

as described earlier. 

 

Table 8. Peptide concentrations in leakage assays. (*only certain measurements) 

Peptide 

concentration (µM) 

Peptide conc. relative 

to lipid (% molar) 

0 0 

0.0625 0.125% 

0.125 0.25% 

0.25 0.5% 

0.5 1% 

1 2% 

2 4% 

4 8% 

8* 16%* 

 

 

3.3.7.3. VESICLE LEAKAGE ASSAY IN PRESENCE OF BOVINE SERUM 

 

POPC and POPG fluorescent dye-containing vesicles were subjected to a leakage assay in the 

presence of selected concentrations of peptides and two different concentrations of bovine 

serum: 10% and 25% (V/V), whereas the total volume was kept at 2 ml. Procedure was as 

described in section 3.2.7.2. Peptide concentrations are given as follows: 
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1. OP-145 was analysed with POPC and POPG in the presence of 10% and 25% serum 

through all concentrations as specified in Table 8; 

2. P148 was analysed with POPC in the presence of 10% and 25% serum through all 

concentrations as specified in Table 8. With POPG, only concentrations of 0.0625, 0.5 

and 4 µM were analysed in the presence of 10% serum as it was shown that bovine 

serum alone causes near complete leakage from POPG vesicles. 

3. P276 was not analysed. 

 

 

3.3.7.4. VESICLE LEAKAGE IN PRESENCE OF BOVINE SERUM ALBUMIN 

 

In order to examine the effect of bovine serum albumin (BSA) on membrane permeability 

properties of AMPs, leakage experiments were performed with BSA concentrations ranging 

from 0 to 9 % molar on POPG and POPC vesicles. Fluorescent dye-containing POPG and 

POPC vesicles were separately diluted in a quartz cuvette containing 1.85 ml of PBS to a total 

concentration of 50 μM and initial fluorescence was measured. Increasing amounts of BSA 

standard were consecutively added and fluorescence measured when the signal had been 

stabilised. In the end 10 µl of 10% Triton™ X-100 was added to determine total fluorescence. 

BSA concentrations are given in Table 9. 

 

Table 9. BSA concentration in fluorometry assays 

BSA concentration 

(µM) 

peptide conc. relative 

to lipid (% molar) 

0 0 

0.0625 0.125% 

0.125 0.25% 

0.25 0.5% 

0.5 1% 

1 2% 

2 4% 

4 8% 

4.5 9% 
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3.3.8. PEPTIDE-LIPID AFFINITY ASSAY 

 

Fluorescent dye-containing POPG vesicles were mixed at the same concentration with non-

dye containing POPC unilamellar vesicles and vice-versa and added into 2 ml PBS in a quartz 

cuvette to a total lipid concentration of 100 µM. It was then processed as described in section 

3.2.7.2. Peptide concentrations are given in Table 10. 

 

Table 10. Peptide concentration in peptide-lipid affinity leakage assays 

Peptide 

concentration (µM) 

peptide conc. relative 

to lipid (% molar) 

0 0 

0.0625 0.0625% 

0.125 0.125% 

0.25 0.25% 

0.5 0.5% 

1 1% 

2 2% 

4 4% 
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4. RESULTS 

 

4.1. IN SILICO STRUCTURAL PROPERTIES OF AMPS 

 

4.1.1. OP-145 

 

Secondary structure predicted by PEP-FOLD 2.0 for OP-145 was mostly alpha helical as 

depicted on Figures 5-7. Hydrophobic residues of the predicted alpha helix are segregated on 

the one side and hydrophilic regions on the other side, forming an ideal amphipathic helix 

(Figure 8). 

Figure 7. OP-145 model alpha helix backbone displayed as a ribbon. 

 

 

 

 

 

Figure 8. Hydrophilic (left) and hydrophobic (right) domains of OP-145 model alpha helix (in 

yellow). 

 

Figure 6. OP-145 alpha helix viewed 

along the main axis (N to C terminus). 

Figure 5. Side view of OP-145 

secondary structure computer model. 
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Figure 9. Computer-generated model of P148 

secondary structure. Alpha helix shown as red ribbon. 

4.1.2. P148 

 

Secondary structure predicted by PEP-FOLD 2.0 for P148 was slightly less alpha helical than 

the one of OP-145 (Figure 9), however hydrophilic and hydrophobic domains were located 

opposite one another to form an amphipathic helix, as with OP-145 (Figure 10). In addition, 

P148 exhibit large non-flexible tail on C terminus which does not fold into a helix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. P148 hydrophilic (left) and hydrophobic (right) alpha helix domains (in yellow). 
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4.1.3. P276 

 

Secondary structure predicted by PEP-FOLD 2.0 for P276 was very similar to P148 (Figure 

11), both in helicity and hydropathic domains (Figure 12) again showing an unordered C-

terminus tail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. P276 hydrophilic (left) and hydrophobic (right) alpha helix domains (in yellow). 

 

 

 

  

Figure 11. Computer-generated model of P276 secondary 

structure. Alpha helix shown as red ribbon. 
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4.2. SECONDARY STRUCTURE DETERMINATION OF PEPTIDES 

 

In order to validate the data from prediction analysis CD spectroscopy has been performed. 

CD spectra of analysed AMPs have been recorded in presence of HEPES buffer, negatively 

charged SDS micelles and POPG vesicles as well as zwitterionic DPC micelles POPC 

vesicles mimicking bacterial and mammalian membrane, respectively. In addition, time-

dependent measurements between 0 and 60 min upon incubation with membrane mimics have 

been performed in order to follow secondary structure formation/development on lipid 

membranes. 

 

 

4.2.1. OP-145 

 

CD measurements and subsequent data processing have shown that OP-145 takes a mostly 

alpha helical secondary structure both in buffer and in contact with POPC and DPC that 

seems to be stable over time (Figures 13, 16 and 17). On the other hand, in interaction with 

POPG and SDS, the alpha helicity of the secondary structure of OP-145 diminishes over time 

and with the increase of the peptide’s concentration, falling from around 60-80% alpha helix 

in a lipid to peptide ratio of 100:1 to around 10% at 60 minutes at a ratio of 6.25:1 (Figures 14 

and 15). 

 

 

 

 

 

 

 

 

Figure 13. OP-145 time-dependent secondary structure in buffer. Time is expressed in min. 
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Figure 14. OP-145 time-dependent secondary structure in interaction with SDS at different 

molar ratios. Time is expressed in minutes. (*data is lacking) 

Figure 15. OP-145 time-dependent secondary structure in interaction with POPG at different 

molar ratios. Time is expressed in minutes. 

 Figure 16. OP-145 time-dependent secondary structure in interaction with DPC at different 

molar ratios. Time is expressed in minutes. (*data is lacking) 
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Figure 17. OP-145 time-dependent secondary structure in interaction with POPC at different 

molar ratios. Time is expressed in minutes. 

 

4.2.2. P148 

 

Results show that P148 does not take an alpha helical secondary structure when measured in 

buffer (Figure 18). However, in contact with both prokaryotic and eukaryotic model 

membranes, at lower peptide concentrations, it has a rather large proportion of alpha helix in 

its secondary structure. With an increase in peptide concentration, the portion of alpha helix 

diminishes, especially in contact with POPC membranes (Figures 19-22). 

Figure 18. P148 time-dependent secondary structure in buffer. Time is expressed in min. 
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Figure 19. OP-145 time-dependent secondary structure in interaction with SDS at different 

molar ratios. Time is expressed in minutes. 

 
Figure 20. P148 time-dependent secondary structure in interaction with POPG at different 

molar ratios. Time is expressed in minutes. 

Figure 21. OP-145 time-dependent secondary structure in interaction with DPC at different 

molar ratios. Time is expressed in minutes. (*data is lacking) 
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Figure 22. P148 time-dependent secondary structure in interaction with POPC at different 

molar ratios. Time is expressed in minutes. 

 

4.2.3 P276 

 

Measurement results show that P276 does not take an alpha helical conformation in buffer 

(Figure 23). The proportion of alpha helix is quite high in SDS and DPC micelles, around 

60% (Figures 24 and 26), while in contact with POPG and POPC membranes secondary 

structure again seems to diminish with the increase of peptide’s concentration, especially with 

POPC (Figures 25 and 27). However, results seems to be unstable over time, so it cannot be 

estimated how precise they are, especially for POPG. 

 

 

 
Figure 23. P276 time-dependent secondary structure in buffer. Time is expressed in min. 
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Figure 24. P276 time-dependent secondary structure in interaction with SDS at different 

molar ratios. Time is expressed in minutes. 

 Figure 25. P276 time-dependent secondary structure in interaction with POPG at different 

molar ratios. Time is expressed in minutes. 

Figure 26. P276 time-dependent secondary structure in interaction with DPC at different 

molar ratios. Time is expressed in minutes. (*data is lacking) 
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Figure 27. P276 time-dependent secondary structure in interaction with POPC at different 

molar ratios. Time is expressed in minutes. (*data is lacking) 

 

4.3. SIZE MEASUREMENT OF LIPOSOMES 

 

Dynamic light scattering measurements were performed to measure the size of liposomes in 

contact with different concentrations of peptides in order to determine the impact of vesicle 

size on secondary structure of peptides and to check the stability of liposomes over time. 

Results are shown in Figures 28 and 29 as POPG and POPC liposomes size dependent on 

peptide concentration and time. Data obtained from dynamic light scattering measurements 

was expressed as Z-average diameter. 

The size of POPG liposomes in interaction with OP-145 has increased nearly three-fold over 

time with the increase of peptide concentration, from around 150 nm to about 450 nm. 

Further, size of POPG liposomes in combination with P148 and P276 does not change with 

the addition of 1% peptide. It then seems to increase mildly, roughly by 15%, with peptide 

concentration 4 times higher than the starting one; further addition of peptide to a 

concentration 16 times higher than the starting one seems to decrease the size slightly by 

around 10% from the pure liposome size. 

The size of POPC liposomes seems to be stable regardless of peptide concentration and 

passage of time. Pure liposome sizes of both POPG and POPC have shown to be stable over 

time and are given for reference. 

Polydispersity indices (PDIs) that show the width of size distribution are shown in Tables 11 

and 12. Values between 0.1 and 0.4, such as the ones obtained from these measurements, 

indicate an intermediate or moderate size distribution (www.malvern.com). 
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Figure 28. POPG liposomes size dependent on peptides concentration (given as lipid:peptide 

molar ratio) and time (given in min) 

 

Figure 29. POPC liposomes size dependent on peptides concentration (given as lipid:peptide 

molar ratio) and time (given in min) 
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Table 11. Particle size polydispersity indices (PDIs) of POPG vesicles. 

 

POPG pure 0.087 PDI 

  Time (min) OP-145 P148 P276 

100:1 

0 0.205 0.215 0.168 

15 0.223 0.206 0.212 

30 0.166 0.204 0.241 

60 0.365 0.213 0.244 

          

25:1 

0 0.332 0.147 0.138 

15 0.271 0.127 0.158 

30 0.206 0.138 0.141 

60 0.34 0.161 0.143 

          

6.25:1 

0 0.276 0.126 0.123 

15 0.176 0.198 0.164 

30 0.171 0.136 0.139 

60 0.203 0.144 0.138 
 

 

Table 12. Particle size polydispersity indices (PDIs) of POPC vesicles. 

 

POPC pure 0.059 PDI 

  Time (min) OP-145 P148 P276 

100:1 

0 0.07 0.068 0.144 

15 0.089 0.049 0.051 

30 0.066 - 0.052 

60 0.053 0.195 0.052 

          

25:1 

0 0.063 0.079 0.09 

15 0.039 0.086 0.157 

30 0.064 - 0.076 

60 0.027 0.021 0.041 

          

6.25:1 

0 0.051 0.077 0.109 

15 0.027 0.038 0.1 

30 0.061 0.078 0.101 

60 0.045 0.059 0.089 
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4.4. CALORIMETRIC MEASUREMENTS: INTERACTION OF AMPS WITH 

BACTERIAL AND MAMMALIAN MODEL MEMBRANES 

 

In order to assess the interaction of AMPs with model membranes, differential scanning 

calorimetry measurements were performed of liposomes composed of DPPG and DPPC. Both 

phospholipids have characteristic phase transition behaviour (Figure 30 and 31) that can be 

described by typical parameters, e.g. phase transition temperature, transition enthalpy and half 

width summarized in Table 13 and 14. 

Upon interaction of OP-145 with DPPG, the phase transition temperature of DPPG increased 

in heating scans by about 1 °C. DPPG transition temperatures in contact with other peptides at 

different concentrations are largely unaffected, except for P276 at a 25:1 lipid:P276 ratio 

which shifts the transition towards a lower value by 0.7 °C. Transition enthalpies are to a 

great extent unaffected; the highest concentration of P148 (25:1 lipid:peptide ratio) stands out 

as the only concentration at which enthalpy has decreased by more than 10% from the pure 

lipid value. Pretransitions have completely disappeared in lipid:peptide ratios of 50:1 and 

lower (meaning higher concentration of peptides). 

On the other hand, cooling scans are showing strong shifts in transition temperatures of DPPG 

at high peptide concentration, with OP-145 and P276 causing mutually comparable shifts of 

nearly 2 °C towards lower values and P148 showing a weaker, but still highly prominent shift 

of 0.7 °C. Lower concentrations seem to cause no effect on the phase transition temperature, 

except the 100:1 lipid:P148 ratio, which causes a peak splitting. This indicates a formation of 

two different domains, a peptide-rich DPPG domain and peptide-poor domain. Enthalpies 

also seem to differ from the reference value, but it cannot be assessed if those differences are 

of any significance. 
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Figure 30. Heating DSC thermograms of DPPG combined with peptides in different molar 

ratios. *pretransition 

 

 

Table 13.  Specific enthalpies and transition temperatures of DPPG vesicles combined with 

peptides in different molar ratios (heating scans). 

* 

PRETRANSITION

MAIN 

TRANSITION

Tm (°C)

ΔHmpre 

(kcal/mol) ΔT1/2 Tm (°C) ΔHm (kcal/mol) ΔT1/2

pure DPPG 33.6 1.5 3.90 40.9 10.0 0.42

OP-145 50:1 - - - 41.7 10.3 0.87

OP-145 25:1 - - - 41.7 9.8 0.52

P148 100:1 33.3 0.4 2.59 41.0 9.2 0.69

P148 50:1 - - - 41.0 10.4 1.04

P148 25:1 - - - 41.0 8.8 1.05

P276 100:1 32.6 0.5 5.08 41.0 9.6 0.90

P276 50:1 - - - 40.9 9.6 0.73

P276 25:1 - - - 40.2 9.7 1.30
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Figure 31. Cooling DSC thermograms of DPPG combined with peptides in different molar 

ratios. 

 

Table 14. Specific enthalpies and transition 

temperatures of DPPG vesicles combined 

with peptides in different molar ratios 

(cooling scans).  

  

MAIN TRANSITION

Tm (°C) ΔHm (kcal/mol) ΔT1/2

pure DPPG 40.5 8.6 0.35

OP-145 50:1 40.6 10.2 0.53

OP-145 25:1 38.7 9.1 0.75

P148 100:1 40.5 6.3 0.59

P148 50:1 40.8 11.2 0.70

P148 25:1 39.8 7.6 0.53

P276 100:1 40.7 9.0 0.72

P276 50:1 40.6 8.5 0.58

P276 25:1 38.6 9.3 0.68
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DPPC thermograms show a strong influence of peptides on the thermotropic phase behaviour 

of DPPC (Figures 32 and 33 and Tables 15 and 16). All three peptides, at the single analysed 

concentration, i.e. ratio of 25:1 lipid:peptide, cause the main transition peak to split into three 

smaller, but much broader peaks (with much higher ΔT1/2 values), one below, one at and the 

third above the DPPC main transition temperature. As with DPPG, the pretransition peak 

disappears in interaction with all three peptides. The cooling scans show quite a similar 

profile. In both cases, transition enthalpies are significantly lower, more pronounced in the 

case of addition of P148 and P276 than for OP-145. 
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Figure 32. Heating DSC thermograms of DPPC combined with peptides in molar ratio of 

25:1. +pretransition, *peptide rich domain, #peptide poor domain 

 

Table 15. Specific enthalpies and transition temperatures of DPPC vesicles combined with 

peptides in molar ratio of 25:1 (heating scans). *peptide rich domain, #peptide poor domain 

  

  
PRETRANSITION

MAIN 

TRANSITION

Tm (°C)

ΔHmpre 

(kcal/mol) ΔT1/2 Tm (°C)

ΔHm 

(kcal/mol) ΔT1/2

DPPC 35.7 1.1 1.92 41.8 8.2 0.18

OP-145 25:1 - - - 40.9 2.1 1.10 *

--> 41.9 0.9 0.73

--> 43.0 2.9 2.29 #

P148 25:1 - - - 40.6 1.8 1.47 *

--> 42.3 2.4 2.36 #

P276 25:1 - - - 40.5 1.9 1.49 *

--> 42.3 2.6 2.54 #

+ 

* 

* 

* 

# 

# 

# 
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Figure 33. Cooling DSC thermograms of DPPC combined with peptides in molar ratio of 

25:1. *peptide rich domain, #peptide poor domain 

 

 

Table 16. Specific enthalpies and transition temperatures of DPPC vesicles combined with 

peptides in molar ratio of 25:1 (cooling scans). 

  

* 

* # 

* # 

# 

*peptide 

rich domain

#peptide 

poor 

domain

Tm (°C)

ΔHmr 

(kcal/mol) ΔT1/2 Tm (°C)

ΔHmp 

(kcal/mol) ΔT1/2

DPPC 41.4 8.1 0.11

OP-145 25:1 40.7 2.1 0.79 41.9 3.7 1.88

P148 25:1 40.4 2.0 1.67 42.1 2.6 2.43

P276 25:1 40.2 1.8 1.70 41.5 2.3 2.47
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4.5. VESICLE LEAKAGE ASSAY: IMPACT OF PEPTIDES UPON MEMBRANE 

PERMEATION 

 

Membrane-disturbing properties of AMPs have been tested on liposomes composed of POPG 

and POPC with entrapped fluorescent dye ANTS/DPX. The degree of release of fluorescent 

dye from the vesicles upon incubation with peptides was measured. 

 

Results of leakage assay indicate that all three tested peptides exert a strong activity on POPG 

membrane (Figure 34). OP-145 may show a bit lower level of activity at lower 

concentrations, but at 2 μM concentration all peptides have caused a near 100% leakage. The 

same holds for POPG liposomes with PGN added as there is virtually no difference in 

comparison to pure POPG (Figure 335). OP-145’s activity at lower concentrations seems to 

have increased a bit, but the significance of this increase is questionable. 

As for POPC, OP-145 shows a dramatically lower level of activity with less than 10% leakage 

caused at the same concentration at which P148 and P276 cause more than 90% leakage 

(Figure 36). Even at 8 μM OP-145 caused only 40% leakage. With the addition of 25% 

cholesterol into the membrane, OP-145’s activity did not change, while P276 and especially 

P148 show a slight decrease in their activity, but it was still significantly larger than for OP-

145 (Figure 37). 

 

Figure 34. Fluorescent dye leakage from POPG vesicles in interaction with peptides.  
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Figure 35. Fluorescent dye leakage from POPG vesicles in presence of PGN in interaction 

with peptides  

Figure 36. Fluorescent dye leakage from POPC vesicles in interaction with peptides  

Figure 37. Fluorescent dye leakage from POPC/cholesterol vesicles in interaction with 

peptides 
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4.5.1. IMPACT OF SERUM ON MEMBRANE PERMEABILITY ACTION OF AMPs 

 

In order to discern more closely the correlation between AMP’s action on model membranes 

and living cells, leakage assay was also performed in the presence of bovine serum to mimic 

real organism conditions. 

Addition of serum greatly diminishes activity of both tested peptides on POPC membranes 

(Figure 38), more so of OP-145 than of P148, and the decrease is greater with the increase of 

serum content. On the other hand, POPG vesicles show complete leakage when serum is 

added (Figure 39). 

Figure 38. Leakage from POPC vesicles in interaction with peptides in presence of 10% and 

25% bovine serum. 
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Figure 39. Leakage from POPG vesicles in interaction with peptides in presence of 10% and 

25% bovine serum. All values are at 100%. 

 

4.5.2. EFFECT OF BSA ON MEMBRANE PERMEABILITY ACTION OF AMPs 

 

Leakage experiments were performed with bovine serum albumin (BSA) in different 

concentrations in order to examine the effect of BSA on membrane permeability of AMPs. 

Dependence of POPG vesicles leakage on concentration of BSA is nearly linear. Complete 

leakage is achieved around 5 μM BSA. Contrary to POPG, POPC vesicles show negligible 

leakage when exposed to pure BSA. Results are shown on Figure 40. Linear fit was calculated 

using the least squares method. R-squared values are given for reference. 

Figure 40. POPG and POPC vesicles leakage in interaction with BSA 
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4.6. PEPTIDE-LIPID AFFINITY ASSAY: AMPs’ DISCRIMINATION BETWEEN 

MEMBRANES  

 

In order to determine peptides’ relative affinity towards PG and PC, an experiment was 

performed that would show which lipid species is preferred for the peptide to act upon in the 

presence of both vesicle types. 

This experiment showed that OP-145 induces stronger leakage from POPG vesicles even in 

the presence of POPC. If both species are present in equal concentrations, one labelled and 

the other not, OP-145 would preferably target POPG (Figure 41). In contrast to this, P148 and 

P276 show no such selectivity as all leakages from all combinations of liposomes are similar 

(Figures 42 and 43). It is noteworthy that the total concentration of lipids in mixed 

POPG/POPC experiments is 100 μM, while in single liposome species experiment it is 50 

μM. Therefore, peptide concentrations and molar ratios need to be taken into account when 

interpreting this data. 

 

 

Figure 41. OP-145’s affinity towards POPG and POPC vesicles and their combinations 

(lab.=fluorescent dye-containing vesicles) 
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Figure 42. P148’s affinity towards POPG and POPC vesicles and their combinations 

(lab.=fluorescent dye-containing vesicles) 

 

Figure 43. P276’s affinity towards POPG and POPC vesicles and their combinations 

(lab.=fluorescent dye-containing vesicles) 
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5. DISCUSSION 

 

Computer model predictions about secondary structure of OP-145 seem to correspond with 

what was determined by CD measurements. When dissolved in buffer, OP-145 seems to take 

its lowest energy conformation (Maupetit, 2009) and does not change it over time. In 

interaction with SDS micelles and POPG vesicles, which are both prokaryotic model 

membranes, OP-145 changes its secondary structure: with an increase both in time and in 

concentration, it becomes less alpha helical, which may be due to the action exerted upon the 

membrane. Data from size measurements seems to support this premise as POPG vesicles size 

had increased with an increase both in time and in OP-145 concentration, which might 

suggest liposome fusion or aggregation under the action of peptides. It could, therefore, be 

proposed that OP-145 starts its activity upon membranes as an alpha helical peptide and 

thereafter changes its secondary structure as the membrane degrades and/or fuses to form 

larger liposomes. 

 

However, previously published data indicates that OP-145 does not take an alpha helical 

secondary structure in buffer and only does so upon contact with membranes, be it PG or PC, 

and that it stays alpha helical independent of concentration or the passage of time. Moreover, 

it indicates that the secondary structure does not influence OP-145’s selectivity towards PG 

and PC membranes (Malanovic et al., 2015). It also indicates that OP-145 induces a quasi-

interdigitated state of PG membranes by a planar adherence to the surface with its 

hydrophobic region, orienting in the interfacial region in a way to shield the acyl chains of the 

lipid from the aqueous layer (Malanovic et al., 2015; Smith and Dea, 2013). This in turn thins 

the membrane making it more prone to ruptures. The discrepancy between the results 

obtained in this study and previously published data could be due to several factors such as 

peptide oligomerisation during synthesis. 

 

DSC thermograms support the claim that OP-145 and PG (in this case, DPPG) interact as 

there was a clear shift of the DPPG main transition temperature towards lower value, 

indicating membrane destabilisation. Moreover, data from leakage assay indicates that OP-

145 is active against prokaryotic model membranes as it induces vesicle leakage, as opposed 

to the eukaryotic model membrane which does not leak as much in the presence of peptide. At 

1 μM concentration OP-145 had caused roughly 50% of POPG vesicle leakage, which can be 

put in correlation with the IC50 value for the killing of S. aureus, which was 1.6 μM in a 1 h 
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timeframe (Malanovic et al., 2015). Additionally, it has been shown that the addition of PGN 

to POPG does not affect the activity of OP-145 towards the membrane, which is confirmed by 

previous research (Malanovic et al., 2015). 

 

In eukaryotic model membranes, neither OP-145 secondary structure nor vesicle size seems to 

be affected, suggesting that OP-145 does not interact with DPC and DPPC. However, DSC 

thermograms disprove this as there is a clear shift in phase transition temperatures and a 

separation of peaks into the peptide-enriched and peptide-poor domain, as well as a small 

peak of peptide-free DPPC vesicles at smaller peptide concentrations. This, in turn, has been 

described by previous research which concluded that the cooperative nature of the underlying 

transition of the peptide-enriched DPPC domain and its low enthalpy indicated the presence 

of small disk-like lipid-peptide aggregates or micelles, suggesting that OP-145 exhibits a 

detergent-like effect on DPPC liposomes (Malanovic et al., 2015). Addition of cholesterol 

into liposome bilayer does not seem to have an effect on leakage. On the other hand, a 

considerably lower level of leakage form POPC membranes was observed as compared to 

POPG, additionally backed up by affinity assays which show that in the presence of both PC 

and PG vesicles, the level of leakage from PG vesicles is comparable to that of PG vesicles 

alone, and leakage from PC vesicles is smaller with PG present than from PC vesicles alone. 

However, leakage from POPC vesicles is still present, indicating possible mammalian 

cytotoxic activity, which has been shown to exist, albeit in concentrations significantly larger 

than the ones that exhibit antimicrobial activity, having an IC50≥102.4 μM for human 

erythrocytes and ≥32 μM for dermal fibroblasts in the presence of 50% plasma (Malanovic et 

al., 2015). 

 

On top of these results, the presence of bovine serum has shown to reduce the leakage from 

POPC vesicles, indicating that OP-145 goes into interaction with the serum, possibly binding 

to serum proteins. Additionally, it has been noticed that the addition of serum alone induces a 

100% leakage of POPG vesicles, suggesting that some serum component or components can 

cause complete disintegration of POPG vesicles. It has been additionally confirmed by 

conducting an experiment with BSA showing that increasing BSA concentrations nearly 

linearly increase the degree of leakage from POPG vesicles, with roughly 5 μM BSA causing 

almost 100% leakage. Given that BSA concentration in bovine serum is around 35 g/l (Matei 

et al., 2010), with molar mass of 66430 g/mol (Hirayama et al., 1990), which gives a molar 

concentration of 527 μM, even a 10% serum solution would still contain more than 10 times 
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the concentration of BSA needed to cause complete leakage, which indicates that it is a viable 

hypothesis that BSA can cause POPG disintegration. 

 

As opposed to OP-145, which has been researched previously, P148 and P276 have only been 

tested for antimicrobial activity and there is no previously published data on their biophysical 

properties. They are, therefore, compared to their parental peptide OP-145. Although P148 

and P276 only differ in one amino acid, they do differ in their properties. It has been shown 

before that a point mutation in a short-chain AMP can cause radically different properties 

(Malanovic et al., 2014). 

 

P148 and P276 have net charges of +11 and +10, respectively, at pH=7.0, as compared to OP-

145 which has a net charge of +6. They are also designed in a way to have improved 

amphipathic character. Based on these properties alone it can be predicted that both P148 and 

P276 adhere to PG vesicles stronger than OP-145, given PG’s negative charge. This could in 

turn mean stronger initial interactions with membrane phospholipids. In addition, their higher 

hydrophobicity can induce higher level of partitioning into the hydrophobic bilayer. Taking 

the hydrophobicity into account, their improved amphipathic character could cause a stronger 

action against PC membranes, as there would be no electrostatic repulsions between the 

positive peptide and zwitterionic PC and the hydrophobic part of the peptide could more 

easily penetrate into the bilayer, causing disaggregation of multilamellar organization of PC 

membranes. 

 

The secondary structures predicted by computer models do not correspond to the ones 

determined by CD. Hence we may assume that alpha helical secondary structure is not the 

lowest energy conformation for these two peptides when they are dissolved in PBS, nor that it 

is necessary for the peptide to take an alpha helical conformation to exert action upon the 

membranes. P148, however, adopts rather alpha helical structure in SDS, which diminishes in 

time and with the increase of peptide concentration relative to lipid. In DPC the secondary 

structure seems to be rather stable and to larger extent alpha helical, but in PG and PC 

vesicles alpha helicity seems to diminish. P276 seems to have a larger proportion of alpha 

helix in its structure when interacting with SDS, DPC, and PG, but not with PC vesicles. 

There is no change in PC vesicle size present, with only slight changes in PG vesicles size. 

As for the DSC, P276 shows stronger main transition temperature shift of POPG vesicles than 

P148, comparable to that of OP-145, suggesting membrane destabilisation. Both peptides 
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seem to cause a complete disappearance of the pretransition in POPG at a lipid:peptide ratio 

of 50:1 and smaller (meaning larger peptide concentrations), which might indicate 

stabilisation of the untilted gel phase. As for the interaction with POPC, phase separation is 

again present as was the case with OP-145. However, transition enthalpies are significantly 

lower than those exhibited with OP-145, again stronger with P276, suggesting almost total 

liposome disaggregation. 

 

Considering the leakage assay, it can be deduced that neither P148 nor P276 discriminate 

between PG and PC membranes, suggesting a larger degree of mammalian cell lysis, which is 

confirmed by haemolytic activity tests (see Table 2, section 1.2). However, in the presence of 

serum, P148 activity on PC vesicles drops significantly to around 20% leakage at 4 μM 

concentration with 10% serum and 10% leakage at the same concentration with 25% serum. It 

can be speculated that with 50% serum it would drop considerably, as was the case with 

haemolytic activity test where MMNHC was 12.8 μM. This suggests that, although in PBS 

P148 exerts a strong negative activity on mammalian cells, it could discriminate between 

bacterial and mammalian cells in physiological conditions with good activity against bacteria 

and minimum harm to the organism. Data for PG vesicles was unavailable due to the 

previously described lysis in the presence of serum. Adding PGN to PG vesicles has no effect 

on leakage induced by these two peptides, as it had no influence on the activity of OP-145, 

suggesting that bacterial cell wall (especially that of Gram-positive bacteria) would not 

impede the peptides’ action. It can be speculated that the addition of cholesterol into PC 

membrane reduces P148’s affinity towards the membrane slightly, although, as in the case 

with OP-145, the statistical significance is unclear. If this is the case, it would additionally 

provide support to the claim that P148 has lower affinity towards mammalian cells. 

 

All data combined indicates that P148 and P276 exhibit action against both bacterial and 

mammalian model membranes in buffer. However, with the addition of serum, P148’s 

selectivity towards prokaryotic membrane largely increases. It could be speculated that a 

similar change in activity would have been detected with P276 if analysed. When compared 

to OP-145, both peptides show stronger action against both bacterial and mammalian model 

membranes, but in the presence of serum, that difference largely disappears. P276 

comparatively shows biophysical properties more similar to those of OP-145 than P148 and, 

as determined from antibacterial assays, is more potent against Gram-positive bacteria than 

P148 in the presence of plasma.  
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6. CONCLUSION 

 

Prokaryotic and eukaryotic model membranes were subjected to a series of analyses under the 

influence of antimicrobial peptides OP-145, P148 and P276, concurrently assessing the 

properties of these peptides. They have shown to influence the membranes in such a way that 

causes increased tendency towards destabilisation and disruption. They have shown to possess 

antimicrobial as well as haemolytic activity, both on model membranes and, as previously 

established, on living cells, P148 and P276 more than OP-145; haemolytic and mammalian 

model membrane activity being largely diminished with the addition of blood serum. P148 

and especially P276 have shown stronger interaction with membrane phospholipids than OP-

145. P276 has shown to have a more alpha helical structure than P148, although both lesser 

than OP-145. 

 

On the basis of the data obtained in biophysical experiments on model membranes performed 

for this thesis, as well as previously published data, in accordance with this thesis’ objectives, 

it can be concluded that P148 and especially P276 have better biophysical properties than OP-

145 in terms of antimicrobial activity. However, further research is needed to fully understand 

their properties, safety, efficacy and their potential use as antimicrobial agents. 
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8. SUMMARY 

 

Antimicrobial peptides (AMPs) are a novel class of therapeutics with activity against 

pathogens. Of special interest are AMPs that act against bacteria. Such peptides mostly act by 

disrupting bacterial cytoplasmic membrane. Therefore, membrane composition as well as 

peptide properties are both important in determining a peptide’s level of activity. Such 

peptides may show other properties such as immunomodulation and antibiofilm activity, but 

can also have disadvantages such as toxicity towards mammalian cells. Therefore, new 

peptides with better and enhanced properties are being developed as new potential 

therapeutics. In Biofilm Alliance, an international consortium, such new peptides are being 

developed and modelled after OP-145, an AMP derived from LL-37, which is a naturally 

occurring cathelicidin-derived antimicrobial peptide found in humans. Among these new 

peptides are P148 and P276, whose properties have been studied in this thesis. The goal was 

to compare their properties to those of OP-145. 

To gain insight into their mode of action, OP-145, P148 and P276 were subjected to a series 

of test which included in silico modelling and investigation of their interactions with 

prokaryotic and eukaryotic model membranes by terms of thermoanalytical measurements 

using DSC, measurements of size of model membrane vesicles in interaction with peptides 

using DLS, determination of peptides’ secondary structure both alone and in interaction with 

membranes using CD and quantitative research of the peptides’ ability to disrupt these 

membranes in the form of leakage assays using fluorometry. Data gained from these 

experiments was then compared to previously known properties of these peptides. 

It was determined that OP-145 has a more alpha helical secondary structure than P148 and 

P276, but it was concluded that the secondary structure is not necessarily a factor of their 

action. The results stipulated that P148 and P276 exerted stronger action on both model 

membranes than OP-145, as was shown in calorimetric measurements and vesicle leakage 

assays. It was also shown that P148 and P276 have stronger activity than OP-145 against both 

bacterial and mammalian model membranes in the presence of blood serum. Previously 

known data suggests that P148 and P276 are more active against bacteria in the presence of 

blood serum than OP-145, with toxicity towards mammalian cells within acceptable limits. It 

was concluded that P148 and especially P276 have better biophysical properties than OP-145 

in terms of antimicrobial activity, but that further research is needed in order to better 

understand their properties and possible therapeutic use. 
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9. SAŽETAK 

 

9.1. UVOD 

 

S porastom antimikrobne rezistencije u svijetu pojavljuje se potreba za novim antimikrobnim 

tvarima, posebice novim antibioticima. Jedan od pristupa je i istraživanje antimikrobnih 

peptida (AMP). Ti peptidi su često dio obrambenog sustava različitih organizama, a ti 

prirodni spojevi se mogu koristiti kao modeli za razvoj novih, sintetskih antimikrobnih 

peptida s poboljšanim svojstvima kao što su imunomodulacijsko djelovanje ili djelovanje 

protiv biofilma. Biofilm Alliance (BALI) je međunarodni istraživački konzorcij koji razvija 

nove antimikrobne peptide koristeći OP-145 kao model. OP-145 je AMP razvijen iz LL-37, 

humanog antimikrobnog peptida prisutnog u raznim tkivima, koji nastaje iz hCAP-18 iz 

porodice katelicidina. Među tim peptidima razvijenima unutar projekta BALI su i P148 i P276 

čija svojstva su istraživana u ovome radu. 

 

U literaturi je opisano da je glavni mehanizam djelovanja antimikrobnih peptida interakcija sa 

staničnom membranom bakterija pri čemu dolazi do njezine destabilizacije i dezintegracije ili 

do formiranja pora, što oboje dovodi do curenja staničnog sadržaja i smrti bakterijske stanice. 

Stoga je važno shvatiti na koji način takvi peptidi ulaze u te interakcije. Budući da su prave 

biološke membrane kompleksan skup različitih lipida, proteina i polisaharida, postoji potreba 

za njihovim pojednostavljenjem kako bi se lakše istražile interakcije između AMP i 

membrana. Često se kao model za bakterijske membrane koriste liposomi ili vezikule 

sastavljene od fosfatidilglicerolnih lipida (PG), dok se kao modeli za eukariotske membrane 

koriste fosfatidilkolinski lipidi, aproksimirajući time ugrubo sastav pravih bioloških 

membrana. 

 

9.2. OBRAZLOŽENJE TEME 

 

Cilj ovoga rada bio je otkriti biofizikalna svojstva antimikrobnih peptida P148 i P276 i 

usporediti ih sa svojstvima peptida na temelju kojega su razvijeni, OP-145. Pritom su 

istraživane njihove interakcije s modelima bioloških membrana. Svrha rada je bila doprinijeti 

spoznaji o antimikrobnim peptidima i općenito razvoju novih antimikrobnih tvari, boreći se 

time protiv rastućeg problema antimikrobne rezistencije. 
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9.3. MATERIJALI I METODE 

 

U eksperimentima koji su provedeni za izradu ovog diplomskog rada korištene su sljedeće 

metode: diferencijalna pretražna kalorimetrija (DSC) za otkrivanje termodinamičkih promjena 

u lipidima pri kontaktu s antimikrobnim peptidima; cirkularni dikroizam (CD) za ispitivanje 

sekundarne strukture peptida u interakciji s lipidima i samih peptida; dinamičko raspršenje 

svjetlosti (DLS) za mjerenje veličine liposoma kao funkcije vremena u kontaktu s peptidima i 

fluorometrija za mjerenje curenja fluorescentnog sadržaja iz liposoma zbog degradacije 

membrane pod utjecajem peptida. Liposomi za DSC su pripravljeni od DPPG-a 

(dipalmitoilfosfatidilglicerol) i DPPC-a (dipalmitoilfosfatidilkolin), dok su liposomi za CD, 

DLS i fluorometriju pripravljeni od POPG-a i POPC-a (palmitoil-oleil-

fosfatidilglicerol/kolin). Potonji su ekstrudirani kroz membranske filtere da bi se dobile 

unilamelarne vezikule (jedan lipidni dvosloj) te radi homogenosti veličina. Zatim su 

podvrgnuti ispitivanju navedenim tehnikama uz dodatak peptida u različitim koncentracijama 

te su promatrana njihova svojstva i svojstva peptida ovisno o koncentraciji peptida i vremenu. 

Također su provedena računalna modeliranja za procjenu sekundarne strukture peptida. 

 

9.4. REZULTATI, RASPRAVA I ZAKLJUČAK 

 

Dobiveni rezultati pokazali su kako OP-145 posjeduje sekundarnu strukturu alfa heliksa, dok 

P148 i P276 nisu pokazali takva svojstva, što je bilo u suprotnosti s računalnim modelima koji 

su pokazali veliki udio alfa heliksa u sva tri peptida. U interakciji s membranama, peptidi su 

se različito ponašali: od promjene udjela alfa heliksa u ovisnosti o koncentraciji peptida i 

vremenu do potpunog izostanka alfa heliksa u sek. strukturi. Zaključeno je, a i sugerirano u 

prijašnjim istraživanjima, da alfa heliks nije nužan uvjet za antimikrobnu aktivnost. Mjerenje 

veličine liposoma je pokazalo da veličina POPG vezikula raste s porastom koncentracije OP-

145 i protekom vremena; predloženo je da je moglo doći do fuzije ili agregacije liposoma. 

Međutim, u dosadašnjim istraživanjima OP-145 nije pokazao takvo djelovanje na vezikule. 

Nije došlo do promjene veličine liposoma u ostalim slučajevima. DSC je pokazao značajne 

pomake u temperaturama faznih pomaka lipida u kontaktu s peptidima, to veće pomake što je 

veća koncentracija peptida, kao i razdvajanje signala u više pikova, što sugerira da su 

interakcije dosta snažne. Test curenja je pokazao da P148 i P276 uzrokuju jače curenje, 

odnosno dezintegraciju membrane POPG i pogotovo POPC vezikula od OP-145, što bi 

značilo podjednaku aktivnost na bakterijskim modelnim membranama kao i OP-145, ali i 
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mnogo jaču aktivnost na eukariotskim membranama, što ukazuje na moguću toksičnost. 

Također je ukazao da, kad se pokus izvodi u puferu, P148 i P276 ne pokazuju razliku u 

djelovanju prema PG i PC membranama, dok OP-145 puno jače djeluje na PG od PC. 

Međutim, dodatkom krvnog seruma smanjuje se djelovanje na obje vrste membrana, a pritom 

u literaturi nalazimo podatke o antibakterijskoj aktivnosti i hemolitičkoj aktivnosti P148 i 

P276 koji ukazuju na činjenicu da je koncentracija peptida koja ubija bakterije ispod 

hemolitičke koncentracije, što sugerira potencijal za veću sigurnost upotrebe P148 i P276 od 

OP-145 kojemu u prisutnosti krvnog seruma uvelike opada antibakterijska aktivnost. 

Na kraju je zaključeno da P148 i pogotovo P276 pokazuju bolja biofizikalna svojstva od OP-

145 u kontekstu antimikrobne aktivnosti, ali da su isto tako potrebna daljnja istraživanja da bi 

se točno ustanovilo koliki je njihov potencijal za daljnju primjenu. 
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10. APPENDIX - LIST OF ABBREVIATIONS 

 

AMP(s) – antimicrobial peptide(s) 

AMR – antimicrobial resistance 

ANTS – 8-aminonaphthalene-1,3,6-trisulfonic acid, a fluorophore 

BALI – Biofilm Alliance (www.bali-consortium.eu) 

BSA – bovine serum albumin 

CD – circular dichroism 

DLS – dynamic light scattering 

DPC - dodecylphosphocholine 

DPPC – dipalmytoilphosphatidylcholine, lipid in mammalian model membranes 

DPPG – dipalmytoilphosphatidylglycerol, lipid in bacterial model membranes 

DPX – p-xylene-bis-pyridinium bromide, fluorescence quencher 

DSC – differential scanning calorimetry 

hCAP-18 – a human cathelicidin which gives LL-37 after cleavage with proteases 

HEPES - 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid, organic buffering agent 

IC50 – inhibitory concentration that inhibits the growth of 50% of bacteria 

LC99.9 – lethal concentration of an antimicrobial agent that kills 99.9% of bacteria 

LL-37 – an AMP derived from hCAP-18; used as a model for OP-145 

LPS – lipopolysaccharide 

LTA – lipoteichoic acid 

MDR – multiple drug resistance 

MMNHC - median maximal non-haemolytic concentration 

MRSA – methicillin-resistant S. aureus 

MV – multilamellar vesicles 

OP-145 – an AMP derived from LL-37; used as a model in BALI project for the development 

of new AMPs 

OV – oligolamellar vesicles 

P148 – an AMP developed from OP-145 

P276 – an AMP developed from OP-145 

P60.4Ac – old name for OP-145 

PBS – phosphate-buffered saline 

PC – phosphatidylcholine 

PDI – polydispersity index 
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PE – phosphatidylethanolamine 

PG – phosphatidylglycerol 

PGN – peptidoglycan 

POPC – palmytoil-oleil-phosphatidylcholine, lipid in mammalian model membranes 

POPG – palmytoil-oleil-phosphatidylglycerol, lipid in bacterial model membranes 

PS – phosphatidylserine 

QELS – quasi-elastic light scattering (other name for DLS) 

SDS – sodium dodecylsulfate (a.k.a. sodium lauryl sulfate) 

SM – sphingomyelin 

UV – unilamellar vesicles 

WHO – World Health Organisation 
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