Strukturna analiza N-glikanskog profila ukupnih proteina plazme miša soja DBA/2 HILIC-UPLC-FLR-MS/MS metodom

Korman, Josipa

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Pharmacy and Biochemistry / Sveučilište u Zagrebu, Farmaceutskobiokemijski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:952762

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-06

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb

Josipa Korman

Strukturna analiza N-glikanskog profila ukupnih proteina plazme miša soja DBA/2 HILIC-UPLC-FLR-MS/MS metodom

DIPLOMSKI RAD

Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2018.

Ovaj diplomski rad je prijavljen na kolegiju Molekularna biologija s genetičkim inženjerstvom Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta i izrađen na Zavodu za biokemiju i molekularnu biologiju pod stručnim vodstvom izv. prof. dr. sc. Olge Gornik.

Zahvaljujem se mentorici, izv. prof. dr. sc. Olgi Gornik, na pruženoj prilici, ukazanom povjerenju i uloženom trudu prilikom izrade ovog diplomskog rada.

Zahvaljujem se dr. sc. Tomi Keseru na pomoći prilikom izrade praktičnog dijela rada te na strpljenju i brojnim savjetima bez kojih ovaj rad ne bi bio moguć.

Posebne zahvale mojoj obitelji i prijateljima na pruženoj podršci i poticanju tijekom studiranja.

SADRŽAJ

1.UVOD	5
1.1. GLIKOZILACIJA PROTEINA	5
1.2. GLIKANI	6
1.2.1. N-vezani glikani	7
1.2.1.1. Biosinteza N-glikana	8
1.4. ANALIZA GLIKANA	10
1.4.1. HILIC-UPLC	11
1.4.2. ESI-MS/MS	14
2. OBRAZLOŽENJE TEME	16
3. MATERIJALI I METODE	17
3.1. UZORAK	17
3.2. MATERIJALI	17
3.2.1. Anorganske kemikalije	17
3.2.2. Organske kemikalije	
3.2.3. Biološke kemikalije	
3.2.4. Otopine i puferi	
3.2.5. Laboratorijska oprema i pribor	19
3.3. PROTOKOL PRIPREME UZORKA	
3.3.1. Protokol obilježavanja N-glikana prokainamidom	
3.3.1.1. Denaturacija proteina	
3.3.1.2. Deglikozilacija	21
3.3.1.3. Priprema otopine ProA za označavanje glikana	21
3.3.1.4. Obilježavanje N-glikana	21
3.3.1.5. Prekondicioniranje GHP pločice	21
3.3.1.6. Nanošenje i pročišćavanje označenih N-glikana	

3.3.1.7. Eluacija N-glikana	
3.4. ANALIZA UZORKA	
4.REZULTATI I RASPRAVA	
5. ZAKLJUČAK	34
6. LITERATURA	
7. SAŽETAK	
8. SUMMARY	

1.UVOD

1.1. GLIKOZILACIJA PROTEINA

Glikozilacija proteina je kotranslacijska i postranslacijska modifikacija u kojoj dolazi do kovalentnog vezanja ugljikohidratnog lanca za proteine pri čemu nastaju glikoproteini. Posredovana je enzimima te započinje u endoplazmatskom retikulumu za vrijeme translacije, a dovršava se u Golgijevom aparatu.

Ovisno o mjestu vezanja ugljikohidratnog bočnog lanca razlikujemo N-vezane ili Ovezane glikoproteine. Kod N-vezanih glikoproteina ugljikohidrat N-acetilglukozamin je izravno vezan na dušikov atom bočnog ogranka asparagina smještenog unutar slijeda Asn-X-Ser ili Asn-X-Thr, pri čemu je X bilo koja aminokiselina osim prolina. U O-vezanim glikoproteinima je N-acetilgalaktozamin izravno vezan na kisikov atom bočnog ogranka serina ili treonina. (Cooper i Hausman, 2004)

Slika 1. Vrste glikoproteina: N-vezani i O-vezani (preuzeto i modificirano iz Cooper i Hausman, 2004)

Gotovo svi eukariotski proteini sadrže, osim polipeptidnog, i glikanski dio. Svaka stanica, bilo da se radi o jednostaničnim organizmima ili o stanicama višestaničnih organizama, sadrži gusti i složeni sloj glikana na površini vezanih na lipide ili proteine. (Varki i sur., 2015-2017) Glikani imaju brojne važne uloge: sudjeluju u staničnom prepoznavanju i gradnji izvanstaničnog matriksa, a samim time sudjeluju u staničnoj signalizaciji, staničnoj adheziji, prijenosu signala s okolišem, te osiguravaju strukturnu potporu stanicama, tkivima i

organima. Uz to, sudjeluju i u smatanju novosintetiziranih proteina u endoplazmatskom retikulumu i usmjeravanju istih u odgovarajuće stanične odjeljke. (Cooper i Hausman, 2004)

Glikozilacija je često zavisna o vrsti te pojedini glikanski epitopi jedne vrste mogu biti meta imunološkog sustava neke druge vrste. Primjerice, najčešće eksprimirana sijalinska kiselina kod sisavaca, uključujući i miša, je N-glikolilneuraminska kiselina koja je odsutna i imunogenična kod ljudi koji eksprimiraju N-acetilneuraminsku kiselinu. (Reiding i sur., 2016)

Razumijevanje glikana je iznimno važno budući da o ugljikohidratnom dijelu ovise svojstva glikoproteina poput njhove antigeničnosti, topljivosti i konformacije. Primjerice, promjene već i u jednom monosaharidu N-glikana mogu dovesti do promjena konformacije, a time i efektoriskih funckija imunoglobulina G što može dovesti do poremećaja u funkciji imunološkog sustava. O iznimnoj važnosti pravilne sinteze glikana govori i činjenica da je delecijom gena za enzim dolikol fosfat N-acetilglukozamin-1-fosfat transferazu (GPT) miša, onemogućena sinteza dolikol olisaharidnog prekursora bez kojeg se ne mogu sintetizirati Nvezani glikani. To posljedično vodi do smrti embrija već nekoliko dana nakon oplodnje. (Marek i sur., 1999) Uz to, mnogo stanica našeg organizma može funkcionirati bez jezgre, ali nije poznata niti jedna živuća stanica koja može funkcionirati bez glikana na svojoj površini. (Lauc i sur., 2014)

1.2. GLIKANI

U prirodi se može pronaći nekoliko stotina različitih monosaharida, no obično samo mali dio njih tvori često proučavane glikane. To su glukoza (Glc), galaktoza (Gal), ksiloza (Xyl, nije prisutna kod kralježnjaka), fukoza (Fuc), N-acetilglukozamin (GlcNAc), Nacetilgalaktozamin (GalNAc) te sijalinske kiseline: N-acetilneuraminska kiselina (NeuAc) i N-glikolilneuraminska kiselina (NeuGc). Za razliku od linearnih polimera nukleotida i proteina koji sadrže samo jednu vrstu veze, svaki monosaharid u teoriji može vezati, na bilo kojem od nekoliko veznih mjesta, drugi monosaharid ili neku drugu vrstu molekule α - ili β vezom. Iz navedenih razloga, tri različite aminokiseline ili nukleotida mogu tvoriti 6 trimera, dok tri različite heksoze teoretski mogu tvoriti između 1056 i 27648 različitih trisaharida. (Varki i sur., 2015-2017) Uz to, glikani ne nastaju izravno iz DNA predloška poput proteina, već su oni produkt složenog biosintetskog puta na koji utječu stotine genskih i okolišnih čimbenika. Stoga, glikani omogućuju prilagodljiv odgovor na okolišne čimbenike te glikozilacija u velikoj mjeri doprinosi proteinskoj strukturi i omogućuje nastanak novih funkcija. (Lauc i sur., 2014)

1.2.1. N-vezani glikani

N-glikani su kovalentno vezani na proteine N-glikozidnom vezom na aminokiselinu asparagin. Svi eukariotski N-glikani sadrže zajedničku šećernu jezgru koja se sastoji od 2 N-acetilglukozamina i 3 manoze na koje mogu biti vezani različiti šećerni ostaci. N-acetilglukozamin je za asparagin vezan β -glikozidnom vezom. Ovisno o šećernim ostacima koji su vezani na jezgru, razlikujemo tri tipa N-glikana: oligomanozni, kompleksni i hibridni tip. Oligomanozni imaju vezanu jednu ili više manoza na jezgru, a kompleksni imaju jedan ili više ogranaka (antena) koji nastaju vezanjem N-acetilglukozamina na jezgru. Hibridni su kombinacija prva dva tipa i kod njih se manoze vežu na Man α 1-6 ruku šećerne jezgre, dok se jedan ili dva N-acetilglukozamina vežu na Man α 1-3 ruku. (Varki i sur., 2015-2017)

Slika 2. Osnovni tipovi N-glikana (preuzeto i modificirano iz Varki i sur., 2015-2017)

1.2.1.1. Biosinteza N-glikana

Biosinteza N-glikana u eukariotskim stanicama se odvija u dvije faze u različitim staničnim organelima. Prva faza se odvija u endoplazmatskom retikulumu (ER) na lipidnom nosaču dolikol-fosfatu. Druga faza započinje obradom N-glikana pomoću enzima glikozadaze i glikoziltransferaze u lumenu ER-a i nastavlja se u Golgijevom aparatu. Sve glikozil transferaze kao supstrate koriste aktivirane šećere, odnosno šećere vezane za nukleotid ili dolikol. Druga faza ovisi o vrsti u kojoj se odvija, o tipu stanice, ali i vrsti proteina. Mnoge glikozidaze i glikozil transferaze su različito eksprimirane u različitim vrstama stanica te su osjetljive na fiziološko stanje stanice. Stoga, dovršeni glikoprotein ima na sebe vezan N-glikan čija struktura ovisi o ekspresiji glikozilacijskih gena stanice u kojoj se sintetizira, ali i fiziološkom stanju te stanice koje utječe na lokalizaciju i aktivnost glikozilacijskih enzima i transportera.

Sinteza započinje na citoplazmatskoj strani hrapavog ER-a dodavanjem Nacetilglukozamin-fosfata s aktivnog donora UDP-GlcNAc na dolikol- fosfat pri čemu nastaje Dol-P-P-GlcNAc. Potom se dodaje još jedan GlcNAc te pet manoznih jedinica s UDP-GlcNAc, odnosno GDP-Man, tvoreći Man5GlcNAc2-P-P-Dol. Pri tome se prebacuju samo šećerni dijelovi nukleotidnih šećera, bez fosfatne skupine. Nastali prekursor se zatim prebacuje kroz membranu ER-a sa citoplazmatske na luminalnu stranu pomoću enzima fosfolipid-translocirajuće ATPaze (tzv. flipaza). Na citoplazmatskoj strani donori monosaharida su nukleotidni šećeri, a na luminalnoj su to šećeri aktivirani dolikol-fosfatom. Slijedi produljenje prekusrosa za četiri manoze i tri glukoze te nastaje Glc3Man9GlcNAc2-P-P-Dol. Novonastali prekursor se zatim pomoću oligosahariltransferaze (OST) prebacuje na Asn unutar slijeda Asn-X-Ser/Thr u protein koji se sintetizira kroz membanu ER-a. U drugoj fazi se N-vezani glikan reže i modificira najprije u ER-u gdje mu se uklanjaju 3 glukozna i jedan manozni ostatak, a potom u Golgijevom aparatu gdje mu se uklanjaju i dodaju ugljikohidratni ostaci i gdje poprima svoj krajnji oblik. Biosintezu hibridnog i kompleksnog tipa N-glikana inicira N-acetilglukozaminiltransferaza zvana GlcNAc-TI (MGAT1) koja dodaj GlcNAc na C-2 α1-3Man u šećernoj jezgri prekursora Man₅GlcNAc₂. Nakon toga, većina N-glikana podliježe djelovanju α-manozidaze- II koja uklanja terminalne α1-3Man i α1-6Man ostatke te nastaje GlcNAcMan₃GlcNAc₂. Valja napomenuti kako α-manozidaza- II ne može ukloniti manozne ostatke ukoliko prekurskor prethodno nije obrađen djelovanjem MGAT1. Poslije uklanjanja obje manoze, dodaje se još jedan GlcNAc na C2 α1-6Man djelovanjem GlcNAc-TII (MGAT2) čime se formira pekursor svih biantenarnih, kompleksnih glikana. Hibridni N-glikani nastaju ukoliko na GlcNAcMan₅GlcNAc₂ nastao djelovanjem MGAT1 ne djeluje α -manozidaza II. Oligomanozni tip glikana nastaje iz GlcNAcMan₃₋ 4GlcNAc₂ uklanjanjem perifernog GlcNAc djelovanjem heksoaminidaze nakon obrađivanja prekursora α -manozidazom II.

U daljnjem postupku sazrijevanja N-glikana znatno se povećava repertoar različitih Nglikana koji mogu nastati dodavanjem različitih monosaharida na šećernu jezgru ili na GlcNAc na pojedinim antenama te modificiranjem s različitim skupinama poput sijalinske kiseline ili sulfatne skupine. Uz to, terminalne sijalinske kiseline također mogu podlijegati različitim modifikacijama. Najčešća modifikacija šećerne jezgre u kralježnjaka je dodavanje α 1-6Fuc (fukozilacija) na GlcNAc koji je direktno vezan na asparagin proteina djelovanjem α 1-6fukoziltransferaze. Velika većina kompleksnih i hibridnih N-glikana imaju produljene grane nastale dodavanjem galaktoze na GlcNAc na početku grane tvoreći motiv Gal β 1-4GlcNAc koji se naziva još i tip-2-N-acetillaktozamin ili "LacNAc" sekvenca. Uzevši u obzir iznad navedene različite moguće modifikacije i razlike u broju, sastavu i načinu vezivanja sastavnica grana, te modifikacije šećerne jezgre, izuzetno je velik broj različitih N-glikana koji mogu nastati biosintezom. (Varki i sur., 2015-2017)

Slika 3. Shematski prikaz N-glikozilacije (preuzeto iz: Maverakis i sur., 2015)

1.4. ANALIZA GLIKANA

Pojedini glikoprotein može imati više glikozilacijskih mjesta i njegove glikoforme se mogu razlikovati po glikozilacijskom položaju (makroheterogenost) ili po strukturi glikana koji su vezani (mikroheterogenost). Biosintezom glikana može nastati mnoštvo različitih glikanskih struktura budući da na biosintezu djeluju brojni parametri poput genskih faktora, dostupnost nukleotidnih šećera, vrijeme provedeno u ER i Golgijevom aparatu, kao i dostupnost pojedinog glikozilacijskog mjesta. Glikozilacija proteina se može razlikovati među ljudima, no znatno je stabilna unutar pojedinca. Uslijed promjena u homeostazi zbog patoloških razloga ili životnih navika, može doći do značajnih promjena u glikozilaciji. Zbog otkrivanja sve veće povezanosti između glikozilacije i različitih patofizioloških stanja, raste potencijal korištenja glikana kao ranih biomarkera bolesti ili kao pomoć prilikom probiranja pacijenata kod personalizirane medicine. (Clerk i sur., 2015)

Generalni pristup analizi glikana započinje oslobađanjem glikana od proteina. To se može učiniti kemijski ili enzimski. U slučaju N-vezanih glikana najčešće se koristi endoglikozidaza PGNaza F koja kida vezu između asparagina i na njega vezanog Nacetilglukozamina. Oslobođeni šećeri sadrže jednu reaktivnu karbonilnu skupinu na reducirajućem kraju koja se može derivatizirati odvojeno od drugih hidroksilnih skupina. (Han i Costello, 2013)

Glikani se mogu obilježiti na reducirajućem kraju reakcijom reduktivne aminacije. U toj reakciji, boja koja sadrži primarni amin reagira s aldehidnom skupinom glikana dajući imin (Schiffovu bazu) koja se reducira do sekundarnog amina odgovarajućim reducensom (npr. 2-pikolin-boran). Prednost ovog načina označavanja glikana je u tome što glikan i fluorescentna boja reagiraju u stehiometrijskom omjeru 1:1, čime je omogućena direktna kvantifikacija na temelju intenziteta fluorescencije. (Ruhaak i sur., 2010)

Slika 4. Reakcija oblježavanja glikana prokainamidom reakcijom reduktivne aminacije (preuzeto i modificirano sa <u>https://www.qa-bio.com/product/procainamide-</u> <u>labeling-kit/</u>, pristupljeno 10. 6. 2018.)

1.4.1. HILIC-UPLC

Tekućinska kromatografija vrlo visoke djelotvornosti temeljena na hidrofilnim interakcijama ("hydrophilic interaction ultra performance liquid chromatography" tj. HILIC-UPLC) je separacijska tehnika koja se koristi za razdvajanje polarnih i hidrofilnih analita. Smatra se varijacijom normalno-fazne kromatografije (NP-LC), no mehanizam separacije je znatno složeniji. Kao i kod NP-LC, stacionarna faza je polarna, a mobilna faza je sličnija onoj kod obrnuto-fazne kromatografije (RP-LC). Uz to, HILIC metodom se mogu odijeliti i nabijene supstancije, kao i kod ionske kromatografije (IC). Za razliku od kromatografije

normalnih faza u kojoj je mobilna faza potpuno nevodena i nepolarna, kod HILIC se upotrebljava organsko otapalo s različitim udjelima hidrofilnog otapala, npr. vode (Buszewski i Noga, 2012)

Slika 5. Shematski prikaz sličnosti normalno-fazne, obrnuto-fazne, ionske i HILIC kromatografije ovisno o vrsti analita, stacionarnoj i mobilnoj fazi (preuzeto iz. Buszewski i Noga, 2012)

Smatra se kako u HILIC kromatografiji vodeni dio mobilne faze stvara vodom bogati sloj adsorbiran na površinu stacionarne faze. Prilikom odjeljivanja, polarni analiti se razdjeljuju između vodom-bogatog sloja koji je adsorbiran iz mobilne na hidrofilnu stacionarnu fazu i mobilne faze bogate organskim otapalom. Također, pritom su vodikove veze i dipol-dipol interakcije dominantni retencijski mehanizmi. (Darsow i sur., 2010)

Slika 6. Retencijski mehanizmi u HILIC (preuzeto iz Darsow i sur., 2010)

U HILIC, stacionarnu fazu čine čiste silika čestice, ili one presvučene polarnim amino, amidnim, hidroksi ili drugim skupinama. Također, mogu se koristiti i stacionarne faze prevučene polimerima. HILIC odjeljivanje se može provoditi izokratnom metodom s visokim udjelom organskog otapala ili gradijentnom metodom u kojoj se započinje s visokim postotkom organskog otapala koji se smanjuje uz sve veći udio vodenog otapala koje eluira analite. U izokratnom načinu otapalo ima stalan sastav tijekom cijelog odjeljivanja. Tipična mobilna faza se sastoji od polarnog organskog otapala koje se miješa s vodom uz dodatak vode (najmanje 3%). (Buszewski i sur.,2012) Najčešće korišteno organsko otapalo je acetonitril, zbog niske viskoznosti, učinkovitog odjeljivanja analita pri nižim tlakovima te zbog toga što ne stvara vodikove veze čime je izbjegnuta kompeticija s vodom u mobilnoj fazi za polarnu stacionarnu fazu. (Gama i sur., 2012) Mobilnoj fazi se često dodaju puferi kako bi se regulirali pH i ionska jakost. Izbor pufera je ograničen zbog visokog udjela organskog otapala u mobilnoj fazi čime je otežano otapanje soli u njoj. Najčešće se koriste amonijev acetat i amonijev formijat zbog njihove kompatilnosti s MS-om. (Boersema i sur., 2008)

Vrijeme retencije ovisi o različitim vrstama intermolekularnih interakcija između analita i stacionarne faze, analita i mobilne faze te stacionarne i mobilne faze. Jačina intermolekularnih interakcija pak ovisi o kemijskoj prirodi analita, stacionarne i mobilne faze. Na retencijsko vrijeme utječe i pH pufera. Što je analit hidrofilniji, ravnoteža razdvajanja se pomiče prema imobiliziranom vodenom sloju na stacionarnoj fazi te se analit više zadržava. Drugim riječima, razdvajanje se temelji na polarnosti analita i stupnju solvatacije. Osim razdjeljenja, HILIC uključuje i interakcije stvaranjem vodikovih veza između neutralnih polarnih analita, kao i slabe elektrostatske mehanizme pri visokim udjelima organskog otapala. (Buszewski i sur.,2012)

1.4.2. ESI-MS/MS

Spektrometrija masa (MS) je visoko specifična metoda za određivanje ili potvrđivanje identiteta te strukturnu karakterizaciju različitih vrsta molekula. Maseni spektrometar se sastoji od ionizacijske komore, ubrzavajuće pločice, analizatora (vakuum 10⁻ ³-10⁻⁶ Pa) i detektora-skupljača iona. Sama metoda se može podijeliti na dva dijela: na stvaranje ioniziranih molekula te razdvajanje i detekciju nastalih iona. Molekule ili fragmenti molekula se ioniziraju u visokom vakuumu ili neposredno prije ulaska uzorka u visoki vakuum. Ioni se stvaraju u plinovitoj fazi različitim metodama ionizacije te se pomoću električnog ili magnetskog polja razdvajaju ovisno o njihovoj masi. Kao rezultat dobije se spektar masa koji pokazuje relativnu zastupljenost različitih iona kao funkciju omjera mase i pozitivnog ili negativnog naboja iona ("m/z ratio"). (Watson, 2012; Ahuja i Scypinski, 2010)

Elektrosprej ionizacija (ESI) je najčešće korištena metoda ionizacije zbog svoje kompatibilnosti s tekućinskom kromatografijom visoke djelotvornosti (HPLC) i tekućinskom kromatografijom ultra-visoke djelotvornosti (UPLC). Uzorak iz kromatografske kolone prolazi kroz kvarcnu ili metalnu iglu koja je na visokom električnom potencijalu (1-4kV) gdje se uzorak rasprši pri visokoj temperaturi i atmosferskom tlaku. Otapalo se uklanja strujom dušika te ioni analita ulaze u vakuum masenog spektrometra. (Watson, 2012). ESI nije ograničena masom molekule (iako ima svoj limit) što omogućuje i istraživanje velikih nekovalentnih kompleksa proteina. Pokazuje vrlo visoku učinkovitost ionizacije, a ioni oslobođeni elektrosprej ionizacijom su vlo stabilni i nisu u pobuđenom stanju, što nije slučaj kod nekih drugih metoda ionizacije gdje zbog toga može doći do brzog raspadanja iona. (Wilm, 2011)

Q-ToF instrument kombinira kvadrupolni analizator masa s analizatorom vremena leta ("time of flight") koji omogućavaju visoku rezoluciju i točnost analize. Kvadrupolni analizator masa (Q) predstavlja oscilirajuće električno polje u evakuiranom prostoru kroz koje prolaze samo ioni određene m/z koji imaju frekvenciju koja rezonira sa frekvencijom polja. Kod tandemske masene spektrometrije (MS/MS), ionizacijske tehnike koje slabiju fragmentaciju mogu se povezati s još jednim kvadrupolnim analizatorom između kojih se nalazi kolizijska ćelija. Fragmentacijom molekulskih iona dobivamo više informacija o njihovim strukturama. Kolizijska ćelija može biti i još jedan kvadrupol ispunjen inertnim plinom, npr. argonom, u kojem dolazi do sudaranja molekulskih iona s plinom i , posljedično, fragmentacije iona. Ovaj tip fragmentacije se naziva kolizijom inducirana disocijacija. Tipično, u prvom kvadrupolu se odabire određeni molekulski ion (prekursorski ion), potom se on fragmentira i zatim se fragmenti (produkt-ioni) odvajaju korištenjem trećeg kvadrupola. (Watson, 2012)

Kod analizatora vremena leta (ToF) ioni se ubrzavaju u električnom polju do velikih brzina, a potom se puste da slobodno putuju u dugoj cijevi (25cm-1,5m). Prikladan je i za ione velike molekulske mase. Promatra se vrijeme potrebno da ioni dođu do detektora pri čemu ioni manje mase, ali i ioni većeg naboja, putuju kraće vrijeme. (Watson, 2012; Ahuja i Scypinski, 2010)

Slika 7. Shematski prikaz Q-ToF masenog spektrometra (preuzeto i modificirano iz: Watson, 2012)

Iz m/z vrijednosti možemo dobiti informaciju o molekulskoj masi molekule. MS/MS metodom se mogu dobiti informacije o kompoziciji glikana. U glikomici ili glikoproteomici, mase iona se mogu koristiti za dobivanje informacije o tome od kojih je monosaharida izgrađen detektirani ion od interesa. U tu svrhu, što je točnija izmjerena masa, veća je vjerojatost ispravne interpretacije strukture iona. (Leymarie i Zaia, 2012) Glikani identične ili vrlo slične mase mogu biti različite strukture, npr. razlike u kiralnosti ili pak različiti sastav monosaharida. Takvi različiti glikani mogu imati sasvim drugačije biološke uloge te je važno što točnije izmjeriti mase i ispravno interpretirati podatke dobivene analizom. Stoga je jasno kako je potrebno provoditi daljnja istraživanja na području masene spektrometrije u svrhu unaprijeđivanja postojećih metoda analize.

2. OBRAZLOŽENJE TEME

Gotovo svi eukariotski proteini su glikozilirani. Glikanski dio utječe na konformaciju, topljivost, stabilnost, aktivnost te antigeničnost glikoproteina. N-glikani glikoproteina su direktno uključeni u gotovo svaki biološki proces i imaju važnu ulogu u (pato)fiziologiji ljudi. Zbog toga, u današnje vrijeme sve se više pridaje važnost istraživanjima u glikomici i povezanosti glikana s prevencijom, dijagnostikom i liječenjem bolesti. Sve je više istraživanja koja povezuju sastav glikana i promjene u glikozilaciji proteina sa različitim patofiziološkim stanjima. Primjerice, utvrđene su razlike u glikozilaciji serumskih proteina između oboljelih od karcinoma i zdravih osoba što bi se moglo koristiti kao potencijalni biomarker za identifikaciju bolesti. N-glikani imaju potencijal obećavajućih biomarkera prognoze bolesti. Glikomskim studijama je pokazano kako je kod štakora oboljelih od karcinoma jetre promjena u fukozilaciji N-glikana serumskih proteina u korelaciji s progresijom karcinoma. To je u skladu s opažanjima za humani karcinom jetre. Budući da je vrlo važno razviti pouzdane strategije za praćenje progresije bolesti u životinjskim modelima, glikomska istraživanja životinja su nužna te se sve više provode (Gao i sur., 2015)

Već je spomenuto da se animalni modeli često koriste u području glikobiologije. Takva se istraživanja temelje na pretpostavci da postoji velika sličnost između glikoma miša ili štakora s glikomom čovjeka, što pak još uvijek nije dovoljno opsežno istraženo. N-glikani proteina humane plazme su predmetom čestih istraživanja, dok se o glikozilaciji proteina plazme miša zna znatno manje. Budući da se miševi vrlo često koriste kao animalni modeli za proučavanje humanih bolesti, te da se sve više uviđa povezanost između glikozilacije i raznih patofizioloških stanja, vrlo je važno proučiti i okarakterizirati glikane proteina mišje plazme kako bi se bolje razumjele razlike u odnosu na glikane humane plazme te omogućila bolja interpolacija rezultata iz animalnih modela na ljudski organizam.

Zbog iznad navedenih razloga, u ovom radu su analizirani glikani proteina plazme miša soja DBA/2 HILIC-UPLC-FLR-MS/MS metodom te su dobiveni kromatogram i spektri analizirani uz pomoć programa MassLynx V4.1 i GlycoWorkbench 2.1. Rezultati istraživanja su prikazani FLR kromatogramom na kojem su pojedinim glikanskim vršcima asignirane odgovarajuće glikanske strukture. (Slika 8, 9, i 10)

3. MATERIJALI I METODE

3.1. UZORAK

Kao uzorak je korišteno 250 µL plazme miša soja DBA/2 dobivene od Medicinskog fakulteta Sveučilišta u Zagrebu. Prije postupka deglikozilacije potrebno je obraditi uzorak najprije vortkesiranjem, a potom centrifugiranjem. Nakon toga se odpipetira po 10 µL obrađenog uzorka u 6 jažica pločice za sakupljane uzoraka od 1 mL (tri uzorka u duplikatu za 3 različite vrste energije prilikom fragmentiranja u MS/MS). Poslije toga slijede denaturacija proteina i deglikozilacija koje su detaljnije opisane u slijedećim odlomcima.

3.2. MATERIJALI

3.2.1. Anorganske kemikalije

Tablica 1. Anorganske kemikalije

Kemikalija	Proizvođač
Dinatrij hidrogenfosfat (Na ₂ HPO ₄)	Sigma-Aldrich
Kalij dihidrogenfosfat (KH2PO4)	Sigma-Aldrich
Kalijev klorid (KCl)	Sigma-Aldrich
Klorovodična kiselina (HCl)	Kemika
Natrijev klorid (NaCl)	Sigma-Aldrich

3.2.2. Organske kemikalije

Tablica 2. Organske kemikalije

Kemikalija	Proizvođač
2-pikolin boran (2-PB)	Sigma-Aldrich
Acetonitril (ACN)	Fluka
DMSO (dimetilsulfoksid)	Fluka
Etanol (C ₂ H ₅ OH)	Sigma-Aldrich
Ledena octena kiselina (CH ₃ COOH)	Merck
NP-40 Igepal CA630 (oktil-fenoksi- polietoksi-etanol) detergent	Sigma
Prokainamid (ProA)	Sigma-Aldrich
SDS (natrijev dodecil-sulfat) detergent	Sigma

3.2.3. Biološke kemikalije

Tablica 3. Biološke kemikalije

Kemikalija	Proizvođač
PNGazaF (peptid-N-glikozidaza)	Prozyme

3.2.4. Otopine i puferi

Tablica 4. Otopine i puferi

Kemikalija	Proizvođač
2% SDS	2 g SDS-a (natrijevog dodecil-sulfata) otopiti u 100 mL vode
30% octena kiselina u DMSO	Za 250μL otopine: u 175 μL dimetilsulfoksida (DMSO) dodati 75 μL octene kiseline

5xPBS	Za 200 mL pufera: 8,00 g NaCl, 1,38 g Na2HPO4, 0,29 g KH2PO4, 0,19 g KCl → sve otopiti u 200 mL ultra čiste vode (miliQ H2O) (nakon miješanja otopinu filtrirati i podesiti pH s NaOH)		
96% acetonitril	Za 250 mL otopine: dodaje se 240 mL ACN- a i 10 mL H2O (voda se dodaje zbog hidrofilnosti kolone u daljnjoj analizi glikana (HILIC))		
otopina za kalibraciju MS	Waters, Milford (2 µg/µL otopine natrijevog jodida (NaI) u 50:50 izopropilnog alkohola i vode)		
otopina za označavanje N-glikana	Za 1 uzorak: 25 µL 30% octene kiseline u DMSO-u se dodaje u 1,08 mg prokainamida (ProA),a dobivena otopina se dodaje u 1,12 mg 2-pikolin borana (PB)		

3.2.5. Laboratorijska oprema i pribor

Tablica 5. Laboratorijska oprema i pribor

Oprema i pribor	Proizvođač
AcroPrep 96 GHP 0.2 μm	Pall
filter pločica od 1 mL	
Bio Vortex V1	Biosan
centrifuga	Centifuge 5804 Eppendorf
mikropipete (obične i multikanalne uz	Ranin
nastavke)	
NanoAcquity UPLC analizator	Waters, Milford

PCR pločice	Frame Star
pločice za pročišćavanje glikana	Orochem
pločice za skupljanje uzoraka; polipropilen; 1 mL zapremnine; za 96 uzoraka	Waters, Milford
Synapt G2-Si MS system	Waters, Milford
tresilica	IKA – Schüttler MTS 4
Vacuum manifold – vakuumska pumpa	Pall Corporation
vaga	Mettler Toledo
Waters Acquity UPLC kromatograf	Waters, Milford

3.3. PROTOKOL PRIPREME UZORKA

Kao uzorak je korištena mišja plazma koju je prije deglikozilacije potrebno obraditi. Uzorak se naprije vorteksira, zatim centrifugira 3 minute na 13400 okretaja/min. Slijedi pipetiranje po 10 μ L supernatanta u pločice za sakupljanje uzoraka. Pripremi se po tri obrađena uzorka od 10 μ L u duplikatu. Nakon toga slijedi denaturacija proteina kako bi se sterički olakšao pristup enzimu PGNazi F koji specifično uklanja N-vezane glikane s proteina.

3.3.1. Protokol obilježavanja N-glikana prokainamidom

Da bi se glikani mogli detektirati fluorescencijskim detektorom UPLC-a potrebno ih je najprije označiti fluoresentnom bojom. U ovom radu korišten je prokainamid za obilježavanje N-glikana. Označavanje glikana se odvija reakcijom reduktivne aminacije u kiselim uvjetima s reducirajućim agensom 2-pikolinboranom uz DMSO. Obiježeni glikani se potom pročiste od proteina i ostalih molekula.

3.3.1.1. Denaturacija proteina

Denaturacija se provodi dodatkom 30 μ L 2% SDS-a u svaku jažicu s uzorkom pri čemu se koristi pipeta s nastavkom od 250 μ L. Uzorak se promiješa uvlačenjem u nastavak pipete nekoliko puta nakon čega slijedi zatvaranje pločica adhezivnom folijom i inkubacija na 65 °C tijekom 10 minuta. Potom se pločica s uzorcima izvadi i ostavi hladiti 30 minuta pri sobnoj temperaturi. Nakon ohlađenja, dodaje se 10 μ L 4% Igepal-a koji veže SDS i time sprječava denaturaciju PNGaze F. Uzorak se ponovno miješa uvlačenjem u nastavak pipete od 250 μ L nekoliko puta. Zatim se pločica stavi na tresilicu 15 minuta dok ne bude spremna za dodavanje enzima.

3.3.1.2. Deglikozilacija

Enzimska smjesa se pripremi miješanjem 10 μ L 5xPBS s 0,12 μ L PNGaze F za svaki uzorak. Uzimajući u obzir grešku pri pipetiranju, kako bi se povećala točnost dodaje se 30 μ L više 5xPBS-a. U svaki uzorak se doda 10 μ L prethodno pripravljene enzimske smjese te se novonastala smjesa resuspendira uvlačenjem u nastavak pipiete nekoliko puta. Jažice se prekriju adhezivnom folijom i inkubiraju tijekom 18 sati na 37 °C.

3.3.1.3. Priprema otopine ProA za označavanje glikana

Otopina prokainamida za fluorescentno označavanje priprema se u digestoru dodavanjem 25 µL 30%-tne octene kiseline u DMSO, a dobivena smjesa se potom doda u 1,08 mg prokainamida po uzorku. Smjesu je potrebno miješati na Vortexu do potpunog otapanja te ju nakon toga dodati u 2-pikolinboran. Prije vaganja važno je ostaviti 2-pikolinboran na sobnoj temperaturi.

3.3.1.4. Obilježavanje N-glikana

U svaku jažicu s uzorkom dodaje se 25 μ L otopine za označavanje koristeći pipetu s nastavcima od 250 μ L uz miješanje uvlačenjem u nastavak pipete. Ukoliko dođe do pjenjenja uzorka, potrebno je nakratko centrifugirati uzorak. Pločica se prekrije adhezivnom folijom i ostavi na treskalici 10 minuta, nakon čega se stavi zagrijavati u pećnicu na 65 °C tijekom 2 sata. Nakon toga pločica se ostavi hladiti na sobnoj temperaturi tijekom 15 minuta kako bi bila spremna za nanošenje na prethodno pripremljenu GHP pločicu koja sadrži 96 jažica s hidrofilnom polipropilenskom membranom na koju se vežu glikani, veličine pora 0,2 μ m (1 ml AcroPrep GHP 0,2 μ m filtarske pločice).

3.3.1.5. Prekondicioniranje GHP pločice

Prekondicioniranje GHP pločice se vrši ispiranjem pomoću vakuumske pumpe, pri čemu se treba paziti da tlak pumpe ne prijeđe 2 inHg kako se ne bi oštetila hidrofilna polipropilenska membrana. Najprije se nastavcima od 300 µL pipetira te propusti kroz svaku jažicu 200 µL svježe pripravljenog 70%-tnog etanola, potom 200 µL ultra čiste vode te na kraju 200 µL svježe pripremljenog 96%-tnog acetonitrila prethodno ohlađenog na 4 °C. Acetonitril se dodaje posljednji jer se u daljnjem postupku koristi kao otapalo. Pri pipetiranju pojedinih otopina može se koristiti isti nastavak za pipetu za cijelu pločicu, što nije slučaj kod pipetiranja uzoraka jer se tada treba izbjeći križna kontaminacija. Nakon pripreme GHP pločica nanose se uzorci.

3.3.1.6. Nanošenje i pročišćavanje označenih N-glikana

Svakom se uzorku označenih N-glikana dodaje 700 μ L hladnog 100%-tnog acetonitrila multikanalnom pipetom s nastavcima od 1 mL. Uzorci se potom miješaju pipetiranjem te se, korištenjem istih nastavaka za pipetiranje, pažljivo prenesu ukupni volumeni uzoraka od cca 800 μ L (75 μ L uzorka + 700 μ L ACN) u odgovarajuće jažice na GHP pločici. Slijedi inkubacija tijekom 2 minute te uklanjanje preostale tekućine vakuumskom pumpom.

Pročišćavanje se provodi uzastopnim dodavanjem 200 μ L svježe pripremljenog 96%tnog acetonitrila, prethodno ohlađenog na 4 °C, u svaku jažicu pločice pri čemu je pločica priključena na vakuumsku pumpu kako bi se ubrzalo uklanjanje agensa. Za pipetiranje se koriste nastavci od 300 μ L te se može upotrijebiti isti set nastavaka za cijelu GHP pločicu pod uvjetom da se izbjegne kontakt nastavaka s pločicom. Postupak se ponovi 4 puta, a nakon posljednjeg ispiranja uzorci se postave na pločicu za sakupljanje uzoraka od 2 mL, koja će spriječiti da otpad prođe u centrifugu pri kasnijem centrifugiranju, te se ponovno nanese 200 μ L 96%-tnog acetonitrila u svaku jažicu. GHP pločica se stavi na centrifugiranje na 1000 okretaja/min tijekom 5 minuta kako bi se uklonio 96%-tni acetonitril,

3.3.1.7. Eluacija N-glikana

GHP pločica se postavi na čistu ABgene PCR pločicu za sakupljanje uzoraka. U svaki uzorak se doda 90 μ L ultra čiste vode nastavkom za pipetiranje od 300 μ L te se uzorci miješaju na tresilici tijekom 15 minuta. Potom se GHP pločica, zajedno s PCR pločicom za sakupljanje uzoraka, centrifugira na 1000 okretaja/min tijekom 5 minuta kako bi se sakupila prva frakcija eluata u PCR pločicu. Navedeni postupak se provede još jednom, nakon čega se provjeri je li sav sadržaj eluirao, odnosno ima li zaostalih kapljica na GHP pločici i je li ukupan volumen eluata jednak 180 μ L u svakoj jažici. Nakon provjere, jažice PCR pločice se zatvore PCR čepovima te pohrane u zamrzivač.

3.4. ANALIZA UZORKA

Fluorescentno obilježeni N-glikani razdvajaju se kromatografijom hidrofilnih interakcija na Waters Acquity UPLC instrumentu (Milford, MA, USA). Uređaj se sastoji od kvaternarne jedinice za pripravu mobilne faze, automatskog injektora uzoraka i fluorescentnog detektora. UPLC instrument je bio spregnut sa Synapt G2-Si MS sistemom (Waters, Milford, MA, USA). Maseni spektrometar je pod kontrolom programa MassLynx v. 4.1 (softver za kontrolu i prikupljanje podataka) (Waters, Milford, MA, USA). Uvjeti su bili sljedeći: pozitivni ionski mod, napon kapilare 3 kV, napon stošca za uzorkovanje 30 V, temperatura izvora 120 °C, temperatura desolvatacije 350 °C, a protok plina 800 L/sat. Maseni spektar je sniman na frekvenciji od 1 Hz u rasponu m/z od 500 do 3000.

MS/MS eksperimenti su izvođeni u modu akvizicije neovisne o podacima ("datadependent acquisition", DAD). Najprije su snimljeni spektri od 500 do 3000 m/z pa su iz njih izabrana tri prekursora s najvišim intenzitetima za CID fragmentaciju (sniman je spektar m/z 100 to 3000). Za fragmentaicju je korišten raspon kolizijskih energija (LM CE Ramp Start 7 V, LM CE Ramp End 12 V, HM CE Ramp Start 105 V, HM CE Ramp End 115 V). Pri kromatografiji N-glikana obilježenih prokainamidom fluorescentni detektor se namješa na valnu duljinu od 310 nm za ekscitaciju i valnu duljinu od 370 nm za emisiju. UPLC uređaj je kontroliran programom Empower 2, 2145 verzija (Waters, Milford, MA, USA), a uzorci su razdvajani na Waters BEH koloni za kromatografiju glikana, dimenzija 150 x 2,1 mm, punjenoj česticama veličine 1,7 µm što je karakteristično za UPLC analizu. Na kolonu se injektira 4,17% uzorka obilježenih glikana. Kao otapalo A koristi se 50 mM otopina amonijevog formijata čiji je pH 4.4, a kao otapalo B koristi se acetonitril. Uvjeti analize su takvi da je, kroz 25 minuta s brzinom protoka 0,561 mL/min, linearni gradijent acetonitrila od 70 do 53%. Analiza se odvija pri temperaturi od 25 °C, a uzorci se prije injektiranja drže pri 10 °C. Za analizu MS/MS spektara je korišten program GlycoWorkBench 2.1. (Ceroni et al, 2008)

4.REZULTATI I RASPRAVA

Cilj ovog diplomskog rada je bio provesti strukturnu analizu glikana ukupnih proteina plazme miša soja DBA/2 HILIC-UPLC-FLR-MS/MS metodom. Analiza je provedena nakon denaturacije glikoproteina i enzimskog oslobađanja N-glikana te njihovog obilježavanja fluorescentnom bojom prokainamidom. Glikani su odijeljeni tekućinskom kromatografijom vrlo visoke djelotvornosti temeljenoj na hidrofilnim interakcijama te analizirani tandemskom masenom spektrometrijom u pozitivnom ionskom modu. Rezultati dobiveni nakon obrade i analize podataka su prikazani FLR kromatogramima i tablicom s prikazom glikanskih vršaka (GP1-GP32) i glikana sadržanih unutar njih. (Slika 8., 9., i 10., Tablica 6.).

Slika 8. FLR kromatogram s asigniranim strukturama na temelju GlycoWorkbench programa i MS/MS spektra

Slika 9. Uvećani prikaz prvog dijela FLR kromatograma s asigniranim strukturama na temelju GlycoWorkbench programa i MS/MS spektra

Slika 10. Uvećani prikaz drugog dijela FLR kromatograma s asigniranim strukturama na temelju GlycoWorkbench programa i MS/MS spektra

Informacije o glikanskim strukturama su dobivene iz kromatograma, MS i MS/MS spektara te korištenjem programa MassLynx V4.1 i GlycoWorkbench 2.1. Prvi od njih se koristio za usporedbu i pregled kromatograma (Slika 11., Slika 12.), MS i MS/MS spektara (Slika 13.) dobivenih analizom pri tri različite energije fragmentacije. Također, korišten je i za obradu sirovih MS/MS spektara alatima "Automatic peak detection" i "TOF transform".

Slika 11. Prikaz TIC ('' Total ion current'') kromatograma analize u kojoj je korištenja srednja energija fragmentacije

Slika 12. Prikaz najintenzivnijeg vrška TIC (" Total ion current") kromatograma (A), MS/MS kromatograma 1., 2., i 3., najintenzivnijeg detektiranog molekulskog iona (B, C, D) te prikaz fluorescencijskog kromatograma ovisnosti intenziteta signala o vremenu (E)

Slika 13. Prikaz fragmentacijskog spektra dvostruko nabijenog glikana, m/z=1238,999, sadržanog u najintenzivnijem kromatografskom vršku

Za određivanje N-glikanskog sastava uspoređene su m/z pojedinih glikana iz MS spektara s teoretskim masama glikana iz GlycoWorkBench (GWB) baze podataka. Pri tome, kratica Hex predstavlja heksozu, tj. glukozu ili galaktozu, HexNAc N-acetilglukozamin, NeuGC N-glikolilneuraminsku kiselinu, a dHex deoksiheksozu, tj. fukozu. Vrlo precizne mase dobivene MS-om omogućile su razlikovanje glikana vrlo sličnih masa. Primjerice, glikan m/z= 1002,408 sadržan u GP11 sadrži jednu galaktozu i sijalinsku kiselinu, a nema fukozu, dok je glikan m/z=1002,933 sadržan u GP8 fukoziliran te sadrži dvije galaktoze, a ne sadrži sijalinski kislinu. GWB je korišten i za anotaciju MS/MS obrađenog spektra pojedinim teorijskim m/z fragmenata dobivenih u tom programu za svaku glikansku strukturu (Slika 14.). Anotirane strukture fragmenata su detaljno pregledane te je uspoređena njihova masa i naboj, s masama i nabojem u spektru prilikom čega se naboj pojedinog fragmenta, ali i glikana općenito, može vidjeti iz izotopnog profila u spektru.

Slika 14. Prikaz anotacije dvostruko nabijenog glikana (tj. njegovog adukta s 2 H^+) m/z=1237,999, odnosno m/z njegovih fragmenata pojedinim signalima fragmentacijskog MS/MS spektra, uz postotke anotiranja za pojedini strukturini izomer

Analizom je pokazano kako se u plazmi miša soja DBA/2 mogu pronaći oligomanozni, kompleksni i hibridni tip N-glikana, pri čemu prevladava kompleksni tip glikana (Tablica 6.). Pronađen je sveukupno 31 različiti glikan. Na kromatogramu je vidljivo kako kod struktura koje se međusobno razlikuju samo za jednu vezanu fukozu, kraće retencijsko vrijeme ima ona struktura koja nije fukolizirana što je skladu s činjenicom da se prije eluiraju manje polarne (nefukozilirane) strukture. Rezultati ovog rada su u skladu s već objavljenim radovima koji su također proučavali strukture N-glikana mišje plazme te ni ovdje nisu uočeni sijalinizirani glikani koji sadrže N-acetilneuraminsku kiselinu, a ne Nglikolilneuraminsku kiselinu. Međutim, prilikom analize je pronađeno nekoliko glikana čije m/z nisu pronađene u GWB bazi podataka što ukazuje na mogućnost da nisu sadržani u GWB bazi podataka. Valja napomenti i da GWB pridružuje fragmentu m/z=290,092 pokidani prsten N-acetilglukozamina, dok ustvari toj masi odgovara N-glikolilneuraminska kiselina koja je izgubila jednu molekulu vode. (Yu i sur., 2016) Također, na temelju drugih istraživanja uočeno je kako GWB za još neke fragmenete ukazuje na moguću krivu strukturu te ti fragmenti, kao i iznad navedeni, nisu uzeti u obzir prilikom asigniranja glikanskih struktura. Analizom glikana plazme su pronađeni i vrlo kompleksni glikani s po tri i četiri vezane sijalinske kiseline. Valja napomenuti kako se u ovome radu za te kompleksnije strukture ne može sa 100%-tnom sigurnošću tvrditi da su to baš te strukture, već su one predložene na temelju fragmentacijskog spektra, GWB anotacija i objavljenih znanstvenih radova koji su se također bavili ovom problematikom (Lattova i sur. (2008.), Yu i sur. (2016.), Reiding i sur., 2016). Kako bi se dobile točne strukture tri- i tetra- sijaliniziranih glikana bilo bi potrebno provesti fragmentaciju u negativnom modu gdje pucaju sami glikanski prsteni što daje znatno više informacija o glikanskoj strukturi.

Tablica 6. Prikaz glikanskih vršaka (GP="glycan peek") i glikana sadržanih u njima uz odgovarajuću strukturnu formulu, retencijsko vrijeme i postotak anotacije. Stupci >10% i >5% predstavljaju postotak anotacije signala čiji su intenziteti veći od 10%, odnosno 5%.

	m/z glikana	Strukturna formula	Struktura prikazana simbolima	Ret. vr. (min)	Postotak anotacije (%)	>10% (%)	>5% (%)
GP1	840,876	ProAHex ₃ HexNAc ₄ dHex ₁		6,75	90,00	90,91	90,00
GP2	726,819	ProAHex ₅ HexNAc ₂		7,41	84,00	100,00	90,91
GP3	921,905	ProAHex4HexNAc4 dHex1		8,31	75,76	88,89	77,70
GP4	921,905	ProAHex4HexNAc4dHex1		8,55	75,76	88,89	77,70
GP5	807,853	ProAHex ₆ HexNAc ₂		9,13	75,86	100,00	100,0 0
GP6	929,904	ProAHex5HexNAc4		9,38	77,78	100,00	100,0 0
GP7	900,880	ProAHex4HexNAc3NeuGc1		9,88	69,09	70,00	64,29
GP8	1002,933	ProAHex ₅ HexNAc ₅ dHex ₁		10,15	83,33	87,50	83,33
GP9	1104,469	ProAHex5HexNAc5dHex1		10,57	74,51	86,96	74,51
GP10	889,875	ProAHex7HexNAc2		10,74	70,00	100,00	90,00

GP11	1002,408	ProAHex₄HexNAc₄dHex₁		10,94	70,00	100,00	90,00
GP12	981,902	ProAHex5HexNAc3NeuGc1		11,28	84,21	84,62	84,62
GP13	1075,453	ProAHex4HexNAc4NeuGc1dHex1		11.54	81,25	95,00	96,55
	1083,443	ProAHex₅HexNAc₄NeuGc₁	₽-₽-€ ●- ●		78,26	75,00	73,68
GP14	1083,443	ProAHex₅HexNAc₄NeuGc₁	₽₽₹€	12,31	68,18	80,00	78,57
	1156,477	ProAHex₅HexNAc₄NeuGc₁dHex₁			86,96	90,91	88,24
GP15	1062,932	ProAHex₀HexNAc₃NeuGc₁		13,05	65,96	81,82	75,00
	1258,001	ProAHex₅HexNAc₅NeuGc₁dHex1			88,37	90,91	94,44
GP16	1228,996	ProAHex4HexNAc4NeuGc2dHex1		13,49	80,70	90,91	94,44
GP17	1050,923	ProAHex ₉ HexNAc ₂		13,92	88,00	100,00	91,67
GP18	1236 000	Pro A Hey-Hey N Ac, Neu Go.		14,49	76,00	75,00	78,95
GP19	1230,777			15,20	75,00	100,00	88,89
GP20	1310,016	ProAHex ₅ HexNAc ₄ NeuGc ₂ dHex ₁		15,86	84,00	75,00	83,33
GP21	1419,555	ProAHex ₆ HexNAc ₅ NeuGc ₂		16,05	79,10	91,67	94,44

GP22	1419,555	ProAHex ₆ HexNAc ₅ NeuGc ₂	16,73	80,00	72,73	80,00
	1390,541	ProAHex₅HexNAc₄NeuGc₃		75,00	100,00	100,0 0
GP23	1463,562	ProAHex₅HexNAc₄NeuGc₃dHex1	17,28	73,81	100,00	100,0 0
GP24	1565,105	ProAHex ₅ HexNAc ₅ NeuGc ₃ dHex ₁	17,77	83,33	87,50	89,29
GP25	1544,089	ProAHex₅HexNAc₄NeuGc₄	18,15	69,23	100,00	92,31
GP26	1573,112	ProAHex₀HexNAc₅NeuGc₃	18,54	61,76	75,00	80,00
GP27	1573,112	ProAHex₀HexNAc₅NeuGc₃	19,03	73,91	70,59	73,91
	1646,126	ProAHex₀HexNAc₅NeuGc₃dHex₁		72,41	66,67	73,00
GP28	1646,642	ProAHex₀HexNAc₅NeuGc₃dHex₁	19,42	82,98	66,67	79,41
GP29	1151,108	ProAHex₀HexNAc₅NeuGc₄	19,80	81,13	92,00	83,33
GP30	1151,108	ProAHex₀HexNAc₅NeuGc₄	20,22	76,79	91,30	84,38

GP31	1151,108	ProAHex₀HexNAc₅NeuGc₄	20,49	78,05	91,30	82,35
GP32	1273,144	ProAHex7HexNAc6NeuGc4	21,55	79,49	94,44	84,00

5. ZAKLJUČAK

Koristeći se HILIC-UPLC-FLR-MS/MS metodom, analizirani su N-glikani plazme miša soja DBA/2. Pronađeni su oligomanozni, hibridni i kompleksni glikani, sveukupno 31 različit N-vezani glikan. Glikani koji sadrže sijalinsku kiselinu, imaju N-glikolilneuraminsku kiselinu, što je važna razlika u odnosu na humane glikane koji sadrže isključivo Nacetilneuraminsku kiselinu. Budući da se miševi vrlo često koriste kao eksperimentalni model istraživanja humanih bolesti, važno je uzeti u obzir svojstva glikozilacije mišjih proteina prilikom odabira životinjskog modela zbog razlika prisutnih u odnosu na glikozilaciju humanih proteina. Iz tog razloga, predlažu se dodatna istraživanja kojima bi se izravno uspoređivali glikani miša i ljudski glikani, ali isto tako i razlike u glikozilaciji između različitih sojeva miševa.

6. LITERATURA

Ahuja S, Scypinski S. Handbook of modern pharmaceutical analysis. Academic Press, San Diego, 2010.

Boersema PJ, Mohammed S, Heck AJR. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Analytical and Bioanalytical Chemistry, 2008, 391(1)

Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Analytical and Bioanalytical Chemistry, 2011, 402

Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. The Journal of Proteome Research, 2008, 7(4)

Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma protein *N*-glycosylation. Glycoconjugate Journal, 2016, 33

Cooper G, Hausman RE. Stanica: Molekularni pristup, treće izdanje. Medicinska naklada Zagreb, 2004, str. 305-307

Darsow Kai, Bartel Sebastian, Yves Muller, Harald Lange. Glycosylation Analysis by Hydrophilic Interaction Chromatography (HILIC)-N-Glyco Mapping of The ZP-Domain of Murine TGFR-3, 2010, http://www.chromatographyonline.com, pristupljeno 13.5.2018.

Davies AN. A new approach to identifying unknown trace level analytes by tandem mass spectrometry without reference spectroscopic database support: CSI: FingerID, https://www.spectroscopyeurope.com/td-column/new-approach-identifying-unknown-trace-level-analytes-tandem-mass-spectrometry-without, pristupljeno 13.05.2018.

Gama MA, da Costa Silva RG, Collins CH, Bottoli CBG. Hydrophilic interaction Chromatography. Trends in Analytical Chemistry, 37

Gao WN, Yau LF, Liu L, Zeng X, Chen DC, Jiang M, Liu J, Wang JR, Jiang ZH. Microfluidic Chip-LC/MS-based Glycomic Analysis Revealed Distinct N-glycan Profile of Rat Serum. Scientific reports, 2015, 7;5:12844

Han L, Costello CE. Mass Spectrometry of Glycans. Biochemistry (Moscow), 2013, 78(7)

Krištić J,Vučković F, Menni C, Klarić L, Keser T, Beceheli I, Pučić-Baković M, Novokmet M, Mangino M, Thaqi K, Rudan P, Novokmet N, Šarac J, Missoni S, Kolčić I, Polašek O, Rudan I, Campbell H, Hayward C, Aulchenko Y, Valdes A, Wilson JF, Gornik O, Primorac D, Zoldoš V, Spector T, Lauc G. Glycans are a novel biomarker of chronological and biological ages. The journals of gerontology. Series A, Biological sciences and medical sciences, 2014, 69(7)

Lattova E, Varma S, Bezabeth T, Petruš L, Perreault H. Mass Spectrometric Profiling of N-Linked Oligosaccharides and Uncommon Glycoform in Mouse Serum with Head and Neck Tumor. Journal of the American Society for Mass Spectrometry, 2008, 19 (5)

Lauc G, Krištić J, Zoldoš V. Glycans – the third revolution in evolution. Frontiers in genetics, 2014, 5

Leymarie N, Zaia J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Analytical Chemistry, 2012, 84(7)

Marek KW, Vijay IK, Marth JD. A recessive deletion in the GlcNAc-1phosphotransferase gene results in peri-implantation embryonic lethality. Glycobiology, 1999, 9(11)

Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, Raychaudhuri S, Ruhaak LR, Lebrilla CB. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: A critical review. Journal of Autoimmunity, 2015, 57

Reiding KR, Hipgrave Ederveen AL, Rombouts Y, Wuhrer M. Murine Plasma N-Glycosylation Traits Associated with Sex and Strain. The Journal of Proteome Research, 2016, 15(10)

Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Analytical and Bioanalytical Chemistry, 2010

Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Essentials of Glycobiology, 2nd edition. New York, Cold Spring Harbour Laboratory Press, 2009. At <u>http://www.ncbi.nlm.nih.gov/books/NBK1908/</u>

Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH. Essentials of

Glycobiology, 3rd edition. New York, Cold Spring Harbour Laboratory Press, 2015-2017. At https://www.ncbi.nlm.nih.gov/books/NBK310274/

Watson, David G. Pharmaceutical analysis, A Textbook for Pharmacy Students and Pharmaceutical Chemists, Elsevier, Oxford, 2012, 9.poglavlje

Wilm M. Principles of Electrospray Ionization. Molecular & Cellular Proteomics, 2011, 10(7)

Yu J, Schorlemer M, Toledo AG, Pett C, Sihlbom C, Larson G, Westerlind U, Nilsson J. Distinctive MS/MS Fragmentation Pathways of Glycopeptide-Generated Oxonium Ions Provide Evidence of the Glycan Structure. Chemistry: A European Journal, 2016

7. SAŽETAK

Glikozilacija proteina je složena kotranslacijska i postranslacijska modifikacija posredovana enzimima u kojoj dolazi do kovalentnog vezanja šećernih struktura na proteine. Glikanski dio utječe na svojstva i funkciju glikoproteina. Istraživanjima se sve više utvrđuje povezanost glikana s različitim patofiziološkim stanjima te zbog toga oni postaju predmetom sve brojnijih istraživanja. Budući da se miševi vrlo često koriste kao eksperimentalni model istraživanja humanih bolesti, važno je istražiti razlike u glikozilaciji između humanih i mišjih proteina, te ih uzeti u obzir prilikom odabira životinjskog modela.

U ovom radu su analizirani N-glikani plazme miša soja DBA/2 HILIC-UPLC-FLR-MS/MS metodom u pozitivnom ionskom modu. Kao rezultat, prikazan je FLR kromatogram sa asigniranim odgovarajućim glikanskim strukturama na temelju MS/MS spektra i programa GlycoWorkbench 2. Pronađeni su oligomanozni, hibridni i kompleksni glikani, sveukupno 31 različit N-vezani glikan. Analizirani glikani koji sadrže sijalinsku kiselinu, imaju Nglikolilneuraminsku kiselinu, što je važna razlika u odnosu na humane glikane koji sadrže isključivo N-acetilneuraminsku kiselinu.

8. SUMMARY

Protein glycosylation is a complex cotranslational and posttranslational enzymemediated modification, in which the sugar structures covalently bind to proteins. The glycan part affects the properties and function of glycoproteins. Glycans are being associated with different pathophysiological conditions and therefore become the subject of ever increasing research. Since mice are very often used as an experimental model of human disease research, it is important to investigate the differences in glycosylation between human and mouse proteins and to consider them when deciding between animal models.

This Master thesis analyses the plasma N-glycosilation of mice from DBA/2 strain using positive ion mode HILIC-UPLC-FLR-MS/MS method. As a result, the FLR chromatogram is presented with assigned glycan structures obtained from MS/MS spectrum and GlycoWorkbench 2 program. Oligomannose, hybrid and complex glycans were found, altogether 31 different N-linked glycan. The analyzed glycans which contain sialic acid have N-glycolylneuraminic acid, which is an important difference compared to human glycans which contain exclusively N-acetylneuramic acid.

Temeljna dokumentacijska kartica

Sveučilište u Zagrebu Farmaceutsko-biokemijski fakultet Studij: Farmacija Zavod za biokemiju i molekularnu biologiju A. Kovačića 1, 10000 Zagreb, Hrvatska

STRUKTURNA ANALIZA N-GLIKANSKOG PROFILA UKUPNIH PROTEINA PLAZME MIŠA HILIC-UPLC-FLR-MS/MS METODOM

Josipa Korman

SAŽETAK

Glikozilacija proteina je složena kotranslacijska i postranslacijska modifikacija posredovana enzimima u kojoj dolazi do kovalentnog vezanja šećernih struktura na proteine. Glikanski dio utječe na svojstva i funkciju glikoproteina. Istraživanjima se sve više utvrđuje povezanost glikana s različitim patofiziološkim stanjima te zbog toga oni postaju predmetom sve brojnijih istraživanja. Budući da se miševi vrlo često koriste kao eksperimentalni model istraživanja humanih bolesti, važno je istražiti razlike u glikozilaciji između humanih i mišjih proteina, te ih uzeti u obzir prilikom odabira životinjskog modela. U ovom radu su analizirani N-glikani plazme miša soja DBA/2 HILIC-UPLC-FLR-MS/MS metodom u pozitivnom ionskom modu. Kao rezultat, prikazan je FLR kromatogram sa asigniranim odgovarajućim glikanskim strukturama na temelju MS/MS spektra i programa GlycoWorkbench 2. Pronađeni su oligomanozni, hibridni i kompleksni glikani, sveukupno 31 različit N-vezani glikan. Analizirani glikani koji sadrže sijalinsku kiselinu, imaju N-glikolilneuraminsku kiselinu, što je važna razlika u odnosu na humane glikane koji sadrže isključivo N-acetilneuraminsku kiselinu.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži:	38 stranica, 14 grafičkih prikaza, 6 tablica i 24 literaturna navoda. Izvornik je na hrvatskom jeziku.
Ključne riječi:	glikozilacija, N-glikani miša, prokainamid, HILIC-UPLC, MS/MS
Mentor:	Dr. sc. Olga Gornik , izvanredni profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta
Ocjenjivači:	Dr. sc. Ana Mornar Turk, izvanredni profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta Dr. sc. Toma Keser, asistent – znanstveni novak Sveučilišta u Zagrebu Farmaceutsko- biokemijskog fakulteta Dr. sc. Tamara Pavić, znanstveni suradnik Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad prihvaćen: svibanj 2018.

Diplomski rad

Basic documentation card

University of Zagreb Faculty of Pharmacy and Biochemistry Study: Pharmacy Department of Biochemistry and Molecular biology A. Kovačića 1, 10000 Zagreb, Croatia

Structural analysis of murine plasma N-glycome from DBA/2 strain with HILIC-UPLC-FLR-MS/MS method

Josipa Korman

SUMMARY

Protein glycosylation is a complex cotranslational and posttranslational enzyme-mediated modification, in which the sugar structures covalently bind to proteins. The glycan part affects the properties and function of glycoproteins. Glycans are being associated with different pathophysiological conditions and therefore become the subject of ever increasing research. Since mice are very often used as an experimental model of human disease research, it is important to investigate the differences in glycosylation between human and mouse proteins and to consider them when deciding between animal models. This Master thesis analyses the plasma N-glycosilation of mice from DBA strain using positive ion mode HILIC-UPLC-FLR-MS/MS method. As a result, the FLR chromatogram is presented with assigned glycan structures obtained from MS/MS spectrum and GlycoWorkbench 2.1 program. Oligomannose, hybrid and complex glycans were found, altogether 31 different N-linked glycan. The analyzed glycans which contain sialic acid have N-glycolylneuraminic acid, which is an important difference compared to human glycans which contain exclusively N-acetylneuramic acid.

The thesis is deposited in the Central Library of the University of Zagreb Faculty of Pharmacy and Biochemistry.

Thesis includes:	38 pages, 14 figures, 6 tables and 24 references. Original is in Croatian language.
Keywords:	glycosylation, murine N-glycans, procainamide, HILIC-UPLC, MS/MS
Mentor:	Olga Gornik, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Reviewers:	 Ana Mornar Turk, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry Toma Keser, Ph.D. Assistant-research associate, University of Zagreb Faculty of Pharmacy and Biochemistry Tamara Pavić, Ph.D. Sc. Associate, University of Zagreb Faculty of Pharmacy and Biochemistry

The thesis was accepted: May 2018.

Diploma thesis