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Actualities in the phytochemical research on selected terpenes

A short review of our recent research on the essential oil 
phytochemical composition of Petasites albus (L.) Gaertn. and 
Petasites hybridus (L.) G. Gaertn., B. Mey. & Scherb. (Astera-
ceae) as well as on the oils of Globularia cordifolia L., Globu-
laria meridionalis (Podp.) O. Schwarz and Globularia punctata 
Lapeyr. (Plantaginaceae) is presented. All essential oils con-
tained a variety of oxygenated sesquiterpenes among their 
major constituents, including a bakkane type sesquiterpene 
fukinanolid (bakkenolide A). The paper is focused on: i) a 
short overview of the abundance of major terpenes in the 
essential oils of Petasites and Globularia species from Croatia; 
ii) possible biosynthetic pathways of major identified sesqui-
terpenes; and iii) biological activities (literature data) of ma-
jor sesquiterpenes from Petasites and Globularia species.

Keywords: Petasites species, Globularia species, oxygenated 
sesquiterpenes, bisabola-2,10-diene-1-one, fukinanolid (bak-
kenolide A), dehydrofukinone

Terpenes are derived biosynthetically from isopentenyl pyrophosphate (IPP) and di-
methylallyl pyrophosphate (DMAPP) units. IPP and DMAPP can be produced through the 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase pathway, known as the 
mevalonate pathway (discovered in the 1950s), via mevalonic acid as intermediate (1). An-
other pathway of producing terpenes is the 2-C-methyl-d-erythritol 4-phosphate/1-deoxy-
d-xylulose 5-phosphate pathway (MEP/DOXP pathway), which was discovered in the late 
1980s (1, 2). IPP units are further connected to form precursors of each subclass of terpenes 
(geranyl pyrophosphate (GPP) for monoterpenes, farnesyl pyrophosphate (FPP) for sesqui-
terpenes, and others) that finally produce terpenes after initiation, propagation and termi-
nation sequences (1). Among terpenes, compounds with different biological activities (e.g., 
antioxidant, antimicrobial, cytotoxic, phototoxic, nuclear and cytoplasmic mutagenic, carci
nogenic, antimutagenic properties, and others) can be found (3). Great chemical diversity 
of terpenes exists in nature and monoterpenes and sesquiterpenes are present in essential 
oils of the different aromatic plants (1, 4). They are isolated (4) by hydrodistillation (HD), 
steam distillation (SD), simultaneous distillation-extraction (SDE), solvent extraction (SE), 
ultrasonic solvent extraction (USE), solid-phase extraction (SPE), supercritical fluid extrac-
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tion (SFE), microwave-assisted extraction (MAE), stir-bar extraction (SBE), and different 
headspace (HS) techniques (dynamic and static). Phytochemical composition of essential 
oils has been ubiquitously determined by gas chromatography and mass spectrometry 
(GC-MS). 

Our recent research (5, 6) was focused on the essential oil phytochemical composition 
of Petasites albus (L.) Gaertn. and P. hybridus (L.) G. Gaertn., B. Mey. & Scherb. (Asteraceae) 
as well as on the oils of Globularia cordifolia L., G. meridionalis (Podp.) O. Schwarz and G. 
punctata Lapeyr. (Plantaginaceae) from Croatia. All the obtained essential oils were very 
complex, containing a variety of sesquiterpenes and characteristic oxygenated compounds 
were found among them, e.g., fukinanolid (bakkenolide A). The present paper is focused 
on: i) a short overview of the abundance of major terpenes in Petasites and Globularia spe-
cies; ii) possible biosynthetic pathways of identified major sesquiterpenes; and iii) selected 
biological activities (literature data) of identified major sesquiterpenes from Petasites and 
Globularia species.

Targeted sesquiterpenes

Sesquiterpenes, as the largest group of terpenes, are subdivisible according to the arran
gement of carbon atoms in the molecular skeleton (4, 7). This paper is focused on our recent 
research on the subgroups having their carbon atoms arranged in a monocyclic and bicyclic 
framework corresponding to bakkane, eremophilane and cadinane type sesquiterpenes 
found in the essential oils of two Petasites and three Globularia species. The obtained oils 
exhibited complex chemical composition, containing oxygenated sesquiterpenes. In contrast 
to our previous papers (5, 6), the novelty presented in this short review concerns a short 
presentation of their possible biosynthetic pathways and their observed biological activities 
from the literature.

Major volatiles from P. albus

The major compound in the essential oil from P. albus leaves obtained by hydrodistil-
lation (5) was a bisabolene type sesquiterpene bisabola-2,10-diene-1-one. In general, bisab-
ola-2,10-diene-1-one is rarely found in essential oils. It is likely that it is derived (Fig. 1) from 
the FPP precursor generating (E,E)-farnesyl allylic cation, leading to  nerolidyl pyrophos-
phate (NPP; 1, 4). NPP is another precursor that can undergo different types of reaction, 
but in this case, bisabolene synthase directs a single cyclization by electrophilic attack of 
C-1 onto the double bond of C-6 to form a six-membered ring. Tertiary bisabolyl cation 
yields different bisabolene derivatives by propagation (e.g., rearrangements, cyclizations) 
and termination reactions (e.g., proton eliminations, oxidations) including bisabola-2,10-
diene-1-one, t-muurolol and t-cadinol.

A bakkane type sesquiterpene fukinanolid (bakkenolide A) was another abundant 
compound in the essential oil of P. albus leaves along with two eremophilanes, t-muurolol 
and t-cadinol (5). The last two compounds were previously identified as biologically active 
molecules. Among others, t-cadinol exhibited a concentration-dependent smooth muscle 
relaxing effect on the isolated guinea pig ileum and a dose-dependent inhibitory effect on 
cholera toxin-induced intestinal hypersecretion in mice (8). t-Muurolol showed antifungal 
activity against Rhizoctonia solani and Fusarium oxysporum (9). If those two eremophilanes 
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were in cis-configuration (t-cadinol) or trans-configuration (t-muurolol) with axial hydroxyl 
at C-9, their antimite activities against Dermatophagoides pteronyssinus and D. farinae were 
lower than those of α-cadinol (10). In the essential oil of P. albus leaves, germacrane sesqui-
terpenes germacrene D-4-ol and germacrene D were less abundant and so was the cadi-
nane sesquiterpene δ-cadinene (5). Bakkenolide A was the major component of P. albus 
flower stems and rhizome essential oils, while bisabola-2,10-diene-1-one and an undeter-
mined furanoeremophilane-type sesquiterpene followed by other constituents were also 
present abundantly (5). Bakkenolide A was the main sesquiterpene lactone of P. albus (11, 
12) and was found in much higher abundance in the buds, scales and flower stems in com-
parison with the leaves (11). Eremophilene, furanoeremophilane, several other eremo-
philene-type sesquiterpenes (albopetasin, petasalbin, albopetasol) and sesquiterpene hy-
drocarbons (e.g. petasitene, β-elemene, and humulene) were previously found in the 
rhizomes of P. albus from North Bohemia (13).

Biosynthesis of bakkenolide A

Bakkenolide A is a member of a large group of sesquiterpene butyrolactones. It is a 
tricyclic hydrindane with A and B rings fused in cis mode (Fig. 2). It also contains a spiro 
lactone moiety (C ring) with an exocyclic methylene group. There are four chiral centers, 
present at C-4, C-5, C-7 (the spiro center), and C-10, which makes the synthesis more chal-
lenging (14). Bakkenolide A is presumed to be biogenetically related to eremophilanes 

Fig. 1. Possible formation of bisabola-2,10-diene-1-one, t-muurolol and t-cadinol from farnesyl pyro-
phosphate (FPP): 1 – farnesyl pyrophosphate (FPP), 2 – (E,E)-farnesyl cation, 3 – nerolidyl pyrophos-
phate (NPP), 4 – nerolidyl cation, 5 – bisabolyl cation, 6 – bisabola-2,10-diene-1-one, 7 – t-muurolol, 
8 – t-cadinol.
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based on their frequent co-occurrence in nature and efficient “biomimetic” conversion of 
fukinone (15) to bakkenolide A. Biosynthesis of bakkenolide A is generally taken (16) to 
proceed as illustrated in Fig. 2.

Biosynthesis of bakkenolide A starts from FPP and proceeds through the cyclic cation 
intermediate, which undergoes oxidation and skeletal rearrangement to afford eremo
philane fukinone (Fig. 2), a sesquiterpene ketone first isolated in 1968 from P. japonicus 
Maxim. (17). It has been proposed that fukinone is likely to be oxidized to fukinone epoxide 
and to subsequently undergo Favorskii skeletal rearrangement. Dehydration and further 
oxidation furnishes the lactone, completing the biosynthesis of bakkenolide A (16), which 
was first isolated from the flower buds of P. japonicus along with four other bakkenolides 
(B, C, D, and E) (18).

Biological activity of bakkenolide A

It was shown in previous studies that bakkenolide A exhibits selective cytotoxic activ-
ity towards cell lines derived from human carcinomas (Hep2 and HeLa) vs. HeLu and 
cytotoxicity against Ehrlich carcinoma (19–21). The structure and cytotoxic activity rela-
tionship of sesquiterpene lactones was investigated on numerous tumor models (21). 
α-Methylene-γ-lactone moiety with exomethylene group on the lactone is essential for 
cytotoxicity. However, the most immediate and direct factor responsible for cytotoxicity 
was the O=C-C=CH2 system (with or without lactone or cyclopentenone). The neuroprotec-
tive activity of bakkenolides from P. tricholobus Franch. was assayed with primary cultured 
neurons exposed to oxygen-glucose deprivation and oxidative insults and their antioxi-
dant activity was investigated using cell-free bioassays (22). The obtained results showed 
that all the compounds exhibited notable neuroprotective and antioxidant activities. Bio-
logical activity of bakkenolide A against a variety of agricultural pests was also investi-
gated (21). It exhibited moderate to excellent protectant activities against adult beetles (Si-
tophilus granarius, Tribolium confusum) and larvae (Trogoderma granarium, Tribolium confusum) 
(23). Bakkenolide A also showed high biological activity as an antifeedant and as a larval 
growth inhibitor towards the variegated cutworm Peridroma saucia (24).
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Fig. 2. Biosynthesis of fukinanolid (bakkenolide A): 1 – farnesyl pyrophosphate (FPP), 2 – fukinone, 
3 – fukinone epoxide, 4 – bakkenolide A.
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Major volatiles from P. hybridus
The main compound in the essential oil from P. hybridus leaves (5) was bisabola-2,10-

-diene-1-one isomer. Other major compounds were dehydrofukinone, bisabola-2,10-diene-
-1-one derivative, germacrene D, phytol, trans-β-caryophyllene and eremophilene. Dehydro-
fukinone, also known as dihydrokaranone, is an eremophilane-type sesquiterpenoid and 
possesses moderate peripheral and mild central analgesic activity (25) and induces sedation 
and anesthesia by modulation of GABAa receptors (26). P. hybridus flower stem essential oil 
(5) contained tricosane, bisabola-2,10-diene-1-one derivative, β-eudesmol, fukinanolid, al-
bene, bisabola-2,10-diene-1-one and 6,10,14-trimethylpentadecan-2-one. Tricosane from P. 
japonicus flower stalk essential oil was reported previously (27). As observed in our recent 
study (5), P. hybridus rhizome essential oil contained bisabola-2,10-diene-1-one derivative, 
fukinanolid, eremophilene, hinesol, aromadendrene, β-eudesmol and bisabola-2,10-diene-
1-one isomer. Fukinanolid, eremophilene and albene were also previously reported as major 
volatiles in the rhizomes of P. hybridus (28). Similarly to our research, the amount of bak-
kenolide A was found to be significantly lower in P. hybridus buds compared to P. albus buds 
(19). Distinct separation of the two species was confirmed (5) by principal component analysis 
(PCA) and hierarchical cluster analysis (HCA). Fukinanolid, eremophilene and β-caryo
phyllene were also identified in the essential oils from P. japonicus buds and/or flower stalks 
and other plant parts (27, 29–32). Like in our previous study (5), β-caryophyllene was found 
dominant in leaf essential oils (27, 31). Larger amounts of bakkenolide A were found in the 
essential oils of P. japonicus flower stems compared to its leaves, and eremophilene was 
found to be typical for the root essential oil (27). This was also confirmed by our results (5) 
on the abundance of eremophilane structures in the rhizomes and fukinanolide in the flower 
stems of P. albus. More sesquiterpenes were previously found in Czech P. hybridus rhizomes, 
including petasin, isopetasin, S-petasin, furanopetasin, furanoeremophilone, eremophile-
nolide, petasitolide A and B, S-petasitolide A and B (33).

The most abundant compounds present in essential oils from the aerial parts of G. 
cordifolia, G. meridionalis, and G. punctata were oct-1-en-3-ol, 6-(1,5-dimethylhex-4-enyl)-
3-methylcyclohex-2-enone and bakkenolide A (6). Oct-1-en-3-ol is a secondary metabolite 
produced naturally by the enzymatic breakdown of linoleic acid; it inhibits the mycelial 
growth of Penicillium expansum PP497A (34). Terpenes were major compounds in the major-
ity of Globularia oils, whereas aliphatic alcohols predominated only in one sample of G. 
cordifolia oil. Moreover, terpenes were mostly represented by oxygenated sesquiterpenes, 
followed by oxygenated monoterpenes and by a phytol isomer (diterpenoid). The results 
of multivariate statistical analyses (PCA and HCA) analyses suggested that the composi-
tion of Globularia essential oils could be useful for the evaluation of their phylogenetic re-
lationships. Eleven compounds found in investigated samples (6) were also detected previ-
ously in two Algerian G. alypum L. samples (35). Hexadecanoic acid was the major 
constituent in both G. alypum samples, similarly as in one G. punctata sample included in 
our study (6). Moreover, oct-1-en-3-ol was present in high amounts in one G. alypum sample 
(35), which was also comparable to our previous results (6). According to other studies, 
oct-1-en-3-ol and/or eugenol were recognized as major volatiles of G. alypum (36, 37).

CONCLUSIONS

The present short review emphasizes the specific phytochemical composition of the 
essential oils of two Petasites and three Globularia species from Croatia. The determined 



538

I. Jerković et al.: Actualities in the phytochemical research on selected terpenes, Acta Pharm. 69 (2019) 533–540.

	

phytochemical composition and distribution of sesquiterpenes with an eremophilane 
skeleton can be useful for chemotaxonomy of these species. According to the available 
data on observed activities of the major constituents present in investigated essential oils, 
their potential biological activities should be further investigated taking into account the  
possible synergy or antagonism among oil compounds.

REFERENCES

	 1.	� P. M. Dewick, Medicinal Natural Products, A Biosynthetic Approach, 2nd ed., John Wiley & Sons, 
Chichester 2002.

	 2.	� F. Rohdich, S. Hecht, A. Bacher and W. Eisenreich, Deoxyxylulose phosphate pathway of isopren-
oid biosynthesis. Discovery and function of ispDEFGH genes and their cognate enzymes, Pure 
Appl. Chem. 75 (2003) 393–405; https://doi.org/10.1351/pac200375020393

	 3.	� F. Bakkali, S. Averbeck, D. Averbeck and M. Idaomar, Biological effects of essential oils – A review, 
Food Chem. Toxicol. 46 (2008) 446–475; https://doi.org/10.1016/j.fct.2007.09.106

	 4.	� K. H. C. Başer and G. Buchbauer, Handbook of Essential Oils, Science, Technology and Applications, 2nd 
ed., CRC Press, Boca Raton 2016.

	 5.	� M. Friščić, I. Jerković, Z. Marijanović, S. Dragović, K. Hazler Pilepić and Ž. Maleš, Essential oil 
composition of different plant parts from Croatian Petasites albus (L.) Gaertn. and P. hybridus (L.) 
G.Gaertn., B.Mey. & Scherb. (Asteraceae), Chem. Biodiversity  2019 (in press, doi: 10.1002/
cbdv.201800531)

	 6.	� M. Crkvenčić, S. Dudaš, I. Jerković, Z. Marijanović, D. Poljuha and K. Hazler Pilepić, Essential oil 
composition of three Globularia species, Chem. Biodiversity 13 (2016) 219–223; https://doi.org/10.1002/
cbdv.201500062

	 7.	� B. M. Fraga, Natural sesquiterpenoids, Nat. Prod. Rep. 24 (2007) 1350–1381; https://doi.org/10.1039/
B806216C

	 8.	� P. Claeson, R. Andersson and G. Samuelsson, T-Cadinol: A pharmacologically active constituent 
of scented myrrh: Introductory pharmacological characterization and high field 1H- and 13C-NMR 
data, Planta Med. 57 (1991) 352–356; https://doi.org/10.1055/s-2006-960116

	 9.	� H.-T. Chang, Y.-H. Cheng, C.-L. Wu, S.-T. Chang, T.-T. Chang and Y.-C. Su, Antifungal activity of 
essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant 
pathogenic fungi, Biores. Technol. 99 (2008) 6266–6270; https://doi.org/10.1016/j.biortech.2007.12.005

10.	� S.-T. Chang, P.-F. Chen, S.-Y. Wang and H.-H Wu, Antimite activity of essential oils and their 
constituents from Taiwania cryptomerioides, J. Med. Entomol. 38 (2001) 455–457; https://doi.
org/10.1603/0022-2585-38.3.455

11.	� G. R. Jamieson, E. H. Reid, B. P. Turner and A. T. Jamieson, Bakkenolide-A. Its distribution in 
Petasites species and cytotoxic properties, Phytochemistry 15 (1976) 1713–1715; https://doi.
org/10.1016/S0031-9422(00)97462-4

12.	� P. Siegenthaler and M. Neuenschwander, Analytic investigations of sesquiterpenes of Petasites 
albus (L.) Gaertn, Pharm. Acta Helv. 71 (1996) 345–353; https://doi.org/10.1016/S0031-6865(96)00040-4

13.	� L. Novotný, V. Herout and F. Šorm, Plant substances. XVII. Constituents of Petasites albus (L.) 
Gaertn. rhizomes, Collect. Czechoslov. Chem. Commun. 27 (1962) 1400–1403; https://doi.org/10.1135/
cccc19621400

14.	� A. Srikrishna, T. J. Reddy, S. Nagaraju and J. A. Sattigeri, A stereoselective total synthesis of bak-
kenolide-A (fukinanolide), Tetrahedron Lett. 35 (1994) 7841–7844; https://doi.org/10.1016/0040-
4039(94)80132-0



539

I. Jerković et al.: Actualities in the phytochemical research on selected terpenes, Acta Pharm. 69 (2019) 533–540.

	

15.	� K. Hayashi, H. Nakamura and H. Mitsuhashi, Synthesis of bakkenolide A, Chem. Pharm. Bull. 21 
(1973) 2806–2807; https://doi.org/10.1248/cpb.21.2806

16.	� J. E. Payne, The Total Synthesis of (±)-Bakkenolide-A, master thesis, The University of Calgary, Cal-
gary 1999.

17.	� K. Naya, I. Takagi, Y. Kawaguchi, Y. Asada, Y. Hirose and N. Shinoda, The structure of fukinone, 
a constituent of Petasites japonicus maxim, Tetrahedron 24 (1968) 5871–5879; https://doi.org/10.1016/
S0040-4020(01)96317-3

18.	� K. Shirahata, T. Kato, Y. Kitahara and N. Abe, Constituents of genus petasites—IV : Bakkenolide-A, 
a sesquiterpene of novel carbon skeleton, Tetrahedron 25 (1969) 3179–3191; https://doi.org/10.1016/
S0040-4020(01)82850-7

19.	� G. R. Jamieson, E. H. Reid, B. P. Turner and A. T. Jamieson, Bakkenolide-A. Its distribution in Pet-
asites species and cytotoxic properties, Phytochemistry 15 (1976) 1713–1715; https://doi.org/10.1016/
S0031-9422(00)97462-4

20.	� K. Kano, K. Hayashi and H. Mitsuhashi, Syntheses of steroids having a bakkenolide-type spiro-
lactone ring. I. Synthesis of 4’-methylenedihydrospiro-[5α-cholestane-3,3’(2’H)-furan]-2’-one, 
Chem. Pharm. Bull. 30 (1982) 1198–1203; https://doi.org/10.1248/cpb.30.1198

21.	� A. K. Picman, Biological activities of sesquiterpene lactones, Biochem. Syst. Ecol. 14 (1986) 255–281; 
https://doi.org/10.1016/0305-1978(86)90101-8

22.	�Y.-L. Wang, R.-P. Li, M.-L. Guo, G. Zhang, N. Zhang and Y.-L. Ma, Bakkenolides from Petasites 
tricholobus and their neuroprotective effects related to antioxidant activities, Planta Med. 75 (2009) 
230–235; https://doi.org/10.1055/s-0028-1088377

23.	� J. Nawrot, E. Bloszyk, J. Harmatha, L. Novotný and B. Drozdz, Action of antifeedants of plant 
origin on beetles infesting store products, Acta Entomol. Bohemoslov. 83 (1986) 327–335.

24.	� J. Nawrot, O. Koul, M. B. Isman and J. Harmatha, Naturally occurring antifeedants: Effects on two 
polyphagous lepidopterans, J. Appl. Entomol. 112 (1991) 194–201; https://doi.
org/10.1111/j.1439-0418.1991.tb01046.x

25.	� M. Dekić, N. Radulović, N. Stojanović and M. Mladenović, Analgesic activity of dehydrofukinone, 
a sesquiterpene ketone from Senecio nemorensis L. (Asteraceae), Facta Universitatis 16 (2018) 119.

26.	� Q. I. Garlet, L. da Costa Pires, L. H. Milanesi, J. R. Marafiga, B. Baldisserotto, C. F. Mello and B. M. 
Heinzmann, (+)-Dehydrofukinone modulates membrane potential and delays seizure onset by 
GABAa receptor-mediated mechanism in mice, Toxicol. Appl. Pharmacol. 332 (2017) 52–63; https://
doi.org/10.1016/j.taap.2017.07.010

27.	� M. Miyazawa, A. Teranishi and Y. Ishikawa, Components of the essential oil from Petasites ja-
ponicus, Flavour Fragr. J. 18 (2003) 231–233; https://doi.org/10.1002/ffj.1203

28.	� Y. Saritas, S. H. von Reuss and W. A. König, Sesquiterpene constituents in Petasites hybridus, Phy-
tochemistry 9 (2002) 795–803; https://doi.org/10.1016/S0031-9422(01)00489-7

29.	� M. Sawamura, M.-S. L. Kim, K.-I. Shichiri, T. Tsuji and K. Machida, Volatile constituents of Japa-
nese and Korean Udo (Aralia cordata Thunb.) and butterbur (Petasites japonicas Miq.), Kochi Daigaku 
Gakujutsu Kenkyu Hokoku, Nogaku 38 (1989) 49–60.

30.	� H. Shibata and S. Shimizu, Three chemovars of Petasites japonicus Maxim., Agric. Biol. Chem. 42 
(1978) 1427–1428; https://doi.org/10.1080/00021369.1978.10863176 

31.	� M. Kikuchi, Studies on the constituents of the flower stalk of Petasites japonicus Maxim. VII. on the 
components of the volatile oil, Yakugaku Zasshi. 93 (1973) 123–126; https://doi.org/10.1248/
yakushi1947.93.1_123

32.	� T. Kurihara and M. Kikuchi, Studies on the constituents of the flower stalk of Petasites japonicus 
Maxim. VI. On the components of the volatile oil, Yakugaku Zasshi 92 (1972) 635–638; https://doi.
org/10.1248/yakushi1947.92.5_635



540

I. Jerković et al.: Actualities in the phytochemical research on selected terpenes, Acta Pharm. 69 (2019) 533–540.

	

33.	� L. Novotný, J. Jizba, V. Herout and F. Šorm, Plant Substances. XVI. The constituents of coltsfoot 
rhizomes (Petasites officinalis Moench), Collect. Czechoslov. Chem. Commun. 27 (1962) 1393–1399; 
https://doi.org/10.1135/cccc19621393

34.	�D. O. Okull, R. B. Beelman and H. Gourama, Antifungal activity of 10-oxo-trans-8-decenoic acid 
and 1-octen-3-ol against Penicillium expansum in potato dextrose agar medium, J. Food Prot. 66 
(2003) 1503–1505.

35.	� M. Ramdani, T. Lograda, A. Ounoughi, P. Chalard, G. Figueredo, H. Laidoudi and M. ELKolli, 
Chemical composition, antimicrobial activity and chromosome number of Globularia alipum from 
Algeria, Int. J. Curr. Microbiol. Appl. Sci. 3 (2014) 306–318.

36.	� J. Llusiá, J. Peñuelas, G. A. Alessio and M. Estiarte, Seasonal contrasting changes of foliar concen-
trations of terpenes and other volatile organic compounds in four dominant species of a Mediter-
ranean shrubland submitted to a field experimental drought and warming, Physiol. Plantarum 127 
(2006) 632–649; https://doi.org/10.1111/j.1399-3054.2006.00693.x

37.	� B. Barhouchi, S. Aouadi and A. Abdi, Determination of eugenol and its derivative isoeugenol in 
Globularia alypum using solvent system extraction and comparative study of their antioxidant 
activities with various oxidation conditions, J. Chem. Pharm. Res. 6 (2014) 776–784.


