Utjecaj ekološkog načina proizvodnje na antioksidacijsku aktivnost i organoleptička svojstva vina

Knapić, Jelena

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Pharmacy and Biochemistry / Sveučilište u Zagrebu, Farmaceutsko-biokemijski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:837879

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-05-15

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb - Diplomski radovi Farmaceutsko-biokemijskog fakulteta
Jelena Knapić

Utjecaj ekološkog načina proizvodnje na antioksidacijsku aktivnost i organoleptička svojstva vina

DIPLOMSKI RAD

Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2016.
Ovaj diplomski rad je prijavljen na kolegiju Biokemija prehrane Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta i izrađen u Zavodu za kemiju prehrane pod stručnim vodstvom izv. prof. dr. sc. Dubravke Vitali Čepo.

Zahvaljujem se svojoj mentorici izv. prof.dr.sc. Dubravki Vitali Čepo na izuzetnoj predanosti, neizmjerenoj pomoći te susretljivosti prilikom provođenja eksperimentalnog dijela diplomskog rada; također i za vrijeme pisanja istog.

Nadalje, želim se zahvaliti i djelatnicima Zavoda za kemiju prehrane Farmaceutsko – biokemijskog fakulteta koji su mi nesebično pomagali za vrijeme izvođenja eksperimentalnog dijela diplomskog rada.

Veliko hvala mojim kolegicama, Ani Brezović, Petri Gilja, Emanueli Jug i Ani Palajs na uzajamnoj pomoći i podršci za vrijeme studiranja.

Na kraju bih se željela zahvaliti ponajviše svojim roditeljima na brizi, požrtvovnosti i podršci tijekom ovih pet godina studiranja.

Na kraju, veliko hvala ostalim članovima moje obitelji te prijateljima na kvalitetnim savjetima, razumijevanju i umjeravanju za vrijeme trajanja fakultetskog obrazovanja.
Sadržaj

1. UVOD .. 1

 1.1. Vino .. 2

 1.1.1. Vino kao prehrabrena namirnica ... 2

 1.1.2. Dobivanje vina ... 2

 1.1.2.1. Rast grožda i berba ... 2

 1.1.2.2. Proizvodnja bijelog vina .. 3

 1.1.2.3. Proizvodnja crnog vina ... 5

 1.1.2.4. Proizvodnja ružičastog vina ... 5

 1.1.2.5. Završne faze proizvodnje vina – pretakanje i skladištenje 5

 1.1.3. Sorte vina .. 6

 1.2. Kemijski sastav vina ... 8

 1.2.1. Polifenoli ... 9

 1.2.1.1. Podrijetlo i utjecaj polifenola na organoleptička svojstva vina 10

 1.2.1.2. Neflavonoidi .. 11

 1.2.1.3. Flavonoidi ... 11

 1.2.1.4. Antioksidacijski potencijal – biološka aktivnost 13

 1.3. Ekološka proizvodnja vina .. 16

2. OBRAZLOŽENJE TEME ... 19

3. MATERIJALI I METODE .. 21

 3.1. Materijali .. 22

 3.1.1. Ispitivani materijal ... 22

 3.1.2. Kemikalije i reagensi .. 24

 3.1.3. Instrumenti i pribor ... 25

 3.2. Metode ... 26

 3.2.1. Određivanje ukupnih fenola spektrofotometrijskom metodom s Folin – Ciocalteu reagensom .. 26

 3.2.2. Određivanje antioksidativne aktivnosti DPPH metodom 26

 3.2.3. Određivanje antocijana spektrofotometrijskom metodom 28

 3.2.4. Određivanje intenziteta boje, nijanse i sastava boja vina 28

 3.2.4.1. Princip metode .. 28
1. UVOD
1.1. Vino

1.1.1. Vino kao prehrambena namirnica

Vino je piće dobiveno potpunom ili djelomičnom alkoholnom fermentacijom svježeg zgnječenog grožđa ili groždanog soka (mošt).

1.1.2. Dobivanje vina

 Tehnološki postupak kojim se grožđe preraduje u vino naziva se vinifikacija te obuhvaća nekoliko procesa:

- berbu grožđa
- prijevoz grožđa do podruma
- ruljanje i muljanje grožđa
- cijeđenje i tiješnjenje masulja
- sumporenje moštta
- alkoholno vrenje (fermentaciju)
- pretakanje vina
- njegu i obradu vina
- punjenje vina u boce (Hamel i Sagrak, 2004.).

1.1.2.1. Rast i berba grožđa

Nakon procvata i formiranja ploda, bobica grožđa nastavlja rasti do sredine ili kraja kolovoza, ipak, ostaje tvrda i zelena boje. U tom periodu sazrijevanja, plod je bogat kiselinama, dok je sadržaj šećera nizak. Daljnjim sazrijevanjem, boja bobice se mijenja u žuto – zelenu, ukoliko se radi o bijelom grožđu, ili u plavo – crvenu, ako je riječ o crnoj sorti grožđa. Tada naglo raste sadržaj šećera u plodu, a sadržaj vode se smanjuje.

Berba grožđa obuhvaća branje grozdova bobica sa vinove loze; najčešće se provodi sredinom rujna pa do kraja studenog, kada je grožđe potpuno zrelo. Ponekad je moguće odgoditi berbu.
sve dok plodovi ne postanu prezreli. Ovisno o periodu kada se provodi berba grožđa, razlikuje se tri osnovne vrste berbe: rana, normalna te kasna berba (Belitz i sur., 2009).

1.1.2.2. Proizvodnja bijelog vina

Općenito se vina prema načinu proizvodnje dijele na ružičasto (rosé), bijelo i crno vino. Bijelo vino se proizvodi uglavnom od bijelog grožđa. Za njegovo dobivanje koristi se samo mošt bez čvrstih dijelova grožđa (Hamel, Sagrak, 2004).

Prva faza u tehnološkom procesu proizvodnje bijelog vina je ruljanje, to jest, odstranjivanje peteljki. Potom slijedi muljanje; postupak koji opisuje pucanje pokožice bobice grožđa. Na taj način omogućava se lakše prodiranje kvaščevih gljivica u sami plod grožđa. Na kraju se dobiva muljano grožđe koje se, zajedno sa njegovim sokom, naziva masulj. U idućoj fazi masulj podliježe ocijeđenju i tiješnjenju, odnosno, tim se postupkom dobiva mošt – sok odvojen od sjemenki i pokožice grožđa. Sumporenje mošta idući je korak u proizvodnji vina. U vino se dodaje sumporov dioksid kako bi se spriječilo oksidacijsko obezbojenje, rast neželjenih mikroorganizama te kako bi se ubrzošlo taloženje nekih sastojaka mošta (Belitz i sur., 2009; Hamel, Sagrak, 2004). Postoje tri forme sulfita u vinima: molekularni sumporov dioksid SO_2, bisulfitni ion HSO_3^- te sulfitni ion SO_3^{2-}. Antimikrobrovo djelovanje zasniva se na tome da molekularni nenabijeni sumporov dioksid može difundirati kroz membranu mikroorganizama. Unutar stanice mikroorganizama pH je visok (približno pH 6), stoga sumporov dioksid disocira na SO_3^{2-} koji veže proteine i enzime potrebne za preživljanje stanice mikroorganizama. Na taj način sprječava se kontaminacija vina mikroorganizmima (www.santarosa.edu). Sumporov dioksid se smatra učinkovitim zbog svoje antioksidativne aktivnosti, to jest, sposobnosti da se preferirano oksidira umjesto komponenti vina čija oksidacija nije poželjna u tehnološkom procesu izrade vina. Ta teorija temelji se na činjenici da se hidroksifenoli – sastavnice vina, u prisutnosti kisika, oksidiraju u kinon i vodikov peroksid prema jednadžbi:

![Chemical Reaction](attachment:image.png)

Tako stvoren vodikov peroksid posljedično oksidira sulfitni ion SO_3^{2-} u sulfatni SO_4^{2-} umjesto da reagira s ostalim komponentama vina, te mu na taj način smanji kakvoću. Reakcijom s
metalima iz vina, sulfatni ion potiče taloženje u obliku sulfatnih soli (Hamel, 2004). Također, smatra se da molekularni sumporni dioksid može direktno reducirati oksidirane kinone:

\[
\text{OH} \quad \text{OH} \quad \text{O}_2 \quad 2\text{H}_2\text{O} \quad \xleftrightarrow{} \quad \text{O} \quad \text{O} \quad \text{H}_2\text{SO}_4
\]

Osim antioksidativnog djelovanja, sumporov dioksid sprječava pojavu efekta tamnjenja (browning phenomenon). U svježem grožđu aktivni su enzimi polifenoloksidaze koji kataliziraju stvaranje tamno obojenih fenolnih produkata prema jednadžbi:

\[
\text{polifenoloksidaza} \quad \xrightarrow{} \quad \text{O} \quad \text{O} \quad \text{H}_2\text{O}
\]

Iako mehanizam nije u potpunosti poznat, pretpostavlja se da sumporov dioksid destabilizira disulfidne mostove koji su bitni da se enzim nalazi u aktivnoj, to jest, nativnoj formi. Po završetku sumporenja, mikroorganizmi se talože, a mošt postaje čist i bistar (Zoecklein i sur., 1990).

Nakon što se bistar mošt pretoči, započinje postupak vrenja ili fermentacije. Alkoholno vrenje ili fermentacija je biokemijski proces kojim vinski kvasci pretvaraju šećere u etanol i ugljikov dioksid. Glukoza se konvertira u piruvat u procesu glikolize, dok se piruvat pretvara u etanol i ugljikov dioksid uz pomoć enzima piruvat dekarboksilaze i alkohol dehidrogenaze:

\[
\text{glukoza} \quad + \quad 2\text{ADP} \quad + \quad 2\text{Pi} \quad \longrightarrow \quad 2\text{EtOH} \quad + \quad 2\text{CO}_2 \quad + \quad 2\text{ATP} \quad + \quad 2\text{H}_2\text{O}
\]

(Nelson i Cox, 2008).

Početak vrenja može biti spontan zahvaljujući prisutnosti različitih poželjnih tipova vinskih kvasaca, te divljih tipova kvasaca na površini grožđa. Divlji tip uključuje *Saccharomyces apiculatus* i *Saccharomyces exiguus*, dok se selekcionirani vinski kvasci dobivaju iz *Saccharomyces cerevisiae var. ellipsoides* ili *pastorianus*. Željeni soj vinskih kvasaca dodaje se moštu, koji potom fermentira sporo do dvadeset i prvog dana ispod 20°C. Po završetku primarnog, glavnog vrenja, koje traje 5 do 7 dana, šećer je pretežito pretvoreni u alkohol, dok se proteini, pektini, ostaci stanica, trjeslovine te vinski kvasci talože na dno bačve u kojoj se provodi vrenje (Belitz i sur., 2009b). Tijekom procesa alkoholnog vrenja, stvara se mnogo
ugljikovog dioksida koji svojim širenjem uzrokuje takozvano "burno" vrenje, to jest, izaziva podizanje i šum vina u bačvama. Po završetku "burnog" slijedi "tiho" vrenje zbog sve manje količine nastalog ugljikovog dioksida (Hamel i Sagrak, 2004).

1.1.2.3. Proizvodnja crnog vina
Za proizvodnju crnog vina koriste se crne sorte grožda. Sam tehnološki proces izrade vrlo je sličan procesu izrade bijelog vina. Ključna razlika između crnog i bijelog vina je u tome da se u proizvodnji crnog vina ne odvajaju čvrsti dijelovi grozda, već i oni podliježu fermentaciji. Kad dođe do faze "burnog" vrenja, stvoreni ugljikov dioksid podiže klobuk (neodvojene pokožice, sjemenke i peteljke) na površinu, što povećava mogućnost kiseljenja i kvarenja vina. Zbog toga vinari potapaju klobuk u mošt nekoliko puta dnevno, kako vi obojene tvari iz klobuka prešle u grožđani sok. Nakon "burnog" vrenja, kao i u proizvodnji bijelog vina, slijedi "tiho" vrenje koje traje dva do tri tjedna.
Po završetku, slijedi bistrenje i sazrijevanje mladog vina. U toj fazi sitne čestice poput uginulih gljivica, netopljivih bjelančevina, ostataka sjemenki i pokožica se talože na dnu bačve (Hamel i Sagrak, 2004).

1.1.2.4. Proizvodnja ružičastog vina
Ova posebna vrsta vina, prema karakteristikama, nalazi se između crnih i bijelih vina, dok se proizvodi od crnih sorti grožda. Za dobivanje svjetloružičastih vina primjenjuje se tehnološki postupak za proizvodnju bijelih vina, dok se za tamnije varijante mošt ostavlja zajedno sa čvrstima dijelovima približno 12 sati (Hamel i Sagrak, 2004).

1.1.2.5. Završne faze proizvodnje vina – pretakanje i skladištjenje
Po završetku alkoholnog vrenja, vino je potrebno više puta pretočiti, to jest, dekanirati, kako bi se uklonio sediment nastao taloženjem. Cilj skladištjenja i starenja vina je postizanje određene arome i mirisa vina. Uobičajeno je da se vino uklanja iz bačvi nakon tri do devet mjeseci i puni u boce u kojima se nastavlja starenje. Kemijska međudjelovanja i promjene koje se dogadaju pri maturaciji vina nisu u potpunosti razjašnjene.
1.1.3. Sorte vina

U proizvodnji vina koristi se preko 800 sorti vrste *Vitis vinifera subspecies vinifera*, vinove loze. Sorte se razlikuju prema fizičkim karakteristikama – boji, obliku i veličini grozda, te prema kemijskom profilu sastavnica, što se najviše očituje kao različit sadržaj šećera i aroma (Belitz i sur., 2009b). U Hrvatskoj na izbor sorti i njihovu kakvoću najviše utječe klima, i to prvenstveno kontinentalna i sredozemna klima. Područje Republike Hrvatske dijeli se na dvije velike vinorodne regije: kontinentalnu Hrvatsku i primorsku Hrvatsku. One se dalje raščlanjuju na podregije, dok su manje jedinice vinogorja i položaji (Hamel i Sagrak, 2004). Takva podjela izuzetno je važna jer na kakvoću grožda, a posljedično i vina utječu klima, vremenski uvjeti, sorte, tlo na kojem se uzgaja grožđe, sami proces vinifikacije, uvjeti sazrijevanja vina te skladištenje (Stratil i sur., 2008).

Tablica 1. Vinorodne regije i sorte vina u Republici Hrvatskoj (Hamel i Sagrak, 2004).

<table>
<thead>
<tr>
<th>KONTINENTALNA REGIJA</th>
<th>PRIMORSKA REGIJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRNO VINO</td>
<td>BIJELO VINO</td>
</tr>
<tr>
<td>c. sauvignon, c. franc, frankovka, portugizac, pinot, gamay, beaumolais</td>
<td>graševina, pinot (bijeli, sivi), chardonnay, sauvignon, rizling, z. silvanac, traminac (crveni, mirisavi), ružica</td>
</tr>
<tr>
<td>PODREGIJA SLAVONIJA</td>
<td>PODREGIJA ISTRA</td>
</tr>
<tr>
<td>CRNO VINO</td>
<td>BIJELO VINO</td>
</tr>
<tr>
<td>frankovka, zweigelt rebe, merlot, pinot</td>
<td>graševina, pinot (bijeli, sivi), chardonnay, sauvignon, traminac (crveni, mirisavi), zeleni silvanac, rajnski rizling, rizvanac</td>
</tr>
<tr>
<td>PODREGIJA MOSLAVINA</td>
<td>PODREGIJA SJEVERNA DALMACIJA</td>
</tr>
<tr>
<td>CRNO VINO</td>
<td>BIJELO VINO</td>
</tr>
<tr>
<td>frankovka, pinot, gamay, bojadiser, alicante bouchet, chardonnay</td>
<td>graševina, pinot, traminac, sauvignon, r. rizling, z. silvanac, semillion, moslavac, m. ottonel, škrlet</td>
</tr>
<tr>
<td>PODREGIJA PRIGORJE - BILOGORA</td>
<td>PODREGIJA Dalmatinska Zagora</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>CRNO VINO</td>
<td>BIJELO VINO</td>
</tr>
<tr>
<td>frankovka, portugizac, gamay</td>
<td>graševina, moslavac,</td>
</tr>
<tr>
<td>bojadiser crni, alicante</td>
<td>kraljevina, pinot,</td>
</tr>
<tr>
<td>bouchet, pinot</td>
<td>traminac, z. silvanac,</td>
</tr>
<tr>
<td></td>
<td>rizling, chardonnay,</td>
</tr>
<tr>
<td></td>
<td>sauvignon</td>
</tr>
<tr>
<td>PODREGIJA PLEŠIVICA</td>
<td>PODREGIJA S. i JUŽNA DALMACIJA</td>
</tr>
<tr>
<td>CRNO VINO</td>
<td>CRNO VINO</td>
</tr>
<tr>
<td>frankovka, portugizac</td>
<td>graševina, pinot,</td>
</tr>
<tr>
<td></td>
<td>traminac, z. silvanac,</td>
</tr>
<tr>
<td></td>
<td>rizling, rizvanac, m.</td>
</tr>
<tr>
<td></td>
<td>ottonel, chardonnay,</td>
</tr>
<tr>
<td></td>
<td>sauvignon, neuburger,</td>
</tr>
<tr>
<td></td>
<td>vetlinac crveni</td>
</tr>
<tr>
<td>PODREGIJA POKUPJE</td>
<td>PODREGIJA ZAGORJE - MEĐIMURJE</td>
</tr>
<tr>
<td>CRNO VINO</td>
<td>BIJELO VINO</td>
</tr>
<tr>
<td>frankovka, portugizac, pinot</td>
<td>graševina, škrlet,</td>
</tr>
<tr>
<td>crni</td>
<td>traminac (crveni,</td>
</tr>
<tr>
<td></td>
<td>mirisavi), sauvignon,</td>
</tr>
<tr>
<td></td>
<td>chardonnay, z.</td>
</tr>
<tr>
<td></td>
<td>silvanac, r. rizling,</td>
</tr>
<tr>
<td></td>
<td>pinot (bijeli, sivi),</td>
</tr>
<tr>
<td></td>
<td>dišeča ranina</td>
</tr>
<tr>
<td>PODREGIJA ZAGORJE - MEĐIMURJE</td>
<td></td>
</tr>
<tr>
<td>CRNO VINO</td>
<td>rizling, traminac,</td>
</tr>
<tr>
<td>portugizac, pinot crni</td>
<td>graševina, moslavac,</td>
</tr>
<tr>
<td></td>
<td>sauvignon, pinot,</td>
</tr>
<tr>
<td></td>
<td>silvanac, chardonnay,</td>
</tr>
<tr>
<td></td>
<td>muškat</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2. Kemijski sastav vina

Na kemijski sastav vina utječu mnogi faktori poput klimatskih uvjeta, vremena i sastava tla, kao i sorta grožđa te način skladištenja. Kada se govori o analizi vina, najvažnije sastavnice su ekstrakt vina, alkohol, šećeri, kiseline, tanini, obojani pigmenti, dušične komponente i aromatske sastavnice.

Ekstrakt vina uključuje sve spomenute sastavnice i uvelike se podudara sa kemijskim sastavom mošta, kojeg pretežito ine voda i šećeri, dok su nešto manje zastupljene organske i anorganske kiseline.

Šećeri

Šećeri su osnovni sastojci grožđa, a time posljedično i vina; nastali procesom fotosinteze. Najviše ih se nalazi u bobici grožđa bližoj peteljci. Najzastupljenije su monosaharidi heksoze – glukoza i fruktoza, dok se u manjim količinama nalaze pentoze – arabinoza, ksilosa i ramnoza te disaharid saharoza (Belitz i sur., 2009b).

Kiseline

Uz šećere, u moštu su zastupljene kiseline - organske: D – vinska kiselina, jabučna, limunskoa, jantarna, glikolna, oksalna, glukonska i glukuronska. One pretežito nastaju kao produkti nepotpune oksidacije šećera u procesu disanja bobice grožđa, a dio se stvara tijekom alkoholne fermentacije. Najzastupljenija vinska kiselina tijekom dozrijevanja bobica prelazi u svoje soli tartarata.

Alkoholi

Sadržaj etanola, koji predstavlja najzastupljeniji alkohol u vinu, ovisi prvenstveno o alkoholnoj fermentaciji kojom nastaje. Osim etanola, od jednostavnih alkohola, mogu se naći i metanol, nastao hidrolizom pektinskih spojeva posredstvom enzima pektinesteraze. U vinu se također nalaze i viši alkoholi nastali radom kvasaca Saccharomyces cerevisiae za vrijeme alkoholne fermentacije, te čine bitan čimbenik fermentacijske arome vina. Najzastupljeniji predstavnici skupine viših alkohola su n – propanol, izobutanol, amilni alkohol i 2 – feniletanol. Od viševelentnih alkohola prisutni su glicerol, drugi po zastupljenosti u vinima, nakon etanola. Zatim, 2, 3 – butandiol, koji doprinosi slatkastom okusu, te manit, koji odlikuje vina u kojima
se dogodila manitna fermentacija (proces u kojem bakterije mliječne fermentacije zaostalu fruktozu prevode u manit).

Arome

Arome u vinu, ovisno o podrijetlu i njihovom nastanku klasificiraju se kao primarne (sortne), sekundarne (fermentativne) te tercijarne arome (bouquet vina).

Primarne arome čine spojevi prisutni u samom grožđu, i to prvenstveno terpenski spojevi: geraniol, linalol, nerol, citronelol, \(\alpha \) – terpineol. Sekundarne (fermentativne) arome, kao što samo ime kaže, produkt su mikrobiološke transformacije mošta, a predstavljene su ponajviše hlapljivim acetatnim i etilnim esterima, nositeljima voćno – cvjetne arome. Propanol, 2 – metilpropanol, 2 i 3 – metilbutanol čine drugu skupinu koja formira fermentacijsku aromu vina. Bouquet (tercijarna aroma) vina formira se nakon vinifikacije, za vrijeme dozrijevanja i starenja vina u boci ili bačvi. Te arome nastaju oksidacijom primarnih i sekundarnih aroma, te kemijskom i fizičkom ekstrakcijom sastojaka iz drveta bačve (www.veleri.hr).

Dušikove komponente

Dušikove komponente u moštu podložni su taloženju vezanjem s taninima, dok je većina (70 – 80%) metabolizirana pomoću kvaščevih gljivica. Nakon fermentacije najzastupljeniji dušikovi spojevi zaostali u vinu su aminokiseline poput prolina, triptofana. Još se mogu naći i enzimi, peptidi, ali u manjim količinama (Belitz i sur., 2009b).

Najdominantnija skupina spojeva zastupljena u vinima su fenolni spojevi, koji su se našli u fokusu mnogih ispitivanja i istraživanja, prvenstveno zbog potencijalnih pozitivnih učinaka na ljudsko zdravlje (Belitz i sur., 2009b).

1.2.1. Polifenoli

Prema kemijskoj strukturi, polifenoli su organski spojevi definirani hidroksilnom (OH) skupinom direktno vezanom na ugljikov atom u benzenskom prstenu. Uzimajući u obzir broj hidroksilnih skupina vezanih na prsten, razlikuju se mono, di, tri i polifenoli.

Mnogim istraživanjima pokazano je da su polifenoli najrasprostranjenija skupina antioksidansa u prehrani. Iako njihov dnevni unos dosta varira, procijenjeno je da on iznosi oko 1g/dan (Manach i sur., 2004). Uobičajena su sastavnica mnogih namirnica poput čaja, kave, različitog voća, voćnih sokova te povrća. Polifenoli su značajno zastupljeni u grožđu i vinu, te su

1.2.1.1. Podrijetlo i utjecaj polifenola na organoleptička svojstva vina
Polifenolima najbogatiji dijelovi grožđa su prvenstveno peteljka i sjemenke, a s nešto manjim udjelom slijedi kožica bobice. Peteljke crnih sorti grožđa osobito su bogate polifenolima. Neka od svojstva fenolnih spojeva su topljivost, obojenost, polimerizacija, vezanje bjelančevina, povišena boja, trpkost, gorčina te vitaminski efekti. Fenolne komponente odgovorne su za neke pozitivne okusne karakteristike vina poput punoće i zaokruženosti okusa, ali i za negativne karakteristike poput gorčine, oštrine te adstrigentnog okusnog doživljaja. Ukupni organoleptički dojam kombinacija je ravnoteže tih dvaju tipova okusnih doživljaja, koji direktno ovise o tipu i koncentraciji raznih molekula, poput antocijana i tanina.

Flavonoidi u vinima mogu biti u slobodnom ili vezanom obliku, čineći polimere. Monomerni flavonoidi polimeriziraju u veće strukture, u čijem su obliku najzastupljeniji u vinima. Polimerizacijom posljedično nastaju tanini i kondenzirani tanini. Jedno od njihov svojstava je reagiraju sa glikoproteinima sline i proteinima usne šupljine mijenjajući pritom svoj oblik i svojstva kliženja. Ovisno o tipu i koncentraciji tanina, oni mogu uzrokovati ugodan, uravnotežen okusni doživljaj, ili pak, potpuno suprotni gorki i adstrigentni okusni osjet. Kod visokokvalitetnih crnih vina, osobita je važna prisutnost polimeriziranih tanina, visoke molekularne mase, manje adstrigentnog i ugodnijeg okusa (Škarić, 2013).

1.2.1.2. Neflavonoidi
Neflavonoidi su najzastupljenija fenolna skupina bijelih sorti vina. Uglavnom su prisutni u niskim koncentracijama, a potječu iz mesnog dijela bobice grožđa ili iz drvenih bačvi u kojima vino dozrijeva (Škarić, 2013).

Najviše istraživani stilben u vinima jest trans – resveratrol, zbog potencijalnog antikancerogenog, antimutagenog i antioksidativnog djelovanja (Buiarelli i sur., 2007).

1.2.1.3. Flavonoidi
Flavonoidi su najraširenija skupina prirodnih fenola, sintetizirani od strane biljaka. Prema kemijskoj strukturi flavonoide čine dva aromatska prstena koji su međusobno povezani jednim heterocikličkim prstenom, sagrađeni od 15 ugljikovih atoma.

Slika 1. Struktura flavonoida C₆ – C₃ -C₆ (Farkas i sur., 2004).
Tablica 2. Podjela flavonoida

<table>
<thead>
<tr>
<th>PODSKUPINE FLAVONOIDA</th>
<th>PREDSTAVNICI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAVANOLI (flavan – 3 – ol)</td>
<td>katehin, epikatehin, galokatehin</td>
</tr>
<tr>
<td>FLAVONOLI (flavon – 3 – ol)</td>
<td>kvercetin, kemferol, miricetin, izoramnetin</td>
</tr>
<tr>
<td>FLAVANDIOLI (flavan – 3,4 – diol)</td>
<td>leukoantocijanidini</td>
</tr>
<tr>
<td>FLAVANONI</td>
<td>narinegin, eriodiktol</td>
</tr>
<tr>
<td>FLAVANONOL (flavanol – 3 – ol)</td>
<td>taksifolin, ampleoptin</td>
</tr>
<tr>
<td>FLAVONI</td>
<td>apigenin, luteolin</td>
</tr>
<tr>
<td>IZOFлавONI</td>
<td>orobotol, genistein, daidzein, glicitein</td>
</tr>
<tr>
<td>KALKONI</td>
<td>butein, okanin</td>
</tr>
<tr>
<td>ANTOCIJANIDINI</td>
<td>cijanidin, peonidin, delfinidin, petunidin, malvidin</td>
</tr>
</tbody>
</table>

Antocijani su složene strukture, glikozidi sastavljeni od aglikona antocijanidina i šećera, najčešće glukoze, galaktoze ili ramnoze. Vino najčešće sadrži antocijane u obliku mono ili diglicerida. Na koncentraciju antocijana utječu sorta, zrelost grožđa, klimatski uvjeti, položaj, vlaga te opskrba hranjivim tvarima i drugo (Belitz i sur., 2009a; Škarić, 2013).

Slika 2. Struktura antocijanidina (Mat Nor i sur., 2013).
1.2.1.4. Antioksidacijski potencijal – biološka aktivnost

Smatra se da crno vino zbog velikog sadržaja polifenola pruža dodatne prednosti ljudskom zdravlju, snažavanjem krvnog tlaka, inhibirajući oksidaciju LDL čestica, ispoljavajući povoljan učinak na redoks status stanice, poboljšavajući endotelnu funkciju, sprječavajući nakupljanje plaka na krvnim žilama te smanjujući upalu (Arranz i sur., 2012).

ROS sustav

Reaktivni kisikovi spojevi koji nastaju u stanicama su vodikov peroksid, hipokloritna kiselina te slobodni radičal poput hidroksil radičala OH⁻ i superoksid aniona O₂⁻ (Valko i sur., 2014). Ljudski organizam razvio je složen i sofisticiran zaštitni sustav za obranu od reaktivnih kisikovih spojeva (ROS). Komponente uključene u antioksidativni obrambeni sustav prikazane su u Tablici 3.

Tablica 3. Antioksidativni obrambeni sustav (Mlikota, 2014).

<table>
<thead>
<tr>
<th>ENDOGENI ANTIOKSIDANSI</th>
<th>ANTIOKSIDANSI U PREHRANI</th>
<th>METAL VEZUJUĆI PROTEINI</th>
</tr>
</thead>
<tbody>
<tr>
<td>bilirubin, tioli (glutation, lipoična kiselina, n – acetil cistein), NADPH, NADH, ubikvinon, mokračna kiselina, enzimi (o bakru, cinku i</td>
<td>vitamin c, vitamin e, beta karoten, oksikarotenoidi (likopen, lutein), polifenoli (flavonoidi, flavoni,</td>
<td>a) bakar vezujući: albumin, ceruloplasmin, metalotionein</td>
</tr>
</tbody>
</table>
Neki od obrambenih mehanizama uključuju:

- katalitičko uklanjanje slobodnih radikala i reaktivnih tvari pomoću katalaze, superoksid dismutaze, glutation peroksidaze i tiolnih antioksidansa
- redukciju slobodnih radikala elektron donorima poput glutationa, vitamina E, vitamina C, bilirubina i mokraćne kiseline
- zaštitu od makromolekularnog oštećenja pomoću stres proteina i proteina toplinskog šoka
- vezanje transferina i albumina na prooksidativne metalne ione poput bakra ili željeza (Mlikota, 2014).

Izravna antioksidativna aktivnost

Keliranje metalnih ione

Zbog sposobnosti ione željeza Fe^{2+} i bakra Cu^{+} da kataliziraju stvaranje slobodnih radikala, keliranje istih pomoću flavonoida doprinosi antioksidativnoj aktivnosti ovih polifenola. Oni mogu tvoriti stabilne komplekse s prijelaznim metalima poput Fe^{3+}, Al^{3+}, Cu^{2+} i Zn^{2+}. Kelacija se uglavnom odvija na hidroksilnim skupinama na pozicijama 3' i 4' B prstena, poziciji 3

| magneziju ovisna superoksid dismutaza, o željezu ovisna katalaza, o selenu ovisna glutation peroksidaza) | flavonoli, proantocijanidini) | b) željezo vezujući: feritin, miogloblin, transferin |
hidroksilne skupine C prstena, te na pozicijama 3 i 4 karbonilne skupine A prstena (Slika 1). Ipak, učinkovito kelirajuće djelovanje flavonoida upitno je u in vivo uvjetima (Williams i sur., 2004).

Utjecaj na stanične puteve

Prema nekim istraživanjima na staničnim kulturama, pokazalo se da su neki od bioloških učinaka flavonoida sposobnost da moduliraju stanične signalne puteve. Neke od modulacija koje bi mogle spriječiti nastanak tumora su stimuliranje detoksificirajuće aktivnosti enzima faze 2, očuvanje normalne regulacije staničnog ciklusa, inhibicija proliferacije i induciranje apoptoze, inhibiranje invazije tumorskih stanica te angiorezistencije, smanjenje upalnog procesa (Stojnović, 2014). Modulacije signalnih puteva u stanici koje mogu pomoći u sprječavanju nastanka kardiovaskularnih oboljenja uključuju smanjenje upale, smanjenje ekspresije molekula koje prianjaju na stijenke krvnih žila, povećanje aktivnosti endotelne dušik oksid sintetaze, te inhibiciju agregacije trombocita (Mlikota, 2014).
1.3. Ekološka proizvodnja vina

Sve većom educiranošću populacije podiže se svijest ljudi o potrebi zaštite okoliša te o konzumaciji zdravstveno ispravnih i biološki visokokvalitetnih proizvoda. Iz toga proizlazi i sve veći porast ekološke proizvodnje namirnica, pa tako i vina.

Ekološka proizvodnja obuhvaća primjenu agrotehničkih, mehaničkih, fizikalnih, bioloških i biotehničkih mjera na obrađivim površinama i korištenje neobrađivih površina na način kojim se trajno održava plodnost tla, kakvoća voda, otpornost bilja na štetne oštrice, biološka raznolikost, produktivnost, sposobnost obnavljanja i vitalnost u poljoprivrednim i šumskim ekološkim sustavima, a shodno lokalnim pedoklimatskim uvjetima (Ševar i sur., 2012: 2)

Ekološka proizvodnja u Republici Hrvatskoj još uvijek je na samom početku, za razliku od trendova u drugim svjetskim državama. Osnovni uvjeti prerade grožđa i proizvodnje vina propisani su Zakonom o vinu Republike Hrvatske, a vrijede i posebni propisi ekološke proizvodnje - Pravilnik o ekološkoj proizvodnji u uzgoju bilja i u proizvodnji biljnih proizvoda (Kovačević Ganić, 2009).

Postupci i mjere koji se poduzimaju kako bi se osigurala ekološka proizvodnja vina:

- proizvodnja vina dopuštena je samo od grožđa iz ekološkog uzgoja
- dopuštena je dodatna kupovina grožđa, mošta ili vina iz ekološke proizvodnje i prerade (uz odobrenje nadzorne stanice)
- proizvod treba biti povoljnih organoleptičkih svojstava i visoke prehranske vrijednosti
- organske nusproizvode (komina, kvasci, talog) iz proizvodnje i prerade treba vratiti na proizvodnu jedinicu kao organsko gnojivo
- kemijske postupke treba zamijeniti fizikalnim radi izbjegavanja stvaranja štetnog otpada
- treba izbjegavati skraćivanje pojedinih faza i postupaka radi manjeg utroška sirovina i energije
- postupak proizvodnje i prerade treba biti tako organiziran da se pri nadzoru može dokazati da su sve faze provedene sukladno ekološkim propisima
- u proizvodnji vina treba osigurati spontanu fermentaciju i biološku razgradnju kiselina
- u proizvodnji crvenih vina dopuštena je fermentacija masulja uz kratko zagrijavanje
- uporabu sumporaste kiseline treba svesti na najmanju moguću mjeru
• za vrenje i skladištenje vina dopuštene su posude koje ne utječu negativno na kvalitetu vina, preporučuje se korištenje drvenih bačvi i suđa od nehrđajućeg čelika
• za punjenje preporučuje se uporaba nepovratnih boca, a iznimke su moguće samo ako pogon može osigurati i dokazati skupljanje i stavljanje u reciklažu boca
• zabranjena su sva sredstva za čišćenje, koja sadrže klor, tenzide i fosfate (Pravilnik o preradi, pakiranju, prijevozu i skladištenju ekoloških proizvoda, 2008).

Propisani su i dopušteni postupci i sredstva u proizvodnji ekoloških vina:
• toplinski (do 40 stupnjeva °C) i postupci hlađenja
• centrifugiranje i filtriranje
• prozračivanje
• doslađivanje saharozom i koncentriranim moštom iz ekološke proizvodnje
• otkiseljavanje bakterijama mlječno-kiselog vrenja, kalijev i kalcijev carbonat
• bistrenje: bentonit, kremična kiselina (silicijev dioksid) kao koloidna otopina ili gel, želatina, ribrli mjehur, bjelanjak, kazein
• punjenje vrućeg groždanog mošta
• popravljanje arome: aktivni ugljen, tanin, limunsko kiselina, pektolitički enzimi
• sumporasta kiselina i kalijev metabisulfit (najviše dopuštena količina sumporaste kiseline jest 2/3 od količine koja je dopuštena Zakonom o vinu)
• kvasci
• celuloza
• tiamin
• inertni plinovi: ugljični dioksid dobiven iz ugljične kiseline, dušik (Pravilnik o preradi, pakiranju, prijevozu i skladištenju ekoloških proizvoda, 2008).

Također su navedeni postupci i sredstva zabranjeni za korištenje u ekološkoj proizvodnji vina:
• upotreba genetički izmijenjenih organizama i proizvoda
• kratko zagrijavanja na temperature više od 40 stupnjeva °C
• proizvodnja slatke rezerve s uporabom velikih količina sumporaste kiseline
• dodavanje šećera slatkoj rezervi
• toplo punjenje vina
• pomagala za filtre (filtrirne slojnice koje sadrže azbest)
• kalijev ferocijanid (žutokrvna sol)
• meta i DL vinska kiselina
- malitex postupak
- sorbinska i askorbinska kiselina
- srebrni klorid
- bakreni sulfat
- kalijev bitartarat
- polivinil polipirolidon (PVPP)
- posuđe od simalena, PVC-a i drugih materijala koji su izrađeni s pomoću tekućih omekšivača (Pravilnik o preradi, pakiranju, prijevozu i skladištenju ekoloških proizvoda, 2008).

Ekološka proizvodnja podliježe i stručnoj kontroli u svim segmentima proizvodnje prema Pravilniku o ekološkoj proizvodnji u uzgoju bilja i u proizvodnji biljnih proizvoda (Narodne novine 91/01, Narodne novine 10/07). Nakon obavljene stručne kontrole, poljoprivrednom proizvođaču se izdaje potvrndica.

Potvrndica (certifikat) je isprava kojom ovlašteno kontrolno tijelo u ekološkoj proizvodnji potvrđuje da su proizvodnja, proces ili usluga na proizvodnoj jedinici u ekološkoj proizvodnji sukladni s propisanim temeljnim zahtjevima za ekološku proizvodnju (Ševar i sur., 2012:11).

2. OBRAZLOŽENJE TEME
Organska poljoprivreda potiče i jača bioraznolikost, biološke cikluse i biološku aktivnost tla, a njen je primarni cilj proizvodnja zdravije i sigurnije hrane. Malo se zna o utjecaju ekološkog načina proizvodnje na nutritivni sastav hrane ili na udjele nenutritivnih bioaktivnih sastavnica u hrani koje doprinose zdravlju.

Grožđe sadrži velike količine bioaktivnih sastavnica (uglavnom fenolnih spojeva) u kožici, pulpi i košticama; njihov udio u grožđu ovisi o sorti, klimatskim uvjetima, karakteristikama tla, lokalitetu itd. Ovisno o načinu proizvodnje, veći ili manji udio tih komponenti prelazi u vino i doprinosi organoleptičkim svojstvima vina kao i njegovim dokazanim pozitivnim učincima na zdravlje. Glavni temelj bioloških učinaka vina je antioksidacijski potencijal različitih fenolnih komponenti koje su u njemu prisutne.

Utjecaj ekološkog načina proizvodnje na kemijski sastav vina samo je djelomično istražen i još uvijek se ne može sa sigurnošću tvrditi utječe li uopće način proizvodne na udio polifenola u vini te koliko je taj utjecaj značajan. Stoga je osnovni cilj ovog rada bio istražiti organoleptička svojstva (boja, intenzitet i nijansa) te antioksidacijsku aktivnost (ukupni redukcijski potencijal i antiradikalnu učinkovitost) u ekološki i konvencionalno proizvedenim crnim i bijelim vinima sa 17 različitih lokaliteta republike Hrvatske.
3. MATERIJALI I METODE
3.1. Materijali

3.1.1. Ispitivani materijal

Uzorci korišteni u ovom ispitivanju su crna i bijela vina proizvedena ekološkim ili konvencionalnim tehnološkim procesom. Početna sirovina je grožđe uzgajano u različitim krajevima Republike Hrvatske. Uzorci su čuvani u plastičnim bocama pri sobnoj temperaturi od 20°C. Uzorci su prikazani u Tablici 4.

Tablica 4. Klasifikacija ispitivanih uzoraka

<table>
<thead>
<tr>
<th>UZORAK</th>
<th>SORTA</th>
<th>BOJA</th>
<th>UZGOJ</th>
<th>PODNEBLJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cuvee crni</td>
<td>crno</td>
<td>ekološki</td>
<td>Sjeverna Dalmacija</td>
</tr>
<tr>
<td>2</td>
<td>Plavac mali</td>
<td>crno</td>
<td>ekološki</td>
<td>Vis</td>
</tr>
<tr>
<td>3</td>
<td>Cabernet Sauvignon</td>
<td>crno</td>
<td>ekološki</td>
<td>Istra</td>
</tr>
<tr>
<td>4</td>
<td>Malvazija</td>
<td>bijelo</td>
<td>ekološki</td>
<td>Istra</td>
</tr>
<tr>
<td>5</td>
<td>Malvazija</td>
<td>bijelo</td>
<td>ekološki</td>
<td>Istra</td>
</tr>
<tr>
<td>6</td>
<td>Teran</td>
<td>crno</td>
<td>ekološki</td>
<td>Istra</td>
</tr>
<tr>
<td>7</td>
<td>Syrah</td>
<td>crno</td>
<td>ekološki</td>
<td>Istra</td>
</tr>
<tr>
<td>8</td>
<td>Cabernet Sauvignon</td>
<td>crno</td>
<td>ekološki</td>
<td>Nadin</td>
</tr>
<tr>
<td>9</td>
<td>Grenache rose</td>
<td>bijelo</td>
<td>ekološki</td>
<td>Nadin</td>
</tr>
<tr>
<td>10</td>
<td>Syrah</td>
<td>crno</td>
<td>ekološki</td>
<td>Nadin</td>
</tr>
<tr>
<td>11</td>
<td>C. Sauvignon – Syrah</td>
<td>crno</td>
<td>ekološki</td>
<td>Nadin</td>
</tr>
<tr>
<td>12</td>
<td>Grenache crni</td>
<td>crno</td>
<td>ekološki</td>
<td>Nadin</td>
</tr>
<tr>
<td>13</td>
<td>Stolno bijelo</td>
<td>bijelo</td>
<td>ekološki</td>
<td>Nadin</td>
</tr>
<tr>
<td>14</td>
<td>Zweigelt</td>
<td>crno</td>
<td>ekološki</td>
<td>Sv. Ivan Zelina</td>
</tr>
<tr>
<td>15</td>
<td>Traminac</td>
<td>bijelo</td>
<td>ekološki</td>
<td>Sv. Ivan Zelina</td>
</tr>
<tr>
<td>16</td>
<td>Plavina – Lasina</td>
<td>crno</td>
<td>konvencionalni</td>
<td>Pirovac - Skradin</td>
</tr>
<tr>
<td>17</td>
<td>Plavac mali</td>
<td>crno</td>
<td>konvencionalni</td>
<td>Vis</td>
</tr>
<tr>
<td>18</td>
<td>Plavac mali</td>
<td>crno</td>
<td>konvencionalni</td>
<td>Baštica – Zadar</td>
</tr>
<tr>
<td>19</td>
<td>Merlot</td>
<td>crno</td>
<td>konvencionalni</td>
<td>Vrgorac</td>
</tr>
<tr>
<td>20</td>
<td>Babić</td>
<td>crno</td>
<td>konvencionalni</td>
<td>Kruševno – Primošten</td>
</tr>
<tr>
<td>21</td>
<td>Babić</td>
<td>crno</td>
<td>konvencionalni</td>
<td>Pirovac – Skradin</td>
</tr>
<tr>
<td>22</td>
<td>Plavina – Lasina</td>
<td>bijelo</td>
<td>konvencionalni</td>
<td>Pirovac – Skradin</td>
</tr>
<tr>
<td>23</td>
<td>Trebbiano Toscano</td>
<td>bijelo</td>
<td>konvencionalni</td>
<td>Benkovac</td>
</tr>
</tbody>
</table>

22
Obzirom da udio polifenola u vinima kao i antioksidacijska aktivnost ovise o brojnim čimbenicima (lokalitet, klimatski uvjeti, sorta, način proizvodnje vina) bilo je potrebno pažljivo odabrati lokalitete vinograda i sorte grožđa kako bi se omogućilo istraživanje utjecaja načina proizvodnje (ekološko-konvencionalno) na promatrane parametre. Stoga je za svaki ekološki lokalitet pronađen jedan ili više prostorno bliskih lokaliteta na kojima se ista sorta grožđa uzgaja i koristi za proizvodnju vina konvencionalnim putem. Ukupno je pronađeno 12 parova lokaliteta sa proizvodnjom crnog vina i 5 parova lokaliteta sa proizvodnjom bijelog vina. Shema sparivanja uzoraka prikazana je u Tablici 5.

Tablica 5. Shema sparivanja uzoraka.

<table>
<thead>
<tr>
<th>LOKALITET</th>
<th>EKOLOŠKA VINA</th>
<th>KONVENCIONALNA VINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2C</td>
<td>2</td>
<td>19, 33, 34, 35</td>
</tr>
<tr>
<td>3C</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>4C</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>5C</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>6C</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>
3.1.2. Kemikalije i reagensi

Kemikalije i reagensi za određivanje ukupnih fenola spektrofotometrijskom metodom s Folin – Ciocalteu reagensom

- Natrijev karbonat, p.a., Kemika d.o.o., Zagreb, Hrvatska
 → otapanjem 12g u 200mL destilirane vode
- Folin – Ciocalteu fenol reagens, Fluka, Buchs, Švicarska

Kemikalije i reagensi za određivanje antioksidativne aktivnosti DPPH metodom

- 2, 2′– difenil – 1 – pikrilhidrazil slobodni radikal, p.a., (DPPH), Sigma, St. Luis, SAD
 → za pripremu metanolne otopine DPPH koncentracije 0,056 mg/ml: dobiva se otapanjem 2,8mg DPPH u 50ml metanola
- Metanol, p.a., Kemika d.o.o., Zagreb, Hrvatska

Kemikalije za određivanje antocijana spektrofotometrijskom metodom

- Etanol, p.a., Kemika d.o.o., Zagreb, Hrvatska
- Kloridna kiselina, p.a., Kemika d.o.o., Zagreb, Hrvatska
 → za pripremu 70/30/1 v/v/v otopine etanol/voda/kloridna kiselina: dobiva se miješanjem 2mL HCl, 60 mL destilirane vode i 140mL etanola
3.1.3. Instrumenti i pribor

Instrumenti

- Analitička vaga, AB 265 – S, Mettler Toledo, Indija
- Konveksijska električna peć, Igo, Ljubljana, Slovenija
- Termostatirana kupelj s mučkalicom, tip 1086, Gesellschaft für Labortechnik, Burgwedel, Njemačka
- UV –Vis spektrofotometar UV – 4 – 100, ATI Unicam, Cambridge, Velika Britanija
- Vortex miješalica, tip VTY – 3000L, Mixer Uzusio, Tokyo, Japan

Pribor

- Laboratorijske čaše od 100 i 200 ml
- Odmjerne tikvice od 250 i 500 ml
- Erlenmayerove tikvice od 250 ml
- Kivete od 1 ml
- Laboratorijske epruvete
- Mikropipete od 200, 1000 i 5000 µl
3.2. Metode

3.2.1. Određivanje ukupnih fenola spektrofotometrijskom metodom s Folin – Ciocalteu reagensom

Princip metode
Folin – Ciocalteu reagens smjesa je fosfovolframove i fosfomolibdenske kiseline. Folin – Ciocalteu metoda (FCM) bazira se na redukciji fosfovolfram – fosfomolibdenskog kompleksa u prisutnosti fenolnih komponenata, što se očituje nastankom plavih reakcijskih produkata – volframovog oksida i molibden oksida (Singleton i Rossi, 1965; Gao i sur., 2002).

Priprema uzorka
Uzorke smo razrijedili 10, 20 ili 50 puta, koliko je bilo potrebno da apsorbancija mjerne otopine bude u području linearnosti. 200 µL ispitivanog uzorka otpipetira se u epruvetu, te se potom dodaje 150 µL Folin – Ciocalteu reagensa i dobro promućka na Vortex miješalici. Nakon pet minuta doda se 1,5 mL 6% otopine natrijevog karbonata te se ponovno dobro promučka. Epruvete se začepe i stavljaju na inkubaciju u vodenu kupelj na 50°C tijekom 30 minuta kako bi se razvila boja reakcijskog produkta. Nakon hlađenja mjeri se apsorbancija pri 725 nm. Slijepa proba pripremi se na isti način, samo se umjesto uzorka vina dodaje voda.

Izračun koncentracije
Iz pripadajuće jednadžbe baždarnog pravca izračunava se koncentracija ukupnih fenola u uzorku. Jednadžba baždarnog pravca je \(y = 0,0062 \times + 0,0252 \), pri čemu \(y \) označava izmjerene vrijednosti apsorbancija, a vrijednost \(x \) pripadajuću koncentraciju ukupnih fenola izraženih kao mg GAE/L (ekvivalenti galne kiseline).

3.2.2. Određivanje antioksidativne aktivnosti DPPH metodom

Princip metode
Ovaj test temelji se na činjenici da je antioksidans (tvar s antioksidativnim djelovanjem) donor vodika, to jest, donor elektrona. DPPH• slobodni radikal ima jedan nesparen valentni elektron na jednom atomu dušikovog mosta (Slika 3) te prihvaća elektron od antioksidansa i pri tome se reducira. Otopina DPPH• slobodnog radikalja je ljubičasto obojena. Antioksidativni učinak proporcionalan je smanjenju ljubičastog obojenja. Po završetku reakcije, spektrofotometrijski
se određuje apsorbancija pri 528 nm jer pri toj valnoj duljini DPPH• radikal pokazuje jaki absorbcijski maksimum. Formiranjem DPPH zbog prihvaćanja vodika od antioksidansa, boja se mijenja iz ljubičaste u žutu, te se smanjuje apsorbancija. To omogućuje praćenje smanjenja količine prisutnog DPPH• slobodnog radikala. Iz tog podatka izračunava se antioksidativna aktivnost tvari prisutnih u uzorku (MacDonald – Wicks i sur., 2006).

Priprema uzorka
Uzorke smo razrijedili 10, 20 ili 50 puta, ovisno o tome koliko je bilo potrebno da se smanjenje apsorbancije reakcijske smjese može pratiti u području linearnosti metode. Ukoliko se radi o bijelom vinu, u kivetu se otpipetira 100 µL razrijeđenog uzorka te 900µL otopine DPPH•. Ukoliko se radi o uzorku crnog vina, u kivetu se otpipetira 50 µL uzorka i 950 µL otopine DPPH•. Nakon dodatka DPPH•, kivete je potrebno promučkati. Kontrola se priprema na isti način, osim što se ne dodaje uzorak, nego 50 odnosno 100 µL. Nakon inkubacije od 30 minuta pri 37°C, pristupa se spektrofotometrijskom mjerenu na 528 nm (Shimada i sur. 1992; Kingaya i sur., 1971).

Izračun antioksidacijske aktivnosti
Postotak neutralizacije slobodnih radikala u otopini proporcionalan je smanjenju apsorbancije mjerene otopine (uzorak + DPPH) i računa se prema jednadžbi:

$$\text{postotak neutralizacije (\%)} = \frac{(A_K - A_U)/A_K}{\times 100},$$

pri čemu je A_K apsorbancija kontrole, a A_U apsorbancija mjerenog uzorka. Postotak neutralizacije dobiven ovim izračunom uvrstava se u jednadžbu baždarnog pravca:

$$y = 326,24 x - 0,9872,$$

pri čemu je y postotak neutralizacije, a x mmol (ekvivalenta L – askorbinske kiseline)/L, (mmol AAE/L) (Shimada i sur. 1992; Kingaya i sur., 1971).
3.2.3. Određivanje antocijana spektrofotometrijskom metodom

Princip metode
Antocijani podliježu reverzibilnim strukturnim transformacijama promjenom pH medija, što se manifestira kao promjena boje, a posljedično i kao velik pomak apsorpcijskog maksimuma te izgleda apsorpcijskog spektra općenito. Većina antocijana stabilna je pri nižem pH (oko pH~1), dok im se boja mijenja promjenom pH. Nakon zakiseljavanja uzorka, mjeri se apsorpcija na 540 nm, pri čemu antocijani pokazuju apsorpcijski maksimum.

Priprema uzorka
Uzorci su bili razrijeđeni 10 puta otopinom koja se sastojala od etanola, vode i kloridne kiseline u volumnom omjeru 70/30/1. Tako pripremljenim uzorcima mjerila se apsorbancija pri 540 nm.

Izračun koncentracije
Koncentracija ukupnih antocijana izračunata je prema jednadžbi:

\[
TA_{540nm} (mg/L) = A_{540nm} * 16,7 * d,
\]

pri čemu je TA_{540nm} koncentracija ukupnih antocijana, \(A_{540nm} \) apsorbancija pri 540 nm, a \(d \) razrjeđenje uzorka (Di Stefano i sur., 1989).

3.2.4. Određivanje intenziteta boje, nijanse i sastava boja vina

3.2.4.1. Princip metode
Spektar crnih vina ima maksimum apsorbancije na 520 nm, prvenstveno zbog prisutnosti antocijana te apsorpcijski minimum na 420 nm. Intenzitet boje i nijansa određene su crvenom i žutom bojom, dok se smatra da dodatno mjerenje na 620 nm uključuje i doprinos plave komponente crnim vinima. Zbog koloidne forme bojačih tvari, ne postoji direktno proporcionalna ovisnost apsorpcije i razrjeđenja. Posljedično tome, spektrofotometrijska mjerenja provode se kroz optički put debljine 1 mm, koristeći pritom nerazrijeđene uzorke vina (Ribéreau – Gayon i sur., 2006).

3.2.4.2. Izračun intenziteta boje
Intenzitet boje predstavlja količinu boje. Izračunava se prema formuli:

\[
CI = A_{420} + A_{520} + A_{620},
\]
pri čemu su A_{420}, A_{520}, A_{620} redom apsorbancije pri 420, 520 i 620 nm, a CI intenzitet boje (eng. *colour intensity*) (Ivanova i sur., 2009).

3.2.4.3. Izračun nijanse vina

Nijansa vina predstavlja "tintu" ili crvenilo vina, a računa se prema formuli:

$$T = \frac{A_{420}}{A_{520}},$$

pri čemu su A vrijednosti apsorbancija pri 420, odnosno 520 nm (Ivanova i sur., 2010).

3.2.4.4. Izračun sastava boja vina

Kompozicija ili sastav boje vina pokazuje udio pojedine boje u ukupnoj boji vina. Udio žute boje računa se kao:

$$\%Y = \frac{A_{420}}{CI},$$

pri čemu je $\%Y$ postotak žute boje u vinu, A_{420} apsorbancija pri 420 nm, a CI intenzitet boje.

Udio plave boje računa se kao:

$$\%B = \frac{A_{520}}{CI},$$

pri čemu je $\%B$ postotak plave boje u vinu, A_{520} apsorbancija pri 520 nm, a CI intenzitet boje.

Udio crvene boje računa se kao:

$$\%R = \frac{A_{620}}{CI},$$

pri čemu je $\%R$ postotak crvene boje u vinu, A_{620} apsorbancija pri 620 nm, a CI intenzitet boje (Ivanova i sur., 2010).

3.3. Statistička obrada podataka

Uzorci vina analizirani su u triplikatu ili četveroplikatu ovisno o primjenjenoj metodi. Rezultati su prikazani kao srednja vrijednost ± standardna devijacija paralelnih istraživanja. Za usporedbu parova uzoraka korišten je Studentov-t-test pri razini značajnosti $p<0.05$. Sve analize kao i izrada grafičkih prikaza rezultata provedeni su korištenjem GraphPad6.0 statističkog programa.
4. Rezultati
U sklopu ovog rada provedena su ispitivanja na uzorcima crnog i bijelog vina s područja Republike Hrvatske, proizvedenim ekološkim ili konvencionalnim načinom proizvodnje. U analiziranim uzorcima određen je udio ukupnih fenola, antocijana, određena je antioksidacijska aktivnost i analizirana su neka organoleptička svojstva vina.

4.1. Udio ukupnih fenola

U Tablici 6. prikazani su rezultati određivanja udjela ukupnih fenola u ukupno 38 uzoraka crnih i bijelih vina. Udio ukupnih fenola u ekstraktima uzorka izražen je kao mg ekvivalenta galne kiseline po mL uzorka (mg GAE/mL).

Tablica 6. Udio ukupnih fenola u analiziranim uzorcima vina određen Folin – Ciocalteu metodom.

<table>
<thead>
<tr>
<th></th>
<th>mg GAE/mL</th>
<th>ST. DEV*</th>
<th>RSD (%)**</th>
<th></th>
<th>mg GAE/mL</th>
<th>ST. DEV*</th>
<th>RSD (%)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,211</td>
<td>0,012</td>
<td>1,01</td>
<td>20</td>
<td>1,123</td>
<td>0,017</td>
<td>1,49</td>
</tr>
<tr>
<td>2</td>
<td>0,888</td>
<td>0,007</td>
<td>0,79</td>
<td>21</td>
<td>1,245</td>
<td>0,026</td>
<td>2,07</td>
</tr>
<tr>
<td>3</td>
<td>1,116</td>
<td>0,032</td>
<td>2,83</td>
<td>22</td>
<td>0,451</td>
<td>0,014</td>
<td>3,21</td>
</tr>
<tr>
<td>4</td>
<td>0,356</td>
<td>0,006</td>
<td>1,81</td>
<td>23</td>
<td>0,245</td>
<td>0,007</td>
<td>3,02</td>
</tr>
<tr>
<td>5</td>
<td>0,286</td>
<td>0,005</td>
<td>1,81</td>
<td>24</td>
<td>1,178</td>
<td>0,015</td>
<td>1,27</td>
</tr>
<tr>
<td>6</td>
<td>1,351</td>
<td>0,031</td>
<td>2,33</td>
<td>25</td>
<td>0,244</td>
<td>0,007</td>
<td>2,98</td>
</tr>
<tr>
<td>7</td>
<td>0,869</td>
<td>0,013</td>
<td>1,52</td>
<td>26</td>
<td>1,132</td>
<td>0,059</td>
<td>5,20</td>
</tr>
<tr>
<td>8</td>
<td>0,839</td>
<td>0,014</td>
<td>1,63</td>
<td>27</td>
<td>1,096</td>
<td>0,025</td>
<td>2,28</td>
</tr>
<tr>
<td>9</td>
<td>0,427</td>
<td>0,008</td>
<td>1,90</td>
<td>28</td>
<td>1,135</td>
<td>0,006</td>
<td>0,57</td>
</tr>
<tr>
<td>10</td>
<td>1,039</td>
<td>0,022</td>
<td>2,15</td>
<td>29</td>
<td>0,188</td>
<td>0,005</td>
<td>2,67</td>
</tr>
<tr>
<td>11</td>
<td>1,284</td>
<td>0,005</td>
<td>0,36</td>
<td>30</td>
<td>0,225</td>
<td>0,013</td>
<td>5,81</td>
</tr>
<tr>
<td>12</td>
<td>0,816</td>
<td>0,012</td>
<td>1,43</td>
<td>31</td>
<td>1,100</td>
<td>0,025</td>
<td>2,27</td>
</tr>
<tr>
<td>13</td>
<td>0,431</td>
<td>0,005</td>
<td>1,14</td>
<td>32</td>
<td>2,910</td>
<td>0,252</td>
<td>8,65</td>
</tr>
<tr>
<td>14</td>
<td>2,533</td>
<td>0,250</td>
<td>9,85</td>
<td>33</td>
<td>2,377</td>
<td>0,037</td>
<td>1,55</td>
</tr>
<tr>
<td>15</td>
<td>0,364</td>
<td>0,008</td>
<td>2,21</td>
<td>34</td>
<td>2,251</td>
<td>0,118</td>
<td>5,24</td>
</tr>
<tr>
<td>16</td>
<td>1,431</td>
<td>0,007</td>
<td>0,52</td>
<td>35</td>
<td>2,579</td>
<td>0,077</td>
<td>2,98</td>
</tr>
<tr>
<td>17</td>
<td>0,936</td>
<td>0,010</td>
<td>1,07</td>
<td>36</td>
<td>2,732</td>
<td>0,119</td>
<td>4,34</td>
</tr>
<tr>
<td>18</td>
<td>0,739</td>
<td>0,007</td>
<td>0,88</td>
<td>37</td>
<td>0,575</td>
<td>0,006</td>
<td>1,01</td>
</tr>
<tr>
<td>19</td>
<td>1,134</td>
<td>0,013</td>
<td>1,16</td>
<td>38</td>
<td>1,129</td>
<td>0,001</td>
<td>0,04</td>
</tr>
</tbody>
</table>

*ST.DEV označava relativnu standardnu devijaciju

**RSD označava relativnu standardnu devijaciju
Izmjerene vrijednosti kretale su se od 0,225 do 2,910 mg/mL. Najniža izmjerena vrijednost pripada uzorku bijelog vina broj 30 (bijelo, konvencionalno), dok najviša vrijednost pripada uzorku broj 32 (crno, konvencionalno) crnog vina.

4.2. Antioksidativni kapacitet vina

Rezultati određivanja antioksidativnog kapaciteta vina DPPH metodom prikazani su u Tablici 7. Antioksidativna aktivnost izražena je kao mmol ekvivalenata L–askorbinske kiseline po litri uzorka (mmol/L).

Tablica 7. Antioksidativna aktivnost uzoraka vina određena DPPH metodom.

<table>
<thead>
<tr>
<th></th>
<th>mmol AAE/L</th>
<th>ST. DEV*</th>
<th>RSD (%)**</th>
<th>mmol AAE/L</th>
<th>ST. DEV*</th>
<th>RSD (%)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,492</td>
<td>0,003</td>
<td>0,12</td>
<td>20</td>
<td>1,674</td>
<td>0,002</td>
</tr>
<tr>
<td>2</td>
<td>1,696</td>
<td>0,004</td>
<td>0,24</td>
<td>21</td>
<td>2,087</td>
<td>0,007</td>
</tr>
<tr>
<td>3</td>
<td>2,041</td>
<td>0,008</td>
<td>0,39</td>
<td>22</td>
<td>1,250</td>
<td>0,001</td>
</tr>
<tr>
<td>4</td>
<td>1,077</td>
<td>0,003</td>
<td>0,30</td>
<td>23</td>
<td>0,748</td>
<td>0,001</td>
</tr>
<tr>
<td>5</td>
<td>0,767</td>
<td>0,001</td>
<td>0,08</td>
<td>24</td>
<td>1,686</td>
<td>0,008</td>
</tr>
<tr>
<td>6</td>
<td>2,052</td>
<td>0,003</td>
<td>0,15</td>
<td>25</td>
<td>0,645</td>
<td>0,001</td>
</tr>
<tr>
<td>7</td>
<td>1,409</td>
<td>0,005</td>
<td>0,34</td>
<td>26</td>
<td>1,679</td>
<td>0,001</td>
</tr>
<tr>
<td>8</td>
<td>1,308</td>
<td>0,003</td>
<td>0,22</td>
<td>27</td>
<td>1,517</td>
<td>0,005</td>
</tr>
<tr>
<td>9</td>
<td>1,060</td>
<td>0,006</td>
<td>0,52</td>
<td>28</td>
<td>1,873</td>
<td>0,007</td>
</tr>
<tr>
<td>10</td>
<td>1,664</td>
<td>0,001</td>
<td>0,06</td>
<td>29</td>
<td>0,601</td>
<td>0,002</td>
</tr>
<tr>
<td>11</td>
<td>1,962</td>
<td>0,003</td>
<td>0,14</td>
<td>30</td>
<td>0,808</td>
<td>0,002</td>
</tr>
<tr>
<td>12</td>
<td>1,482</td>
<td>0,002</td>
<td>0,13</td>
<td>31</td>
<td>1,623</td>
<td>0,005</td>
</tr>
<tr>
<td>13</td>
<td>1,207</td>
<td>0,001</td>
<td>0,09</td>
<td>32</td>
<td>6,515</td>
<td>0,003</td>
</tr>
<tr>
<td>14</td>
<td>3,850</td>
<td>0,014</td>
<td>0,38</td>
<td>33</td>
<td>4,814</td>
<td>0,002</td>
</tr>
<tr>
<td>15</td>
<td>1,191</td>
<td>0,002</td>
<td>0,18</td>
<td>34</td>
<td>4,420</td>
<td>0,002</td>
</tr>
<tr>
<td>16</td>
<td>2,139</td>
<td>0,005</td>
<td>0,22</td>
<td>35</td>
<td>4,898</td>
<td>0,002</td>
</tr>
<tr>
<td>17</td>
<td>1,554</td>
<td>0,001</td>
<td>0,07</td>
<td>36</td>
<td>4,373</td>
<td>0,001</td>
</tr>
<tr>
<td>18</td>
<td>1,202</td>
<td>0,002</td>
<td>0,16</td>
<td>37</td>
<td>0,683</td>
<td>0,001</td>
</tr>
<tr>
<td>19</td>
<td>2,365</td>
<td>0,001</td>
<td>0,03</td>
<td>38</td>
<td>4,125</td>
<td>0,001</td>
</tr>
</tbody>
</table>

*ST.DEV označava relativnu standardnu devijaciju

**RSD označava relativnu standardnu devijaciju
Raspon izmjerenih vrijednosti kretao se od 0,601 do 6,515 mmol/L. Najnižom vrijednosti opisan je uzorak broj 29 (bijelo, konvencionalno), dok je najviši pripao uzorku broj 32 (crno, konvencionalno).

4.3. Udio antocijana

Rezultati određivanja udjela antocijana u vinima prikazani su u Tablici 8. Ukupni antocijani izraženi su kao ekvivalenti malvidin – 3 – glukozida, udio je izračunat prema formuli $TA_{\text{540nm}}(mg/L) = A_{\text{540nm}} \times 16,7 \times d$ (Di Stefano i sur., 1989).

Tablica 8. Udio antocijana u analiziranim uzorcima vina.

<table>
<thead>
<tr>
<th></th>
<th>mg/mL</th>
<th>ST. DEV*</th>
<th>RSD (%)**</th>
<th></th>
<th>mg/mL</th>
<th>ST. DEV*</th>
<th>RSD (%)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>102,455</td>
<td>0,354</td>
<td>0,35</td>
<td>20</td>
<td>38,577</td>
<td>0,236</td>
<td>0,61</td>
</tr>
<tr>
<td>2</td>
<td>40,080</td>
<td>0,709</td>
<td>1,77</td>
<td>21</td>
<td>31,396</td>
<td>0,236</td>
<td>0,75</td>
</tr>
<tr>
<td>3</td>
<td>31,647</td>
<td>1,063</td>
<td>3,36</td>
<td>22</td>
<td>24,633</td>
<td>0,590</td>
<td>2,40</td>
</tr>
<tr>
<td>4</td>
<td>16,283</td>
<td>0,590</td>
<td>3,63</td>
<td>23</td>
<td>6,680</td>
<td>0,472</td>
<td>7,07</td>
</tr>
<tr>
<td>5</td>
<td>26,052</td>
<td>0,945</td>
<td>3,63</td>
<td>24</td>
<td>41,333</td>
<td>0,827</td>
<td>2,00</td>
</tr>
<tr>
<td>6</td>
<td>55,110</td>
<td>0,709</td>
<td>1,29</td>
<td>25</td>
<td>5,678</td>
<td>0,236</td>
<td>4,16</td>
</tr>
<tr>
<td>7</td>
<td>25,468</td>
<td>0,590</td>
<td>2,32</td>
<td>26</td>
<td>44,589</td>
<td>0,236</td>
<td>0,53</td>
</tr>
<tr>
<td>8</td>
<td>70,140</td>
<td>0,472</td>
<td>0,67</td>
<td>27</td>
<td>30,812</td>
<td>0,118</td>
<td>0,38</td>
</tr>
<tr>
<td>9</td>
<td>6,096</td>
<td>0,827</td>
<td>13,5</td>
<td>28</td>
<td>36,573</td>
<td>0,236</td>
<td>0,65</td>
</tr>
<tr>
<td>10</td>
<td>49,182</td>
<td>1,063</td>
<td>2,16</td>
<td>29</td>
<td>5,344</td>
<td>0,472</td>
<td>8,84</td>
</tr>
<tr>
<td>11</td>
<td>181,529</td>
<td>0,709</td>
<td>0,39</td>
<td>30</td>
<td>2,839</td>
<td>0,000</td>
<td>0,00</td>
</tr>
<tr>
<td>12</td>
<td>23,631</td>
<td>0,827</td>
<td>3,50</td>
<td>31</td>
<td>42,001</td>
<td>0,118</td>
<td>0,28</td>
</tr>
<tr>
<td>13</td>
<td>5,094</td>
<td>0,590</td>
<td>11,59</td>
<td>32</td>
<td>67,886</td>
<td>1,535</td>
<td>2,26</td>
</tr>
<tr>
<td>14</td>
<td>108,216</td>
<td>0,945</td>
<td>0,87</td>
<td>33</td>
<td>46,593</td>
<td>0,236</td>
<td>0,51</td>
</tr>
<tr>
<td>15</td>
<td>7,348</td>
<td>0,236</td>
<td>3,21</td>
<td>34</td>
<td>44,339</td>
<td>0,118</td>
<td>0,27</td>
</tr>
<tr>
<td>16</td>
<td>71,810</td>
<td>1,181</td>
<td>1,64</td>
<td>35</td>
<td>52,689</td>
<td>0,590</td>
<td>1,12</td>
</tr>
<tr>
<td>17</td>
<td>18,871</td>
<td>0,709</td>
<td>3,75</td>
<td>36</td>
<td>208,500</td>
<td>1,535</td>
<td>0,74</td>
</tr>
<tr>
<td>18</td>
<td>19,706</td>
<td>0,472</td>
<td>2,40</td>
<td>37</td>
<td>5,261</td>
<td>0,354</td>
<td>6,73</td>
</tr>
<tr>
<td>19</td>
<td>41,416</td>
<td>1,417</td>
<td>3,42</td>
<td>38</td>
<td>207,331</td>
<td>0,827</td>
<td>0,40</td>
</tr>
</tbody>
</table>

*ST.DEV označava relativnu standardnu devijaciju

**RSD označava relativnu standardnu devijaciju
Najveća vrijednost pripala je uzorku broj 36 (crno ekološko) crnog vina, dok je najniža pripala bijelom vinu broj 30 (bijelo konvencionalno). Vrijednosti su se kretale u rasponu od 2,839 do 208,5 mg/L.

4.4. Organoleptička svojstva vina

Rezultati određivanja organoleptičkih svojstava vina donijeli su podatke o postotnom udjelu žute, crvene i plave boje te o intenzitetu boje i nijansi. Intenzitet i nijansa izražavaju se bez mjernih jedinica jer se radi o bezdimenzionalnim veličinama. Rezultati su prikazani u Tablici 9.

Tablica 9. Udio žute, crvene i plave boje te intenzitet i nijansa boje vina.

<table>
<thead>
<tr>
<th>BR.*</th>
<th>A₄₂₀</th>
<th>A₅₂₀</th>
<th>A₆₂₀</th>
<th>%Y*</th>
<th>%B*</th>
<th>%C*</th>
<th>CI*</th>
<th>T*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,110</td>
<td>1,750</td>
<td>0,610</td>
<td>47,20%</td>
<td>13,65%</td>
<td>39,15%</td>
<td>4,470</td>
<td>12,057</td>
</tr>
<tr>
<td>2</td>
<td>1,170</td>
<td>0,680</td>
<td>0,140</td>
<td>58,79%</td>
<td>7,04%</td>
<td>34,17%</td>
<td>1,990</td>
<td>17,206</td>
</tr>
<tr>
<td>3</td>
<td>1,690</td>
<td>1,210</td>
<td>0,280</td>
<td>53,14%</td>
<td>8,81%</td>
<td>38,05%</td>
<td>3,180</td>
<td>13,967</td>
</tr>
<tr>
<td>4</td>
<td>0,606</td>
<td>0,197</td>
<td>0,048</td>
<td>71,21%</td>
<td>5,64%</td>
<td>23,15%</td>
<td>0,851</td>
<td>3,076</td>
</tr>
<tr>
<td>5</td>
<td>1,014</td>
<td>0,442</td>
<td>0,250</td>
<td>59,44%</td>
<td>14,65%</td>
<td>25,91%</td>
<td>1,706</td>
<td>2,294</td>
</tr>
<tr>
<td>6</td>
<td>2,700</td>
<td>2,245</td>
<td>0,601</td>
<td>48,68%</td>
<td>10,84%</td>
<td>40,48%</td>
<td>5,546</td>
<td>1,203</td>
</tr>
<tr>
<td>7</td>
<td>13,880</td>
<td>1,046</td>
<td>2,910</td>
<td>50,94%</td>
<td>10,68%</td>
<td>38,39%</td>
<td>27,250</td>
<td>13,270</td>
</tr>
<tr>
<td>8</td>
<td>0,108</td>
<td>0,089</td>
<td>0,022</td>
<td>49,32%</td>
<td>10,05%</td>
<td>40,64%</td>
<td>0,219</td>
<td>1,213</td>
</tr>
<tr>
<td>9</td>
<td>0,442</td>
<td>0,290</td>
<td>0,057</td>
<td>56,02%</td>
<td>7,22%</td>
<td>36,76%</td>
<td>0,789</td>
<td>1,524</td>
</tr>
<tr>
<td>10</td>
<td>1,954</td>
<td>1,846</td>
<td>0,446</td>
<td>46,02%</td>
<td>10,50%</td>
<td>43,48%</td>
<td>4,246</td>
<td>1,059</td>
</tr>
<tr>
<td>11</td>
<td>2,180</td>
<td>1,964</td>
<td>0,444</td>
<td>47,52%</td>
<td>9,68%</td>
<td>42,81%</td>
<td>4,588</td>
<td>1,110</td>
</tr>
<tr>
<td>12</td>
<td>0,808</td>
<td>0,679</td>
<td>0,171</td>
<td>48,73%</td>
<td>10,31%</td>
<td>40,95%</td>
<td>1,658</td>
<td>1,190</td>
</tr>
<tr>
<td>13</td>
<td>0,332</td>
<td>0,112</td>
<td>0,018</td>
<td>71,86%</td>
<td>3,90%</td>
<td>24,24%</td>
<td>0,462</td>
<td>2,964</td>
</tr>
<tr>
<td>14</td>
<td>4,310</td>
<td>4,260</td>
<td>1,050</td>
<td>44,80%</td>
<td>10,91%</td>
<td>44,28%</td>
<td>9,620</td>
<td>10,117</td>
</tr>
<tr>
<td>15</td>
<td>0,322</td>
<td>0,110</td>
<td>0,021</td>
<td>71,08%</td>
<td>4,64%</td>
<td>24,28%</td>
<td>0,453</td>
<td>2,927</td>
</tr>
<tr>
<td>16</td>
<td>2,365</td>
<td>1,960</td>
<td>0,440</td>
<td>49,63%</td>
<td>9,23%</td>
<td>41,13%</td>
<td>4,765</td>
<td>1,207</td>
</tr>
<tr>
<td>17</td>
<td>1,532</td>
<td>0,898</td>
<td>0,192</td>
<td>58,43%</td>
<td>7,32%</td>
<td>34,25%</td>
<td>2,622</td>
<td>1,706</td>
</tr>
<tr>
<td>18</td>
<td>1,396</td>
<td>0,845</td>
<td>0,148</td>
<td>58,43%</td>
<td>6,20%</td>
<td>35,37%</td>
<td>2,389</td>
<td>1,652</td>
</tr>
<tr>
<td>19</td>
<td>2,035</td>
<td>1,686</td>
<td>0,428</td>
<td>49,05%</td>
<td>10,32%</td>
<td>40,64%</td>
<td>4,149</td>
<td>1,207</td>
</tr>
<tr>
<td>20</td>
<td>2,530</td>
<td>1,486</td>
<td>0,354</td>
<td>57,89%</td>
<td>8,10%</td>
<td>34,00%</td>
<td>4,370</td>
<td>1,703</td>
</tr>
<tr>
<td>21</td>
<td>1,147</td>
<td>1,220</td>
<td>0,369</td>
<td>41,92%</td>
<td>13,49%</td>
<td>44,59%</td>
<td>2,736</td>
<td>0,940</td>
</tr>
<tr>
<td>22</td>
<td>0,614</td>
<td>0,507</td>
<td>0,146</td>
<td>48,46%</td>
<td>11,52%</td>
<td>40,02%</td>
<td>1,267</td>
<td>1,211</td>
</tr>
<tr>
<td></td>
<td>0,254</td>
<td>0,059</td>
<td>0,017</td>
<td>76,97%</td>
<td>5,15%</td>
<td>17,88%</td>
<td>0,330</td>
<td>4,305</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>24</td>
<td>2,150</td>
<td>1,806</td>
<td>0,396</td>
<td>49,40%</td>
<td>9,10%</td>
<td>41,50%</td>
<td>4,352</td>
<td>1,190</td>
</tr>
<tr>
<td>25</td>
<td>0,226</td>
<td>0,059</td>
<td>0,007</td>
<td>77,40%</td>
<td>2,40%</td>
<td>20,21%</td>
<td>0,292</td>
<td>3,831</td>
</tr>
<tr>
<td>26</td>
<td>1,810</td>
<td>1,774</td>
<td>0,442</td>
<td>44,96%</td>
<td>10,98%</td>
<td>44,06%</td>
<td>4,026</td>
<td>1,020</td>
</tr>
<tr>
<td>27</td>
<td>1,400</td>
<td>1,300</td>
<td>0,346</td>
<td>45,96%</td>
<td>11,36%</td>
<td>42,68%</td>
<td>3,046</td>
<td>1,077</td>
</tr>
<tr>
<td>28</td>
<td>1,582</td>
<td>1,628</td>
<td>0,377</td>
<td>44,10%</td>
<td>10,51%</td>
<td>45,39%</td>
<td>3,587</td>
<td>0,972</td>
</tr>
<tr>
<td>29</td>
<td>0,140</td>
<td>0,031</td>
<td>0,006</td>
<td>79,10%</td>
<td>3,39%</td>
<td>17,51%</td>
<td>0,177</td>
<td>4,516</td>
</tr>
<tr>
<td>30</td>
<td>0,342</td>
<td>0,100</td>
<td>0,026</td>
<td>73,08%</td>
<td>5,56%</td>
<td>21,37%</td>
<td>0,468</td>
<td>3,420</td>
</tr>
<tr>
<td>31</td>
<td>2,500</td>
<td>1,680</td>
<td>0,365</td>
<td>55,01%</td>
<td>8,03%</td>
<td>36,96%</td>
<td>4,545</td>
<td>1,488</td>
</tr>
<tr>
<td>32</td>
<td>3,630</td>
<td>3,450</td>
<td>0,570</td>
<td>47,45%</td>
<td>7,45%</td>
<td>45,10%</td>
<td>7,650</td>
<td>1,052</td>
</tr>
<tr>
<td>33</td>
<td>2,800</td>
<td>1,928</td>
<td>0,443</td>
<td>54,15%</td>
<td>8,57%</td>
<td>37,28%</td>
<td>5,171</td>
<td>1,452</td>
</tr>
<tr>
<td>34</td>
<td>2,520</td>
<td>1,802</td>
<td>0,333</td>
<td>54,14%</td>
<td>7,15%</td>
<td>38,71%</td>
<td>4,655</td>
<td>1,398</td>
</tr>
<tr>
<td>35</td>
<td>2,820</td>
<td>2,115</td>
<td>0,554</td>
<td>51,38%</td>
<td>10,09%</td>
<td>38,53%</td>
<td>5,489</td>
<td>1,333</td>
</tr>
<tr>
<td>36</td>
<td>3,360</td>
<td>5,350</td>
<td>1,150</td>
<td>34,08%</td>
<td>11,66%</td>
<td>54,26%</td>
<td>9,860</td>
<td>6,280</td>
</tr>
<tr>
<td>37</td>
<td>0,158</td>
<td>0,063</td>
<td>0,038</td>
<td>61,00%</td>
<td>14,46%</td>
<td>24,52%</td>
<td>0,259</td>
<td>2,508</td>
</tr>
<tr>
<td>38</td>
<td>3,550</td>
<td>5,780</td>
<td>0,990</td>
<td>34,40%</td>
<td>9,59%</td>
<td>56,01%</td>
<td>10,320</td>
<td>6,142</td>
</tr>
</tbody>
</table>

*BR. predstavlja broj uzorka, %Y označava postotak žute, %B, postotak plave, %R postotak crvene boje, CI intenzitet boje, a T nijansu boje vina.

Raspon vrijednosti rezultata za udio žute boje kretao se od 34,40% kod uzorka crnog vina broj 38, do 79,10% kod uzorka broj 29 (bijelo konvencionalno). Udio plave boje kretao se od 2,40% do 14,67%, koji pripada uzorcima slijedom broj 25 (bijelo konvencionalno) i 37 (bijelo ekološko). Raspon vrijednosti rezultata za postotni udio crvene boje iznosi od 17,51% kod uzorka broj 29 (bijelo konvencionalno) do 54,26% kod uzorka broj 36 (crno ekološko).

Rezultati intenziteta boje nalazili su se u rasponu od 0,177 do 27,250, vrijednostima koje pripadaju redom uzorku broj 29 (bijelo konvencionalno) i broj 7 (crno ekološko). Vrijednosti za nijansu vina kretali su se od 0,940 do 17,206. Najniža vrijednost pripala je uzorku broj 21 (crno konvencionalno), dok je najviša vrijednost izmjerena u uzorku broj 2 (crno ekološko).
5. Rasprava
5.1. Usporedba bijelih i crnih vina

Zbog razlika u kemijskom sastavu između crnih i bijelih sorti vina na Slici 4 su uspoređeni rezultati udjela ukupnih fenola u crnim i bijelim vinima. Srednja vrijednost rezultata za crna vina iznosi 1,257 mg/mL, dok je ona 0,333 mg/mL za bijela vina. Iz tih podataka vidljivo je da je udio ukupnih fenola znatno veći u crnim vinima. Iz podataka za standardnu pogrešku srednjih vrijednosti uočava se veće rasipanje podataka (standardna pogreška srednje vrijednosti za crna vina iznosila je 0,1137, dok je kod bijelih vina ona bila 0,034).

![Slika 4. Prikaz raspona rezultata udjela ukupnih fenola zasebno u crnim i bijelim vinima.](image)

Ista usporedba učinjena je i za rezultate antiradikalne aktivnosti dobivene DPPH metodom. Srednja vrijednost rezultata za crna vina iznosi 2,194 mmol AAE/L, dok je ona 0,910 mmol AAE/L za bijela vina. Iz tih podataka vidljivo je da je antiradikalna aktivnost znatno veća u crnim vinima. Iz podataka za standardnu pogrešku srednjih vrijednosti uočava se veće rasipanje podataka (standardna pogreška srednje vrijednosti za crna vina iznosila je 0,2163, dok je kod bijelih vina ona bila 0,073). Uočene razlike prikazane su na Slici 5.
Slika 5. Prikaz raspona rezultata antiradikalne aktivnosti zasebno u crnim i bijelim vinima.

I rezultati ispitivanja udjela antocijana podvrgnuti su analizi usporedbi zasebno crnih i bijelih sorti vina, što je prikazano na Slici 6. Ponovno su uspoređivane srednje vrijednosti rezultata. Za crna vina ona je iznosila 67,57 mg/L, dok je ona 10,50 mg/L za bijela vina. Iz tih podataka vidljivo je da je udio antocijana znatno veći u crnim vinima. Iz podataka za standardnu pogrešku srednjih vrijednosti uočava se veće rasipanje podataka (standardna pogreška srednje vrijednosti za crna vina iznosila je 11,35, dok je kod bijelih vina ona bila 2,717).

Slika 6. Prikaz raspona rezultata udjela antocijana zasebno u crnim i bijelim vinima.

Iz statističke analize provedene za ukupne fenole, antocijane i antiradikalnu aktivnost, može se zaključiti da su vrijednosti svih rezultata veće u crnim sortama vina. To se pripisuje razlikama u kemijskom sastavu crnih vina.
5.2. Utjecaj načina proizvodnje vina i podneblja na sastavnice vina

5.2.1. Utjecaj načina proizvodnje vina i podneblja na udio ukupnih fenola u vinima

Kako bi se utvrdilo postoje li značajne razlike u udjelu ukupnih fenola u vinima uzgojenim ekološkim ili konvencionalnim tehnološkim procesom proizvodnje, uspoređene su vrijednosti udjela ukupnih fenola u konvencionalnim i ekološkim vinima za svaku lokaciju posebno. Rezultati određivanja ukupnih fenolnih spojeva podvrnuti su statističkom parnom t – testu, pri čemu je pretpostavljena normalna razdioba. Uspoređe koncentracije ukupnih fenola u parovima uzoraka crnih vina prikazani su na Slici 7.

Slika 7. Usporedba udjela ukupnih fenola u parovima uzoraka crnih vina. Zvjezdice iznad pojedinih lokaliteta označavaju one lokacije gdje su uočene razlike statistički značajne (p<0,05).

Na četiri lokacije, koncentracije ukupnih fenola bile su značajno veće u ekološkim vinima – i to na lokacijama 4, 6, 10 i 12. Na šest lokacija koncentracije ukupnih fenola bile su značajno veće u konvencionalnim vinima (lokacije 1, 2, 5, 8, 9, 11), a na dvije lokacije (3 i 7) nisu utvrđene značajne razlike u koncentracijama ukupnih fenola između ekoloških i konvencionalnih paralela.

Kod bijelih vina situacija je nešto drugačija. Naime, na četiri od pet lokaliteta vrijednosti udjela polifenola bile su veće u ekološki proizvedenim uzorcima (lokaliteti 1, 2, 4 i 5; na lokalitetu 5 razlika je vidljiva, ali se nije pokazala statistički značajnom zbog velike varijabilnosti unutar grupe ekoloških uzoraka).
Uzorci bijelih vina zasebno su analizirani zbog pretpostavljenih velikih razlika u kemijskim sastavnicama, te zbog različitog tehnološkog procesa proizvodnje. Na Slici 8 prikazane su koncentracije ukupnih fenola u parovima uzoraka bijelih vina.

Slika 8. Usporedba udjela ukupnih fenola u parovima uzoraka bijelih vina. Zvjezdice iznad pojedinih lokaliteta označavaju one lokacije gdje su uočene razlike statistički značajne (p<0,05).

Naime, konvencionalna paralela (uzorak 32, 33, 34, 35) srednja je vrijednost koncentracija četiriju različitih uzoraka iste sorte vina, ali od kojih dva potječu s Pelješca, a druga dva s otoka Visa, dok je ekološka paralela jedan uzorak te sorte s otoka Visa. Ipak, znakovito je to što konvencionalni uzorci bez obzira na različite lokalitete imaju realtivno ujednačene udjele
polifenola; dok su vrijednosti u ekološkom uzorku značajno manje u usporedbi sa svakom od konvencionalnih paralela.

Drugi zanimljivi rezultat pripada lokalitetu 12, u kojem je vidljiva drastična razlika u koncentraciji ukupnih fenola. Oba uzorka pripadaju istoj sorti vina, te bliskim lokalitetima, ali je ekološka paralela – uzorak broj 36 vino koje se proizvodi na malo u jednom seoskom domaćinstvu, što je također, pretpostavlja se, moglo utjecati na ovakav ishodni rezultat mjerenja.

Na temelju ovako varijabilnih rezultata nije moguće objasniti utjecaj ekološkog načina proizvodnje vina na udio polifenola u konačnom proizvodu, osobito u crnim vinima. Naime u pola uzoraka koncentracije polifenola u ekološkim vinima su manje, a na ostalih šest lokaliteta su veće ili nije utvrđena značajna razlika. Ovakve zaključke potvrđuje i Slika 9 koja uspoređuje srednje vrijednosti udjela polifenola svih crnih ekoloških vina sa svim crnim konvencionalnim uzorcima i iz koje je vidljivo da među dobivenim vrijednostima nema statistički značajne razlike. Također, usporedbom srednjih vrijednosti udjela polifenola svih bijelih ekoloških vina sa svim bijelim konvencionalnim uzorcima proizlazi da su vrijednosti udjela polifenola u bijelim vinima značajno više u vinima dobivenim ekološkim načinom proizvodnje.

Slika 9. Prikaz raspona rezultata koncentracija ukupnih fenola za uzorke ekoloških i konvencionalnih vina. Median koncentracije ukupnih fenola za crna vina kod uzoraka ekoloških vina iznosio je 1,106 mg/mL, a u konvencionalnim 1,129 mg/mL. Maksimalna vrijednost bila je veća kod ekoloških vina (2,732 mg/mL), nego kod konvencionalnih (2,424 mg/mL). Minimalna vrijednost kod ekoloških vina iznosila je 0,816 mg/mL, dok je kod konvencionalnih ona bila 0,380 mg/mL. Prikaz raspona rezultata koncentracija ukupnih fenola za uzorke ekoloških i konvencionalnih vina. Median koncentracije ukupnih fenola za bijela vina kod uzoraka ekoloških vina iznosio je 0,427 mg/mL, a u konvencionalnim
0,244 mg/mL. Maksimalna vrijednost bila je veća kod ekoloških vina (0,470 g/mL), nego kod konvencionalnih (0,451 mg/mL). Minimalna vrijednost kod ekoloških vina iznosila je 0,286 mg/mL, dok je kod konvencionalnih ona bila 0,188 mg/mL.

5.2.2. Utjecaj načina proizvodnje vina i podneblja na antioksidativnu aktivnost

DPPH metodom određivana je antioksidativna aktivnost u uzorcima vina. Kako bi se utvrdilo postoje li značajne razlike u antioksidativnom kapacitetu u vinima uzgojenim ekološkim ili konvencionalnim procesom proizvodnje, rezultati određivanja antioksidativne aktivnosti podvrgnuti su statističkom parnom t-testu, pri čemu je pretpostavljena normalna razdioba. Na Slici 10 prikazane su usporedbe izmjerene antioksidativne aktivnosti u parovima uzoraka crnih vina.

Slika 10. Usporedba antioksidativne aktivnosti u parovima uzoraka crnih vina. Zvjezdice iznad pojedinih lokaliteta označavaju one lokacije gdje su uočene razlike statistički značajne (p<0,05).

Za svaku lokaciju uspoređene su srednje vrijednosti DPPH antiradikalnog učinka u ekološkim i konvencionalnim vinima. U crnim vinima, na šest lokacija (1, 3, 4, 6, 10 i 12), DPPH antiradikalni učinak bio je značajno veći u ekološkim vinima. Na četiri lokacije antiradikalna učinkovitost bila je značajno veća u konvencionalnim (lokacije 2, 5, 8, 9), dok na dvije lokacije (7 i 11) nije bilo značajnih razlika u antiradikalnoj učinkovitosti između ekoloških i konvencionalnih paralela. U slučaju određivanja DPPH vrijednosti primjećeni su slični trendovi kao i kod udjela ukupnih fenola, što je i logično obzirom da su upravo polifenoli jedni od najvažnijih nositelja antioksidacijske aktivnosti vina. Dakle, ponovno je uočena razlika među ekološkim i konvencionalnim uzorcima na lokaciji 2. Nadalje, velika razlika u koncentracijama
u korist konvencionalnog vina, u paru uzoraka broj 10, ponovno se može objasniti time da uzorci potječe s udaljenijih lokaliteta, uzorak 14 iz Hrvatskog zagorja, a uzorak 24 iz središnje Slavonije.

Zasebno su anlizirani uzorci bijelih vina. Njihovi rezultati prikazani su na Slici 11.

\[\text{Slika 11. Usporedba antioksidativne aktivnosti u parovima uzoraka crnih vina. Zvjezdice iznad pojedinih lokaliteta označavaju one lokacije gdje su uočene razlike statistički značajne (p<0,05).} \]

U uzorcima bijelih vina na četiri lokacije, odnosno u četiri različita para uzoraka – broj 1, 2, 4 i 5, antioksidacijska aktivnost bila je značajno veća u ekološkim vinima. Na jednoj lokaciji značajno bolju antioksidativnu učinkovitost pokazao je jedan konvencionalni uzorak (lokacija 3). Odstupanje lokacije 3 od ostalih rezultata, vjerojatno se može pripisati činjenici da su u tom paru uzoraka uspoređivana dva vina koja nisu ista sorta vina, već imaju samo slične karakteristike.

Na temelju ovih rezultata moglo bi se zaključiti da je antioksidacijska aktivnost vina veća u ekološki proizvedenim vinima. Navedeno potvrđuje i Slika 12 koja prikazuje srednje vrijednosti udjela polifenola svih ekoloških vina sa svim konvencionalnim uzorcima i iz koje je vidljivo da među dobivenim vrijednostima za crno vino nema statistički značajne razlike, dok su u slučaju bijelih vina te razlike statistički značajne.
Slika 12. Prikaz raspona rezultata antioksidativnog kapaciteta za uzorke ekoloških i konvencionalnih vina. Kod crnih sorti, median rezultata bio je 1,829 mmol/L kod ekoloških vina, dok je kod konvencionalnih on iznosio 1,725 mmol/L. Maksimalna vrijednost bila je veća kod konvencionalnih vina (5,162 mg/mL), nego kod ekoloških (4,373 mg/mL). Minimalna vrijednost kod ekoloških vina iznosila je 1,307 mg/mL, dok je kod konvencionalnih ona bila 1,202 mg/mL. Kod bijelih sorti, median rezultata bio je 1,060 mmol/L kod ekoloških vina, dok je kod konvencionalnih on iznosio 0,748 mmol/L. Maksimalna vrijednost bila je veća kod konvencionalnih vina (1,250 mg/mL), nego kod ekoloških (1,207 mg/mL). Minimalna vrijednost kod ekoloških vina iznosila je 0,767 mg/mL, dok je kod konvencionalnih ona bila 0,601 mg/mL.

5.2.3. Utjecaj načina proizvodnje vina i podneblja na udio antocijana
Kako bi se utvrdilo postoje li značajne razlike u ukupnom udjelu antocijana u vinima uzgojenim ekološkim ili konvencionalnim procesom proizvodnje, rezultati određivanja antocijana podvrgnuti su statističkom parnom t – testu, pri čemu je pretpostavljena normalna razdioba. Usporedbе koncentracije ukupnih antocijana u parovima uzoraka bijelih vina prikazani su na Slici 13.
Slika 13. Usporedba udjela antocijana na lokalitetima bijelih vina. Zvjezdice iznad pojedinih lokaliteta označavaju one lokacije gdje su uočene razlike statistički značajne (p<0,05).

U bijelim vinima na dvije lokacije (parovi uzoraka 1 i 2), koncentracije ukupnih antocijana bile su značajno veće u ekološkim vinima. Na lokaciji 3 su koncentracije antocijana bile značajno veće u konvencionalnim uzorcima, a na lokacijama 4 i 5 nisu utvrđene značajne razlike u koncentracijama ukupnih antocijana između ekoloških i konvencionalnih paralela. U paru uzoraka broj 5 nije bilo značajnih razlika u koncentracijama ukupnih antocijana između ekoloških i konvencionalnih paralela.

Na Slici 14 prikazane su srednje koncentracije antocijana u uzorcima crnih vina.

Slika 14. Usporedba udjela antocijana u parovima uzoraka crnih vina. Zvjezdice iznad pojedinih lokaliteta označavaju one lokacije gdje su uočene razlike statistički značajne (p<0,05).
Za svaku lokaciju (1 do 12) uspoređene su srednje vrijednosti koncentracija antocijana u ekološkim i konvencionalnim vinima. U crnim vinima, na ukupno šest lokacija (1, 4, 6, 7, 8, 10) koncentracije antocijana bile su značajno veće u ekološkim vinima, a na tri lokacije (3, 5, 9) koncentracije su bile značajno veće u konvencionalnim uzorcima. Na lokacijama 11 i 12 nisu utvrđene statistički značajne razlike.

Na temelju tih rezultata, kao i na temelju rezultata prikazanih na Slici 15 (uspoređbe srednjih vrijednosti svih analiziranih uzoraka: crna, bijela, konvencionalna, ekološka), nije moguće zaključiti utječe li ekološki način proizvodnje na udjele antocijana u vinima.

Slika 15. Prikaz raspona rezultata koncentracija ukupnih antocijana za uzorke ekoloških i konvencionalnih vina. Median koncentracije ukupnih fenola za crna vina kod uzoraka ekoloških vina je 52,146 mg/L, dok je median za uzorke konvencionalnih vina iznosio 42,00 mg/L. Kod bijelih vina, median rezultata u ekološkim uzorcima iznosio je 6,30 mg/L, a u konvencionalnim 5,68 mg/L. Maksimalne vrijednosti kod crnih vina bile su 208,50 mg/L (ekološko) i 207,331 mg/mL (konvencionalno), dok su minimalne vrijednosti iznosile 23,631 mg/mL (ekološko) i 19,710 mg/L (konvencionalno). Minimalne vrijednosti kod bijelih sorti bile su 5,09 mg/mL (ekološko) i 2,84 mg/mL (konvencionalno), dok su maksimalne iznosile 26,05 mg/mL (ekološko) i 24,63 mg/mL (konvencionalno).
5.2.4. Utjecaj načina proizvodnje vina i podneblja na organoleptička svojstva vina

Nakon što su rezultati ukupnih fenola korelirani sa rezultatima intenziteta i nijanse boje vina, utvrđena je značajna korelacija za intenzitet boje, dok za nijansu boje nije utvrđena značajna korelacija sa udjelom ukupnih fenola u vinima, što je vidljivo na Slici 16.
Slika 16. Prikaz korelacije između rezultata nijanse vina, te intenziteta boje vina ovisno o udjelu ukupnih fenola u vinima.

Intenzitet boje

Uzorci ekološki proizvedenih bijelih vina sa četiri lokacije (1, 2, 4 i 5) pokazala su jači intenzitet boje u odnosu na konvencionalno vino; na jednoj lokaciji (3) jači intenzitet je pokazalo konvencionalno vino, kao što je vidljivo na Slici 17.
Slika 17. Prikaz intenziteta boje prema lokalitetima za bijele sorte vina.

Na Slici 18, kod uzoraka crnih vina, na devet lokacija, konvencionalni uzorci vina pokazali su jači intenzitet boje, dok su na tri lokacije jači intenzitet pokazala ekološka vina.

Odstupanje lokacije 3 od ostalih rezultata, vjerojatno se može pripisati činjenici da su u tom paru uzoraka uspoređivana dva vina koja nisu ista sorta vina, već imaju samo slične karakteristike. Kod crnih vina, na lokalitetu 2 primjećena je neočekivano velika razlika u udjelu ukupnih fenola u ekološkoj i konvencionalnoj paraleli. Tu možemo pretpostaviti da je utjecaj kriterija sparivanja uzoraka bio presudan. Konvencionalna paralela (uzorak 32, 33, 34, 35) srednja je vrijednost koncentracija četiriju različitih uzoraka iste sorte vina, ali od kojih dva
potječu s Pelješca, a druga dva s otoka Visa, dok je ekološka paralela jedan uzorak te sorte s otoka Visa.

Na temelju tih rezultata moglo bi se zaključiti kako ekološka proizvodnja utječe na intenzitet boje vina. Imajući na umu utvrđenu pozitivnu korelaciju između udjela polifenola i intenziteta boje vina, zaključuje se da je jači intenzitet boje ekološki proizvedenih vina posljedica nešto većeg sadržaja fenolnih komponenti u ekološki proizведенim bijelim vinima. Isto se može zaključiti iz Slike 19. Ipak, rezultati t-testa ukazuju na činjenicu da uočene razlike, iako velike, nisu statistički značajne (p=0.3205). Kod uzoraka crnih vina, također je utvrđeno da razlike među ekološkim i konvencionalnim vinima nisu statistički značajne (p=0.4754).

Slika 19. Prikaz raspona rezultata intenziteta boje za crne i bijele sorte vina, za oba načina proizvodnje (ekološki i konvencionalni). Median koncentracije ukupnih fenola za crna vina kod uzoraka ekoloških vina je 4,358, dok je median za uzorke konvencionalnih vina iznosio 4,545. Kod bijelih vina, median rezultata u ekološkim uzorcima iznosio je 0,789, a u konvencionalnim 0,330. Maksimalne vrijednosti kod crnih vina bile su 27,25 (ekološko) i 10,32 (konvencionalno), dok su minimalne vrijednosti iznosile 0,219 (ekološko) i 2,389 (konvencionalno). Minimalne vrijednosti kod bijelih sorti bile su 0,356 (ekološko) i 0,177 (konvencionalno), dok su maksimalne iznosile 1,107 (ekološko) i 1,267 (konvencionalno).
Nijansa boje

Uzorci konvencionalno proizvedenih bijelih vina sa četiri lokacije pokazala su veće vrijednosti nijanse vina u odnosu na ekološko vino; na jednoj lokaciji veće vrijednosti nijanse vina pripale su uzorku ekološkog vina, kao što je prikazano na Slici 20.

![Slika 20. Prikaz rezultata nijanse vina za 5 lokaliteta bijelih sorti vina.](image)

Na Slici 21, na sedam lokaliteta crnih vina, utvrđene su veće vrijednosti nijanse vina kod ekoloških uzoraka; dok, na preostalih pet lokaliteta, vrijednosti rezultata nijanse vina veće su kod konvencionalnih paralela.

![Slika 21. Prikaz rezultata nijanse vina za 12 lokaliteta crnih sorti vina.](image)
Među uzorcima bijelih vina, vidljivo je odstupanje rezultata lokacije 3 od ostalih rezultata. Takav rezultat može se pripisati činjenici da su u tom paru uzoraka uspoređivana dva vina koja nisu ista sorta vina, već imaju samo slične karakteristike. Kod uzoraka crnih vina, utjecaj na rezultate lokaliteta 6 i 7 mogla je imati i činjenica da su u tom paru uzoraka uspoređivana dva vina različitih sorti. Lokalitet 12 pokazao je najveće vrijednosti nijanse od svih konvencionalnih crnih vina. Nadalje, vrijednosti su bile vrlo slične ekološkoj paraleli tog lokaliteta, što se može pripisati tome da se radi o istoj sorti vina, sa bliskih lokaliteta.

Kod crnih vina, na lokalitetima gdje su veće vrijednosti nijanse pokazala ekološka vina, razlike u vrijednostima za nijansu vina su jako velike. Kod lokaliteta u kojima su konvencionalna vina pokazala veće vrijednosti nijanse vina, te razlike među paralelama su jako male ili gotovo neznatne. Na temelju rezultata crnih vina moglo bi se zaključiti da su znatno veće vrijednosti nijanse vina utvrđene u ekološki proizvedenim vinima, dok kod bijelih vina veće vrijednosti pripadaju konvencionalnim paralelama. Ipak, rezultati t-testa ukazuju na činjenicu da uočene razlike, nisu statistički značajne u slučaju bijelih vina (p=0,1894). Kod uzoraka crnih vina, uočene su statistički značajne razlike (p=0,0147), što je vidljivo i na Slici 22.

Slika 22. Prikaz raspona rezultata nijanse boje za crne i bijele sorte vina, za oba načina proizvodnje (ekološki i konvencionalni). Median koncentracije ukupnih fenola za crna vina kod uzoraka ekoloških vina je 3,747, dok je median za uzorke konvencionalnih vina iznosio 1,399. Kod bijelih vina, median rezultata u ekološkim uzorcima iznosio je 2,718, a u konvencionalnim 3,863. Maksimalne vrijednosti kod crnih vina bile su 17,206 (ekološko) i 6,142 (konvencionalno), dok su minimalne vrijednosti iznosile 1,059 (ekološko) i 0,940 (konvencionalno). Minimalne vrijednosti kod bijelih sorti bile su 1,524 (ekološko) i 1,277 (konvencionalno), dok su maksimalne iznosile 3,076 (ekološko) i 4,516 (konvencionalno).
6. Заклjučak
Tradicionalno se vina klasificiraju prema svojem okusu, boji, mirisu. Rijetko se uspoređuju i klasificiraju prema sadržaju komponenata koji imaju utjecaj na zdravlje. Posljednjih godina više se pozornosti davalo udjelu polifenola u vinima i njihovim povoljnim učincima na zdravlje.

Cilj ovog istraživanja bilo je ispitati utječe li vrsta uzgoja i proizvodnje na sadržaj polifenola u uzorku te ima li umjerena konzumacija vina proizvedena ekološkim tehnološkim procesom proizvodnje veći pozitivan učinak na zdravlje ljudi, ovisno o sadržaju polifenola.

Zbog razlika u kemijskom sastavu između crnih i bijelih sorti vina, uspoređivani su rezultati ukupnih fenola, antocijana i antioksidativne aktivnosti u crnim i bijelim vinima. Usporedbom srednjih vrijednosti rezultata, za sva tri ispitivanja su utvrđene veće vrijednosti rezultata u crnim vinima. Ipak, zbog većeg broja uzoraka crnih vina, usporedbom standardnih pogrešaka srednjih vrijednosti, uočeno je veće rasipanje podataka.

Usporedbom srednjih vrijednosti koncentracija ukupnih fenola, dobivenih Folin – Ciocalteu metodom (parnim t – testom) u crnim vinima, utvrđeno je da način uzgoja i proizvodnje vina ne utječe bitno na koncentracije ukupnih fenola ($p = 0.6815$). Nasuprot tome, u uzorcima bijelih vina utvrđene su značajno veće koncentracije ukupnih fenola u ekološkim vinima ($p = 0.0427$).

Usporedbom srednjih vrijednosti rezultata antioksidativne aktivnosti, dobivenih za crna vina, utvrđeno je da način uzgoja i proizvodnje vina ne utječe bitno na DPPH antiradikalna potencijal ($p=0.8302$). Suprotno, u bijelim vinima utvrđena je značajno bolja antioksidativna učinkovitost u ekološkim vinima ($p=0.0477$).

Usporedbom srednjih vrijednosti koncentracija ukupnih antocijana u ekološkim i konvencionalnim vinima, utvrđeno je da način uzgoja i proizvodnje vina ne utječe bitno na koncentracije antocijana u uzorku ($p=0.6869$ za bijela vina; $p=0.1105$ za crna vina).

Korelacijom rezultata ukupnih fenola sa rezultatima intenziteta boje vina, utvrđena je značajna korelacija. Za rezultate nijanse boje vina, takva korelacija nije opažena.

Usporedbom srednjih vrijednosti rezultata intenziteta boje u bijelim vinima, moglo bi se zaključiti kako ekološka proizvodnja utječe na intenzitet boje vina. Ipak, statističkim t – testom utvrđeno je da način uzgoja i proizvodnje vina ne utječe bitno na intenzitet boje u uzorku ($p=0.3205$ za bijela vina; $p=0.4754$ za crna vina).
Usporedbom srednjih vrijednosti rezultata nijanse boje, dobivenih za bijela vina, utvrđeno je da način uzgoja i proizvodnje vina ne utječe bitno na nijansu boje \((p=0,1894)\). Suprotno, u crnim vinima utvrđeno je značajan doprinos načina proizvodnje vina na nijansu boje \((p=0,0146)\).
7. Literatura

López – Vélez M, Martínez – Martínez F, Del Valle – Ribes C. The study of phenolic compounds as natural antioxidants in wine. Critical reviews in food science and nutrition, 2003, 43(2), 233-244.

Pravilnik o preradi, pakiranju, prijevozu i skladištenju ekoloških proizvoda, 2009, Zagreb, Narodne novine, broj 129 (NN 129/09).

8. Sažetak/Summary
Polifenoli prisutni u vinu, kojima su osobito bogate crne sorte vina, puno su istraživani zbog svojih brojnih bioloških učinaka. Na udio polifenola u vinu primarno utječu sorta, klimatski uvjeti i lokalitet, dok je važnost utjecaja načina proizvodnje još uvijek upitna. U okviru ovog istraživanja pokušao se utvrditi utjecaj načina proizvodnje vina (ekološki ili konvencionalni) na udio polifenola i antioksidativnu aktivnost vina te neka organoleptička svojstva. Analizirani su uzorci ukupno 38 crnih i bijelih vina s područja Republike Hrvatske. Udio ukupnih polifenola, određen Folin – Ciocalteu metodom, kretao se od 0,38 do 2,73 mg/mL u crnim vinima, te 0,19 do 0,47 mg GAE/mL u bijelim vinima. Antioksidativna aktivnost vina određena je DPPH metodom; vrijednosti su se kretale od 19,71 do 208,5 mmol AAE/L u crnim, te 2,84 do 26,05 mmol AAE/L u bijelim vinima. Spektrofotometrijski određivan udio antocijana kretao se od 1,20 do 5,16 mg/L u crnim i od 0,60 do 1,25 mg/L u bijelim vinima. Nakon provedenih istraživanja, utvrđeno je da način uzgoja i proizvodnje vina ne utječe bitno na koncentracije ukupnih fenola, antocijana i na antiradikalnu aktivnosti u crnim vinima. Kod bijelih vina, utvrđene su značajno više vrijednosti udjela polifenola i antiradikalne aktivnosti u ekološki proizvedenim vinima. Usporedbom kemijskog sastava crnih i bijelih vina, utvrđeno je da su crna vina, bez obzira na način proizvodnje, bogatija polifenolima i antocijanima, te imaju veću antioksidativnu aktivnost. Ispitivanjem organoleptičkih svojstava vina, utvrđena je značajna korelacija između udjela polifenola u vinima i intenziteta boje vina.
Phenolics present in wines, particularly abundant in red wine cultivars, have been extensively researched due to wide range of their biological activities. The total phenolic content of wine is primarily affected by climate, wine cultivar and locality, while the influence of production method has not yet been investigated. The aim of this research was to determine the impact of production method (ecological or conventional) on the total phenolic content, antioxidative activity and some organoleptic properties of wine. A total of 38 wine samples, both red and white cultivars from Croatian territory, have been studied. The total phenolics content, determined by Folin – Ciocalteu method, varied from 0.38 to 2.73 mg GAE/mL in red wines, and from 0.19 to 0.47 mg GAE/mL in white wines. The antioxidative effects of wine phenolics were determined according to DPPH method. Results varied from 19.71 to 208.5 mmol AAE/L in red wines, and from 2.84 to 26.05 mmol AAE/L in white wines. The total content of anthocyanins, determined by spectrophotometric method, varied from 1.20 to 5.16 mg/L in red wines, and from 0.60 to 1.25 mg/L in white wines. Results of conducted research showed that the impact of production method on the total phenolics content, total anthocyanins content and antioxidative effects of wine phenolics is not statistically significant in red wines. However, in white wine samples, the ecological production resulted in significantly higher total phenolic content and antioxidative activity. Comparison of red and white wines showed that red wines contain significantly higher amounts of total phenolics and anthocyanins, regardless of the production method. Investigation of organoleptic properties of wine showed significant correlation between total phenolic content and color intensity of wines.
9. Temeljna dokumentacijska kartica/
Basic documentation card
UTJECAJ EKOLOŠKOG NAČINA PROIZVODNJE NA ANTIOKSIDACIJSKU AKTIVNOST I ORGANOLEPTIČKA SVOJSTVA VINA

Jelena Knapić

SAŽETAK

Polifenoli prisutni u vinu, kojima su osobito bogate crne sorte vina, puno su istraživani zbog svojih brojnih bioloških učinaka. Na udio polifenola u vinu primarno utječu sorta, klimatski uvjeti i lokalitet, dok je važnost utjecaja načina proizvodnje još uvijek upitna. U okviru ovog istraživanja pokušao se utvrditi utjecaj načina proizvodnje vina (ekološki ili konvencionalni) na udio polifenola i antioksidativnu aktivnost vina te neka organoleptička svojstva. Analizirani su uzorci ukupno 38 crnih i bijelih vina s područja Republike Hrvatske. Udio ukupnih polifenola, određen Folin – Ciocalteu metodom, kretao se od 0,38 do 2,73 mg/mL u crnim vinima, te 0,19 do 0,47 mg GAE/mL u bijelim vinima. Antioksidativna aktivnost vina određena je DPPH metodom; vrijednosti su se kretale od 19,71 do 208,5 mmol AAE/L u crnim, te 2,84 do 26,05 mmol AAE/L u bijelim vinima. Spektrofotometrijski određivan udio antocijana kretao se od 1,20 do 5,16 mg/L u crnim i od 0,60 do 1,25 mg/L u bijelim vinima. Nakon provedenih istraživanja, utvrđeno je da način uzgoja i proizvodnje vina ne utječe bitno na koncentracije ukupnih fenola, antocijana i na antiradikalnu aktivnost u crnim vinima. Kod bijelih vina, utvrđene su značajno više vrijednosti udjela polifenola i antiradikalne aktivnosti u ekološki proizvedenim vinima. Usporedbom kemijskog sastava crnih i bijelih vina, utvrđeno je da su crna vina, bez obzira na način proizvodnje, bogatija polifenolima i antocijanima, te imaju veću antioksidativnu aktivnost. Ispitivanjem organoleptičkih svojstava vina, utvrđena je značajna korelacija između udjela polifenola u vinima i intenziteta boje vina.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži: 65 stranica, 22 grafičkih prikaza, 9 tablica i 32 literaturnih navoda. Izvornik je na hrvatskom jeziku.

Ključne riječi: polifenoli, vino, antioksidansi, ekološka proizvodnja

Mentor: Dr. sc. Dubravka Vitali Čepo, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Ocenjivači: Dr. sc. Dubravka Vitali Čepo, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Marijana Zovko Končić, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Jasna Jablan, viša asistentica - poslijedoktorand Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad prihvaćen: lipanj 2016.
IMPACT OF ECOLOGICAL PRODUCTION ON ANTIOXIDANT ACTIVITY AND ORGANOLEPTIC PROPERTIES OF WINE

Jelena Knapić

SUMMARY

Phenolics present in wines, particularly abundant in red wine cultivars, have been extensively researched due to wide range of their biological activities. The total phenolic content of wine is primarily affected by climate, wine cultivar and locality, while the influence of production method has not yet been investigated. The aim of this research was to determine the impact of production method (ecological or conventional) on the total phenolic content, antioxidant activity and some organoleptic properties of wine. A total of 38 wine samples, both red and white cultivars from Croatian territory, have been studied. The total phenolics content, determined by Folin – Ciocalteu method, varied from 0,38 to 2,73 mg GAE/mL in red wines, and from 0,19 to 0,47 mg GAE/mL in white wines. The antioxidative effects of wine phenolics were determined according to DPPH method. Results varied from 19,71 to 208,5 mmol AAE/L in red wines, and from 2,84 to 26,05 mmol AAE/L in white wines. The total content of anthocyanins, determined by spectrophotometric method, varied from 1,20 to 5,16 mg/L in red wines, and from 0,60 to 1,25 mg/L in white wines. Results of conducted research showed that the impact of production method on the total phenolics content, total anthocyanins content and antioxidative effects of wine phenolics is not statistically significant in red wines. However, in white wine samples, the ecological production resulted in significantly higher total phenolic content and antioxidative activity. Comparison of red and white wines showed that red wines contain significantly higher amounts of total phenolics and anthocyanins, regardless of the production method. Investigation of organoleptic properties of wine showed significant correlation between total phenolic content and color intensity of wines.

The thesis is deposited in the Central Library of the University of Zagreb Faculty of Pharmacy and Biochemistry.

Thesis includes: 65 pages, 22 figures, 9 tables and 32 references. Original is in Croatian language.

Keywords: phenolics, wine, antioxidants, ecological production

Mentor: Dubravka Vitali Čepo, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

Reviewers: Dubravka Vitali Čepo, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Marijana Zovko Končić, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Jasna Jablan, Ph.D. Senior Assistant, University of Zagreb Faculty of Pharmacy and Biochemistry

The thesis was accepted: June 2016.