Andrea Zrna

Ljekoviti plodovi u zbirci biljnih droga
dr. Theodora Schuchardta

DIPLOMSKI RAD
Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2017.
Ovaj diplomski rad prijavljen je na kolegiju Farmakognozija 2 Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta i izrađen u Zavodu za farmakognoziju pod stručnim vodstvom doc. dr. sc. Biljane Blažeković.

Zahvaljujem mentorici doc. dr. sc. Biljani Blažeković na stručnom vodstvu, prenesenom znanju i brojnim savjetima te na strpljenju i ljubaznosti prilikom izrade i pisanja ovog diplomskog rada. Zahvaljujem se i prijateljima koji su uvijek tijekom studija bili spremni pomoći, a osobito hvala mojoj obitelji koja mi je omogućila školovanje i uvijek bila uz mene.
SADRŽAJ

1. **UVOD** .. 1
 1.1. Farmakognozija i ljekovite droge biljnog porijekla .. 1
 1.2. Zbirke ljekovitih droga .. 2
 1.3. Farmakognoška zbirka Farmaceutsko-biokemijskog fakulteta ... 3
 1.4. Dr. Theodor Schuchardt ... 5

2. **OBAZLOŽENJE TEME** .. 6

3. **MATERIJALI I METODE** .. 7

4. **REZULTATI I RASPRAVA** ... 8
 4.1. Alpinia nutans – Früchte – Brasilien .. 8
 4.2. Amomum amarum – Früchte – China, Japan .. 10
 4.3. Amomum medium – Früchte – China .. 12
 4.4. Caesalpinia sappan – Früchte – Ceylon .. 15
 4.5. Canavalia ensiformis – Früchte – Ceylon ... 18
 4.6. Capsicum annuum – Früchte – Venezuela .. 20
 4.7. Cayaponia globosa – Früchte – Brasilien .. 23
 4.9. Fructus mirobalani – China ... 28
 4.10. Jatropha curcas – Früchte – Basilien .. 31
 4.11. Joannesia princeps – Früchte – Brasilien ... 33
 4.12. Lagerstroemia reginae – Früchte – Ceylon .. 35
 4.13. Leucadendron capense – Früchte – Capland .. 38
 4.15. Mesua ferrea – Früchte – Ceylon .. 41
 4.16. Prosopis strombulifera – Früchte – Chile .. 43
 4.17. Raphia vinifera – Früchte – Nied. Colonien ... 45
1. UVOD

1.1. Farmakognozija i ljekovite droge biljnog porijekla

Farmakognozija je prirodoslovna znanost i jedna od najstarijih farmaceutskih disciplina, koja proučava ljekovite sirovine (tvari) prirodnog porijekla. Predaje se samo na farmaceutskim fakultetima i farmaceutskim institutima te je stručni predmet u obrazovanju farmaceuta i ljekarnika. Dijeli se na znanstvenu (istražuje ljekovite droge) i primijenjenu (stavlja istraženo u praksu). Droge mogu biti oficinalne (propisane farmakopejom u kojoj se nalaze njihove monografije) ili neoficinalne (ne nalaze se u farmakopeji). Neoficinalna droga može se također naći u primjeni ili služiti za izolaciju djelotvornih tvari, a obično se radi o drogi koja je nedovoljno istraženog kemijskog sastava ili farmakološkog učinka.

Naziv farmakognozija uveo je 1815. godine C. A. Seydler, student medicine u njemačkom gradu Halleu, kad je svoj rad nazvao „Analecta pharmacognostica“. Naziv potječe od grčkih riječi farmakon (liječ ili otrov) i gnosis (znanje, poznavanje). Znanstveno produbljivanje farmakognozije zbiva se u 17. i 18. stoljeću, kad se mnogi istraživači počinju baviti pojedinim ljekovitim biljkama, odnosno ljekovitim drogama, osobito u raznim smjerovima: botaničkom, kemijskom i farmakološkom. U 18. je stoljeću švedski liječnik i botaničar Carl von Linné (1707.-1778.) izradio latinsku nomenklaturu za svaku biljku (rod, vrsta, podvrsta i autor) i botanički sustav za određivanje vrsta (Kuštrak, 2005).

Prirodni su lijekovi sve važniji jer se sve veći broj pacijenata odlučuje za njih. Ljekovite se droge gotovo podjednako rabe u službenoj kao i u pučkoj medicini, pa postoji potreba za što većim poznavanjem istih. Među ljekovitim tvarima prevladavaju one biljnog podrijetla, pa se govori o fitomedicini (grč. phyton – biljka) i fitofarmaciji, kao i o fitopreparatima (fitofarmaciji) koji nalaze primjenu u fitoterapiji. Za izradu biljnih terapeutika koriste se: svježe biljke ili svježi biljni organi, osušeni biljni dijelovi i izolirane čiste supstancije. Biljni materijal je najčešće osušen, pa ga u takvom obliku nazivamo ljekovitim drogama (ili samo drogama). Taj naziv vjerojatno potječe od riječi „drug“ ili „droh“, što u starogermanskom znači suh. Biljne tvari jesu cjelovite ili usitnjene biljke, dijelovi biljaka, alge, lišajevi i gljive, koje mogu biti u svježem ili osušenom obliku, te neobrađene izlučine biljaka. Označavaju se korištenim dijelom biljke i botaničkim nazivom prema binomnom sustavu.
Uporaba ljekovitog bilja stara je koliko i ljudski rod, pa se može reći da je farmakognozija jedna od najstarijih medicinskih i prirodoslovnih znanosti. Praljudi su također bili bolesni i ozlijeđeni, izloženi raznim nedaćama: vremenskim nepogodama, opasnostima od divljih životinja i nedostatku hrane. Može se pretpostaviti da se lijek najprije tražio među biljnim, a tek poslije među životinjskim vrstama. Ima znanstvenika koji misle da je pračovjek prvo uočio ljekovit učinak promatrajući životinje, pa je zbog naučenog bio sve vještiji u primjeni. Prvi pisani podatci o ljekovitim drogama i njihovoj uporabi nađeni su u grobnim iskopinama i na zidovima hramova drevnih civilizacija te je njihova medicina bila na visokom stupnju razvoja (Kuštrak, 2005; http://narodne-novine.nn.hr/).

Djelotvorne biljne tvari važne za učinak pri liječenju često se nalaze samo u jednom dijelu biljke ili su u tom dijelu biljke u najvećoj koncentraciji, ali mogu biti i ravnomjerno raspoređene u cijelom nadzemnom dijelu biljke. Stoga se kao biljne droge u farmakopeji najčešće rabe: cijela nadzemna zelen/zeleni biljaka (herba/herbae), list/listovi (folium/folii), cvijet/cvjetovi (flos/flores), plod/plodovi (fructus/fructus), usplođe (pericarpium), sjeme/sjemenje (semen/semina), kora/kore (cortex/cortices), gomolj/gomolji (tuber, tubera), lukovica/lukovice (bulbus/bulbi), korijen/korijenje (radix/radices), podanak/podanci (rhizoma/rhizomata), cvatući vršak/vršci (summitas/summitates). U manjoj se mjeri rabe: boba/bobe (bacca/baccae), šiška/šiške (galla/gallae), pup ili pupoljak/pupoljci (gemma/gemmae), spora/spore (spora/sporae) i stapka, držak/stapke, dršci (stipes/stipites).

1.2. Zbirke ljekovitih droga

Tijekom povijesti mnogi su znanstvenici putovanjima u strane i daleke zemlje doprinijeli istraživanju inozemnih ljekovitih i korisnih biljaka, koje su tamo pronašli i ponijeli ih sa sobom. Tako su se počeli osnivati botanički vrtovi i zbirke ljekovitih droga. Prve zbirke prirodnih produkata, odnosno ljekovitih droga, osnovali su španjolski liječnik Nikolas Monardes i profesor botanike u Leidenu Carolus Clusius.
Najpoznatije farmakognoške zbirke koje danas postoje u Europi su: zbirka profesora farmakognozije dr. Carla Hartwicha na Swiss Federal Institute of Technology in Zürich (ETH Zürich), farmakognoška zbirka Sveučilišta u Götingenu, farmakognoška zbirka Sveučilišta u Utrechtu, farmaceutskopovijesna zbirka Sveučilišta u Beču, zbirka farmaceutskopovijesnog muzeja u Baselu, Zbrika Tschirch Sveučilišta u Bernu. Zbirka u Beču sadržava oko 18 000 uzoraka sakupljenih kroz 200 godina i smatra se najvećom u Europi. Zbirka Hartwich na ETH-u u Zürichu posebna je jer sadrži oko 500 naprava za pušenje duhana, opijuma, hašiša, za žvakanje betala te za uživanje čaja, kave, kawa-kawe, mate-čaja i sakea. Sadrži i zbirku od oko 700 ljekovitih droga koje su služile, ali i danas služe kao nastavni i znanstveni materijal te bogati fond knjiga s oko 400 djela, uglavnom biljaruša, starih knjiga iz botanike i farmakognozoje, dispensatorija i farmakopeja te apotekarskih taksi nastalih između 1520. i 1915. godine (Kuštrak, 2005).

1.3. Farmakognoška zbirka Farmaceutsko-biokemijskog fakulteta Sveučilišta u Zagrebu

Među vrijedne i bogate europske zbirke biljnih, životinjskih i mineralnih ljekovitih droga svrstava se i jedina hrvatska zbirka smještena u Zavodu za farmakognozoju Farmaceutsko-biokemijskog fakulteta Sveučilišta u Zagrebu. Zbirka danas broji više od 1200 primjeraka ljekovitih droga koje potječu iz gotovo svih dijelova svijeta (Europe, Azije, Afrike te Sjeverne, Srednje i Južne Amerike), a neki od njih su vrlo rijetki i vrijedni. Čuvaju se u staklenim spremnicima i služe u izobrazbi novih naraštaja magistara farmacije. Zauzima značajno mjesto u povijesti hrvatskog ljekarništva te predstavlja hrvatsku znanstvenu i kulturnu baštinu. Osim farmakognoške zbirke, Zavod za farmakognozoju posjeduje i vrijedan fond knjiga koji sadrži znatan broj starih, rijetkih i farmaceutskih značajnih knjiga, u kojima i danas pronažimo vrlo korisne opise ljekovitih biljnih vrsta te podatke o njihovoj primjeni.

Zagrebačka farmakognoška zbirka obnovljena je 2016. godine te premještena u novi prostor. Većina uzoraka nalazi se u originalnim spremnicima i u odličnom su stanju. Zbirka omogućuje vrlo dobar pregled prirodnih sirovina koje su se tijekom 19. i 20. stoljeća koristile u liječenju po cijelom svijetu, posebice u dalekim prekomorskim zemljama. Kolekcija također sadrži i mnoge ljekovite europske droge, a nedavno je obogaćena i sa stotinjak novih uzoraka ljekovitih droga koje se danas najčešće koriste u tradicionalnoj kineskoj medicini.

Slika 1. Fotografije zbirke biljnih droga dr. Teodora Schuchardta
1.4. Dr. Theodor Schuchardt

Rano je počeo s prikupljanjem minerala i trgovinom, te je 1862. godine dobio nagradu na komercijalnom sajmu u Londonu. Godine 1865. uspostavio je tvornicu za opskrbu kemikalijama i mineralno zastupništvo („Chemische Fabrik & Mineralienhandlung“) u Gorlitzu u Njemačkoj. Posao je brzo rastao od samo nekoliko zaposlenika u maloj zgradi do tvornice od preko 8000 m² u 1876. godini. Bio je istaknuti prodavač mineralnih primjeraka, a većina njegovih etiketa nosi kataloški broj u kutu, što ukazuje da su se prodavali u velikim setovima. Prodavao je i staklene modele 15 najvećih i najzanimljivijih dijamanata na svijetu.

2. OBRAZLOŽENJE TEME

Ljekovite su droge važan dio suvremenog isto kao i narodnog liječenja te postoji velika potreba za njihovim poznavanjem. Cilj ovog diplomskog rada bio je teorijski istražiti i objediniti dosadašnje znanstvene spoznaje o dvadeset i jednom ljekovitom plodu iz kolekcije dr. Theodora Schuchardta, koja se nalazi u sklopu hrvatske farmakognoške zbirke Zavoda za farmakognoziju Farmaceutsko-biokemijskog fakulteta Sveučilišta u Zagrebu. Plodovi su dijelovi biljaka i proizvodi cvjetne oplodnje, s jednom ili više sjemenki, a u okviru zbirke nalazimo uzorke onih plodova čija je tradicionalna primjena u liječenju u dalekim prekomorskim zemljama bila poznata još prije više od stotinu godina. Prikupljeni podaci o svakom istraživanom plodu u radu su prikazani monografiji i obuhvaćaju fotografiju biljne droge u izvornom spremniku, botaničke podatke o biljnim izvorima sa opisom i fotografijom biljke, opis tradicionalne medicinske i druge korisne uporabe, fitokemijski sastav i sažeti pregled dostupnih znanstvenih dokaza o farmakološkom i kliničkom djelovanju. Navedeni podatci objedinjeni su sa svrhom usvajanja novih znanja u području farmakognozije te pridonošenja boljem razumijevanju vrijednosti ove važne kolekcije droga za suvremenu farmaceutsku znanost i praksu.
3. MATERIJALI I METODE

U ovom diplomskom radu provedeno je teorijsko istraživanje pregledom stručne literature, pretraživanjem znanstvenih (PubMed, ScienceDirect, Google Scholar) i drugih baza podataka (ThePlantList) te različitih dostupnih internetskih stranica. Prikupljeni su, proučeni i selektirani podaci za sve plodove iz prekomorske zbirke dr. Theodora Schuchardta. Pri pretraživanju su kao ključne riječi korišteni originalni nazivi biljnih vrsta i biljnih droga navedeni na staklenim spremnicima u kojima se droge nalaze kao i aktuelni službeni nazivi biljnih vrsta prema bazi ThePlantList za one uzorke kojima je u međuvremenu promijenjena nomenklatura.
4. REZULTATI I RASPRAVA

4.1. *Alpinia nutans* – Früchte – Brasilien

Porodica: Zingiberaceae

Biljna vrsta: *Alpinia nutans* (L.) Roscoe.

Sinonimi: *Alpinia molucana* Gagnep., *Globba nutans* L.

Engleski naziv: shellflower, dwarf cardamom ginger, false cardamom, cinnamon ginger

Opis biljke i rasprostranjenost: *Alpinia nutans* je robusna, zimzelena, višegodišnja biljka visoka 1-3 m koja raste u vlažnim šumama tropskog i suptropskog područja. Listovi su široki, suličasti, sjajni, dugi do 60 cm i široki do 20 cm, kad se protrljaju prsti mirišu na kardamom. Cvjetovi su bijeli, mirisni, nalikuju školjci i oblikuju racemozan cvat dugačak do 40 cm. Plod je crveni, okrugli, izbrazdani tobolac (Lim, 2016).

Slika 3. Fotografija biljke *Alpinia nutans* (preuzeto s http://cubits.org/)
Tradicionalna medicinska primjena: Ta se ljekovita biljka u zemljama JI Azije koristi kod hipertenzije, kao diuretik te kao antifungalno i antiulkusno sredstvo (Habsah i sur., 2003).

Fitokemijski sastav: Nadzemni biljni dijelovi sadrže eterično ulje bogato 1,8-cineolom, sabinenom, terpilen-4-olom i metil cinamatom. Iz korijena i podanaka izolirani su kavalakton 5,6-dehidrokavain, fenolni spojevi flavokavain-B i pinocembrin i fitosteroli (stigmasterol i b-sitosterol) (Habsah i sur., 2003). Sastavnice plodova sredine vrste A. zembert puno su detaljnije istražene, te obuhvaćaju fitosterole (stigmasterol, sitosterol) te brojne sastavnice iz sjemenki: kalkone kardamonin i alpinetin, diterpene labanskog tip (zerumin A i B, koronarin E), kavalakton dihidro-5,6-dehidrokavain, eterično ulje (kamfor i sabinen) te fenolne spojeve (flavonoide kvercetin i rutin, hidroksibenzojevu fenolnu kiselinu) (Lim, 2016).

![Structure diagrams](image)

Slika 4. Strukture sitosterola, kardamonina i 5,6-dehidrokavaina

Znanstveno dokazano djelovanje:

Budući da se u kulinarstvu i u liječenju tradicionalno uglavnom koristi podanak biljke, biološki učinci plodova nisu znanstveno istraženi, no općenito za ovu vrstu postoji jako malo znanstvenih podataka.

In vitro

- antioksidativno i antimikrobrovo djelovanje ekstrakta podanka (Habsah i sur., 2003; Habsah i sur., 2000)
4.2. **Amomum amarum – Früchte – China, Japan**

![Slika 5. Plod vrste *Alpinia oxyphylla* (porijeklo Kina, Japan)](image)

Porodica: Zingiberaceae

Biljna vrsta: *Alpinia oxyphylla* Miq.

Sinonimi: *Amomum amarum* F.P.Sm., *Languas oxyphylla* (Miq.) Merr.

Engleski naziv: black cardamom

Opis biljke i rasprostranjenost: Široko je rasprostranjena u južnim tropskim dijelovima Kine i važan je dio kineske tradicionalne medicine (Sun i sur., 2016). Zeljasta je i višegodišnja biljka s velikim puzajućim i gomoljastim podankom iz kojeg izlaze skupine listova, koji tvore pseudostabljike visoke 2-3 m. Plod je tobolac, okrugao kad je svježi, sušenjem poprima vretenast oblik, s izraženim uzdužnim vaskularnim prugama (http://www.efloras.org).

![Slika 6. Fotografija biljke *Alpinia oxyphylla* (preuzeto s www.ephamacognosy.com)](image)
Tradicionalna medicinska primjena: Koristi se u tradicionalnoj kineskoj medicini kod intestinalnih i urinarnih problema (Sun i sur., 2016). Primjenjuje se u liječenju dijareje, kroničnog glomerulonefritisa, nefrotičkog sindroma i dr. bolesti bubrega (Li i sur., 2016a).

Fitokemijski sastav: Plodovi sadrže eterično ulje bogato seskviterpenima (nootkaton, nootkatol, valencen, oksifilol A-C i dr.), flavonoide (izalpinin, tektokrizin, izalpinin, krizin, derivate apigenina i kemferola) i diarilheptanoide (jakukinone A i B, oksifilakinol, i dr.) (Liu i sur., 2015). Poznati je antioksidativni agens 5-hidroksimetilfurfural (Liu i sur., 2014).

Znanstveno dokazano djelovanje:

In vitro
- neuroprotektivni učinak ekstrakta ploda na mišjim kortikalnim neuronima (Yu i sur., 2013)
- antiproliferativni učinak ekstrakta ploda na više staničnih linija ljudskih karcinoma (Zhang i sur., 2015)
- antioksidativni i citotoksični učinak ekstrakta ploda (Wang i sur., 2013)
- ekstrakt ploda inhibira RANKL – inducirano diferencijaciju osteoklasta i gubitak koštane mase (Ha i sur., 2014)

In vivo
- dokazan in vivo i in vitro antiangiogeni učinak (He i sur., 2010)
- 5-hidroksimetilfurfural poboljšao pamćenje na animalnom modelu Alzheimerove bolesti (Liu i sur., 2014)
- povoljni učinak ploda kod kroničnog renalnog zatajenja (Li i sur., 2016a)
- antidiijaroično djelovanje ekstrakta ploda (Wang i sur., 2015)
- neuroprotektivno djelovanje seskviterpenina-bogatog ekstrakta plodova (Shi i sur., 2014)
- dokazan neuroprotektivni učinak oksifila A na mišu i ribi zebrici (Li i sur., 2016b)
4.3. Amomum medium – Früchte – China

Slika 8. Plod vrste Alpinia galanga (porijeklo Kina)

Porodica: Zingiberaceae

Biljna vrsta: Alpinia galanga (L.) Wild.

Sinonimi: Amomum medium Lour., Zingiber galanga (L.) Stokes

Engleski naziv: blue ginger, Thai ginger, greater galangal

Hrvatski naziv: tajlandski galangal

Slika 9. Fotografija biljke Alpinia galanga (preuzeto s https://inetarticle.com/)
Tradicionalna medicinska i druga korisna primjena: Podanak je dobro poznat začin koji se svakodnevno koristi u kulinarstvu u Tajlandu, Indoneziji i Maleziji. Ima jak okus poput mješavine papra (Piper nigrum) i dumbira (Zingiber officinale). Koristi se kao osušen ili svježi kod: probavnih smetnji, grčeva u želucu, dizenterije, bolesti kože, povećane slezene, bolesti dišnog sustava za iskašljavanje, raka usta i želuca, sustavnih infekcija, kolere, bolesti srca, reume, kroničnog enteritisa, renalnih oboljenja, nakon poroda te kao afrodizijak. U Indiji se koristi u tradicionalnoj Ajurvedskoj i Siddha medicini za tretman različitih bolesti uključujući i dijabetes, dok se u koristitradicionalnoj kineskoj medicini podanak i sjemenke uglavnom koriste kod želučanih tegoba, dispepsije, dijareje i kao emetik. Plodovi galange lokalno se koriste kao zamjena za pravi kardamom (*Elettaria cardamomum* (L.) Maton) (http://tropical.theferns.info/; Kaushik i sur., 2011; Tang, 1992; http://uses.plantnet-project.org).

Fitokemijski sastav: Biljka sadrži etičono ulje, fenolne spojeve, trjeslovine, ugljikohidrate i masne kiseline. Eterično ulje sjemenke sadrži fenilpropanoida 1'-acetoksikavikol acetat, 1'-acetoksieugenol acetat te seskviterpene kariofilenol 1-2, kariofilen oksid i dr. (Tang, 1992; Gupta i sur., 2014). Plod osim fenilpropanoida sadrži i neolignane (galanganol D diacetate) (Manse i sur., 2016).

![Struktura 1'-acetoksikavikol acetata](image)

Slika 10. Struktura 1'-acetoksikavikol acetata

Znanstveno dokazano djelovanje:

In vitro

- ekstrakt biljke posjeduje antimikrobno djelovanje širokog spektra i učinkovit je protiv *Mycobacterium tuberculosis*, djeluje na rezistentne sojeve i to se djelovanje pripisuje 1'-acetoksikavikol acetatu (Gupta i sur., 2014; Latha i sur., 2009)
- ekstrakt korijena posjeduje antihiperlipemički učinak (Iyer i sur., 2013)
- različiti izolirani spojevi posjeduju citotoksično djelovanje (Zeng i sur., 2015)
- ekstrakt ploda inhibira melanogenezu (Manse i sur., 2016)
ekstrakt korijena posjeduje značajnu aktivnost protiv Leishmanie donovani, koja se pripisuje fenilpropanoidima (Kaur i sur., 2010)

p-hidroksicinamaldehid ima pozitivne učinke na ljudske hrskavične stanice (hondrocite), a takav bi učinak bio koristan kod osteoartritisa (Phitak i sur., 2009)

In vivo

l'- acetoksikavikol acetat djeluje gastroprotektivno (Matsuda i sur., 2003)

ekstrakt korijena djeluje antidijabetičko i nefroprotektivno kod hiperglikemije i inducirane dijabetičke nefropatije u štakora, zbog svog hipoglikemijskog, hipolipemičkog i antioksidativnog djelovanje, koje je ovisno o dozi (Verma i sur., 2015; Kaushnik i sur., 2013)

neuroprotektivno djelovanje na miševima s induciranom amnezijom, kakva se javlja kod Alzheimerove bolesti (Hanish Singh i sur., 2011)

l'- acetoksikavikol acetat pokazuje antiasmatičko djelovanje na miševima (Seo i sur., 2013)

analgetsko djelovanje ekstrakta korijena na miševima (Acharya i sur., 2011)

ekstrakt biljke posjeduje pozitivne učinke na spermatogenezu kod muških štakora (Mazaheri i sur., 2014)
4.4. **Caesalpinia sappan** – **Früchte** – **Ceylon**

Porodica: Fabaceae

Biljna vrsta: *Caesalpinia sappan* L.

Sinonim: *Biancaea sappan* (L.) Tod.

Engleski naziv: sappanwood, Indian redwood, false sandalwood, Indian brazilwood

Opis biljke i rasprostranjenost: Prirodno stanište biljke je JI Azija, a uzgaja se i u drugim tropskim krajevima. Malo je do srednje veliko grmoliko drvo visine 4-10 m. Kora je izrazito izbrazdana sa mnogo sivo-smeđeg trnja. Listovi su dugi i do 50 cm, a sastoje se od 8-16 para nasuprotnih listića. Cvat je aksilarna ili terminalna metlica ili grozd, mirisna i žuta, duga 10-40 cm. Plod je dugoljasti pucavac, mahuna, jako spljoštena, sjajna i gladka sa zakrivljenim kljunom na vrhu, u početku žučkasto-zelena, a kasnije dozrijevanjem postaje crvenkasto-smeđa. Sadrži 2-5 smeđih, elipoidnih i spljoštenih sjemenki. ([www.worldagroforestry.org](http://uses.plantnet-project.org/))

Slika 11. Plod vrste Caesalpinia sappan (porijeklo Šri Lanka)

Slika 12. Fotografija biljke Caesalpinia sappan (preuzeto s https://commons.wikimedia.org/)
Tradicionalna medicinska i druga korisna primjena: Osušena i usitnjena srž debla se tradicionalno koristi u hrani i piću. Često se koristi za ekstrakciju crvene boje. U tajlandskoj tradicionalnoj medicini primjenjuje se u liječenju tuberkuloze, dijareje, dizenterije, infekcija kože i anemije. U tradicionalnoj kineskoj medicini, brazilin se koristi za poboljšanje cirkulacije, promociju menstruacije te radi analgetičkog i protuupalnog djelovanja (Nirmal i sur., 2015).

Fitokemijski sastav: Izolirani su različiti strukturni tipovi fenolnih komponenti poput ksantona, kumarina, kalkona (sapankalkon), flavona, homoizoflavonoida (sapanol, sapanon, protosapanin), neoizoflavonoida i brazilina i brazileina (oksidirani oblik, crveni pigment). Brazilin je glavna aktivna komponenta pronađena u srčiki debla (Nirmal i sur., 2015). Iz sjemenki su izolirani diterpeni tipa kasana, cezalsapanini (Bao i sur., 2016).

Slika 13. Strukture sapankalkona, brazilina i sapanola

Znanstveno dokazano djelovanje:

In vitro

- anti-HIV-1 integraznal aktivnost spojeva izoliranih iz ekstrakta debla i korijena, najveću aktivnost posjeduje sapankalkon (Tewtrakul i sur., 2015)
- brazilin djeluje antibakterijski, protuupalno, protiv fotostarenja, hipoglikemijski, hepatoprotektivno, vazorelaksirajuće, antialergijski, protiv akni i antioksidativno (Nirmal i sur., 2015)
- antineuroinflamatorni i neuroprotektivni učinak deoksisapanona B (Zeng i sur., 2015)
- citotoksično djelovanje ekstrakta sjemenki (Tran i sur., 2015)
- homoizoflavonoid sapanon A inhibira melanogenezu i staničnu tirozinaznu aktivnost (Chang i sur., 2012)
- dokazana aktivnost pojedinih komponenti protiv influenca virusa (H3N2) inhibicijom neuraminidaze (Liu i sur., 2009)
- diterpenski spojevi iz sjemenki imaju antimalarijska, antiproliferativna (Ma i sur., 2015)
- kasan-diterpeni izolirani iz sjemenki djeluju citotoksično i proapoptotsko na tumorske stanice (Bao i sur., 2016)

In vivo

- na štakorima s induciranim ulkusom dokazan gastroprotektivni učinak (Chellappan i sur., 2016)
- na miševima dokazan protektivni učinak u liječenju kroničnih upalnih poremećaja uključujući i reumatoidni artritis (Jung i sur., 2015)
- dokazana in vitro i in vivo imunosupresivna aktivnost brazileina (Ye i sur., 2006)
4.5. Canavalia ensiformis – Früchte – Ceylon

Šlika 14. Plod vrste Canavalia ensiformis (porijeklo Šri Lanka)

Porodica: Fabaceae

Biljna vrsta: Canavalia ensiformis (L.) DC.

Sinonimi: Dolichos ensiformis L., C. ensifolia (DC.) Makino

Engleski naziv: jack bean, sword-bean, coffee bean, wonder-bean, giant stock-bean, horse-bean, horse gram

Opis biljke i rasprostranjenost: Penjačica ili drvenasti grm do 2 m visine s utrojenim, jajastim listovima dugim do 20 cm i širokim do 10 cm. Cvjetovi su ružičasto – ljubičaste boje, a plodovi mahune duge do 35 cm s bijelim, usko elipsoidnim i glatkim sjemenkama dugim 1-2 cm (www.fao.org). Poriujetko biljke je tropska Afrika i Južna i Srednja Amerika, ali je kultivirana i naturalizirana i drugdje u svijetu (www.feedipedia.org).

Slika 15. Fotografija biljke Canavalia ensiformis (preuzeto s www.pinterest.com)
Tradicionalna medicinska i druga primjena: U starim ajurvedskim tekstovima navodi se da su sjemenke dobre kod konstipacije. U SAD-u se danas biljka uzgaja kao hrana za životinje, dok se u Aziji mlađe mahune i zelene sjemenke jedu kao povrće. Promovira se u zemljama u razvoju kao pristupačni izvor hrane bogate proteinima. Zrele suhe sjemenke mogu se kuhati i konzumirati, no zahtijevaju pažljivu obradu zbog prisutnih antihranjivih tvari. Pržene sjemenke se koriste i kao zamjena za kavu (Ekanayake i sur., 2000; https://plants.usda.gov/)

Fitokemijski sastav: Zrele sjemenke bogate su ugljikohidratima i proteinima (20-30%), no sadrže i različite antihranjive tvari: lektin konkanavalin A, potencijalno toksične metabolite aminokiseline, kanavanin i kanalin, poliamine kanavalamin i homospermidin, zatim inhibitore tripsina i alfa-amilaze (sjemen lupina), neurotoksični protein kanatoksin i trjeslovine. Potencijalno štetne saponine koji uzrokuju mučninu i povraćanje moguće je ukloniti namakanjem sjemenki prije kuhanja (Ekanayake i sur., 2000; https://plants.usda.gov/)

Znanstveno dokazano djelovanje:

In vitro

- enzim ureaza, koji biljka sadrži, posjeduje insekticidno i antifungalno djelovanje (Piovesan i sur., 2014; Postal i sur., 2012)
- antiproliferativno djelovanje lektina, konkanavalina A, na ljudskim leukemijskim staničnim linijama (Faheina-Martins i sur., 2012)
- konkanavalin A posjeduje antitumorsko djelovanje na ljudskoj staničnoj liniji karcinoma grudi, ciljano utječe na apoptozu, autofagocitozu i antiangiogenezu, te se nalazi u prekliničkim i kliničkim studijama s ostalim potencijalnim kemoterapeuticima (Bogojeva i sur., 2014)
- ekstrakt sjemenki posjeduje antioksidativno i antidijabetičko djelovanje (inhibira enzime α-amilazu i α-glukozidazu) (Vadivel i sur., 2012)

In vivo

- sjemenke posjeduju hipoglikemijska, hipokolesterolemijska i hipolipemijska svojstva antioksidativno i antidijabetičko djelovanje (inhibira enzime α-amilazu i α-glukozidazu) (Malviya i sur., 2010)
4.6. *Capsicum annuum* – Früchte – Venezuela

Porodica: Solanaceae

Biljna vrsta: *Capsicum annuum* L.

Engleski naziv: sweet peppers, red peppers, green peppers, bell peppers, chillis, chilies, chile, chili peppers (ovisno o okusu i veličini)

Hrvatski naziv: paprika

Opis biljke i rasprostranjenost: Biljka je porijeklom iz Južne Amerike (Bolivija i jug Brazila). Njeno je sjeme u Europu donio Kistofor Kolumbo, a danas se sadi diljem svijeta. Raste kao uspravni grm, niži od 1 m, ima bijele cvjetove te izdužene, žute, narančaste ili crvene plodove, mnogosjemene bobe (www.kew.org).

Slika 16. Plod vrste *Capsicum annuum* (porijeklo Venezuela)

Slika 17. Fotografija biljke *Capsicum annuum* (preuzeto s www.kew.org)
Tradicionalna medicinska i druga primjena: Plod paprike već tisućama godina koriste nativni stanovnici Amerike, otkuda biljka i potječe, ali se koristi i u gotovo svim drugim tradicionalnim sustavima liječenja u svijetu. Zbog svojih ljutih svojstava, popularan je kao začin u hrani, osobito u tropskim zemljama (Srinivasan, 2016). Topikalno se primjenjuje kao rubefacijens i površinski iritans kod artritisa i mijalgija te kao analgetik kod neuralgija i reumatskih bolova. Interno se koristi kao sredstvo koje zagrijava i stimulira kod prehlade i respiratornih smetnji, grčeva, dispepsije te kao stimulator probave i cirkulacije. U tradicionalnoj zapadnjačkoj medicini, koristi se interno za stimulaciju rada kardiovaskularnog i probavnog sustava te topički kao analgetik (Stargrove i sur., 2008).

Fitokemijski sastav: Kapsaicin (69%) je glavni prisutni kapsaicinoid u plodu, a uz njega nalazimo još dihidrokapsaicin (22%) i nordihidrokapsaicin (7%) (Srinivasan, 2016). Plod sadrži i karotenoide (kapsantin, zeaksantin, karoten), masno i eterično ulje te vitamin C.

![Struktura kapsaicina](image)

Slika 18. Struktura kapsaicina

Znanstveno dokazano djelovanje:

In vitro

- dokazan antimikrobni učinak na različite vrste bakterija i antivirusni učinak kod HSV (Khan i sur., 2014)
- dokazan antioksidativni učinak kapsaicina inhibicijom lipidne peroksidacije različitim in vitro i in vivo studijama na različitim životinjskim i ljudskim kulturama stanica i različitim laboratorijskim životinjama
- dokazano protuupalno djelovanje in vitro i in vivo animalnim studijama
- različitim in vivo, in vitro i dokazan kemoprotektivni učinak kapsaicina kod nekih vrsta tumora inhibicijom rasta i poticanjem apoptoze tumorskih stanica, no neke studije pokazuju i suprotno, karcinogeno djelovanje
- dokazan antidijabetički učinak kapsaicina in vitro i in vivo studijama, mehanizam: smanjenje sinteze tvari P, koja smanjuje otpuštanje inzulina
- različitim studijama dokazan gastroprotektivni učinak biljke (Srinivasan, 2016)
In vivo

- na različitim animalnim modelima dokazan hipolipemički učinak ekstrakta biljke i kapsaicina; mehanizam: smanjena apsorpcija i povećana ekskrecija kolesterol
- kapsaicin dovodi do značajne redukcije žučnih kamenaca kod miševa i zamoraca (Srinivasan, 2016; Fattori i sur., 2016)

Kliničke podaci

- dokazan analgetički učinak lokano primijenjenog kapsaicina kod osteoartritisa, reumatoidnog artritisa, postherpetičke neuralgije, dijabetičke neuropatije, kod fibromijalgije te smanjenje svrbeži i upale kod psorijaze (Srinivasan, 2016)
- epidemiološke studije ukazuju na povećani rizik za razvoj tumora žućnog mjehura i želuca uzrokovanih unosom ljutih paprika, tj. kapsaicina (Fattori i sur., 2016)
4.7. Cayaponia globosa – Früchte – Brasilien

Porodica: Cucurbitaceae

Biljna vrsta: Cayaponia cabocla (Vell.) Mart.

Sinonim: Cayaponia globosa Silva Manso, Bryonia cabocla Vell.

Opis biljke i rasprostranjenost:
Biljka je porijeklom iz Brazila (Provasi i sur., 2007). Opis biljke nije dostupan na engleskom jeziku.

Slika 19. Plod vrste Cayaponia cabocla (porijeklo Brazil)

Slika 20. Fotografija biljke Cayaponia cabocla (preuzeto s https://sites.google.com)
Tradicionalna medicinska primjena: U Brazilu, gdje je biljka široko rasprostranjena, plodovi se koriste u narodnoj medicini kao tonik, protuupalno i analgetsko sredstvo te u liječenju kožnih oboljenja - herpesa, akni i erzipela (Provasi i sur., 2007). Koristi se također kao laksativ (www.spektrum.de).

Fitokemijski sastav: Plodovi sadrže masno ulje, a sjemenke alkaloid kajaponin, koji se smatra odgovornim za laksativno djelovanje (www.henriettes-herb.com).

Znanstveno dokazano djelovanje:

In vivo

- dokazano topičko protuupalno djelovanje ekstrakta ploda (Provasi i sur., 2007)
4.8. **Dolichos pruriens – Früchte – Brasilien**

![Image of Dolichos pruriens](image1)

Slika 21. Plod vrste *Mucuna pruriens* (porijeklo Brazil)

Porodica: Fabaceae, Leguminosae

Biljna vrsta: *Mucuna pruriens* (L.) DC.

Sinonimi: *Dolichos pruriens* L., *Stizolobium pruritum* (Wight) PiperMedik.

Engleski naziv: velvet bean, cowitch, cowhage

Hrvatski naziv: baršunasti grah

Opis biljke i rasprostranjenost: Biljka je višegodišnja grmolična penjačica, najčešće 2-3 m visine, porijeklom iz JI Azije i Afrike, a uzgaja se i drugdje u svijetu u tropskim i suptropskim regijama. Stabljike su duge, tanke i slabo dlakave. Listovi su utrojeni, na kratkim dlakavim i mesnatim peteljkama. Cvjetovi su leptirasti, bijeli do tamno ljubičasti. Plod je tamnosmeđa, dlakava, debela i kožasta mahuna, duga oko 10 cm, sa četiri do šest tamnosmeđih sjemenki (Lampariello i sur., 2012; www.fao.org).

![Image of Mucuna pruriens](image2)

Slika 22. Fotografija biljke *Mucuna pruriens* (preuzeto s http://naturaltestboost.com/)
Tradicionalna medicinska primjena: U indijskoj ajurvedskoj medicini od davnina se koristi u liječenju parkinsonizma, kao moćni afrodizijak, za poboljšanje plodnosti te kod anksioznosti i drugih živčanih poremećaja te artritisa. Tradicionalnu primjenu nalazi i kod parazitskih infekcija, hiperprolaktinemije, bolova u mišićima, vrućice, kao emetik te u liječenje ugriza zmije i uboda škorpiona. Smatra se da sjemenke, koje se primjenjuju u obliku paste na ubod škorpiona, apsorbiraju otrov (Lampariello i sur., 2012; Suresh i sur., 2012; www.webmd.com).

Fitokemijski sastav: Sjemenke su bogati prirodni izvor levo-3,4-dihidroksifenilalanina (L-DOPA-e), sadrže još i triptamin i 5-hidroksitriptamin te druge aminokiseline (metionin, tirozin, lizin, glicin, aspartat, glutamat, leucin i serin), globuline i albumine, masne kiseline (oleinska, linoleinska, palmitinska), ugljikohidrate i fitinsku kiselinu. Triterpeni i steroli (ursolna kiselina, β-sitosterol) su nađeni u korijenu i sjemenkama. Izolirani su i alkaloidi (mukunin, mukunadin, prurienin i prurieninin) (Lampariello i sur., 2012; Suresh i sur., 2012).

Slika 23. Struktura levodopa

Znanstveno dokazano djelovanje:

In vitro

- pročišćena frakcija peptida djeluje antihipertenzivno (ACEI), antioksidativno, antitrombotski i hipokolesterolemijski (Herrera-Chalé i sur., 2016)
- ekstrakt lista prevenira posttranslacijske modifikacije proteina i ima potencijal kod liječenja kožnih bolesti povezanih s oksidacijskim stresom (Cortelazzo i sur., 2014)
- dokazana inhibitorna aktivnost α-glukozidaze izoliranih spojeva: izoflavonida, izoflavona i pterokarpana (Dendup i sur., 2014)
- antiproliferativni učinak izoliranog izokinolonskog alkaloida na staničnoj liniji ljudskog karcinoma jetre (Kumar i sur., 2016)
- antimikrobna aktivnost ekstrakta lista (Lampariello i sur., 2012)
In vivo

- hepatoprotektivno i antioksidativno djelovanje ekstrakta lista na animalnom modelu tuberkulostaticima- i alkoholom- inducirane hepatotoksičnosti (Obogwu i sur., 2014)
- proizvodnjom antitijela pruža protekciju miševima od otrova zmije Echis carinatus (Kumar i sur., 2016)
- na štakorima dokazano značajno poboljšanje seksualnog ponašanja, libida i potencije, dnevne proizvodnje sperme i hormona: FSH, LH i testosterona (Suresh i sur., 2012)
- na miševima dokazano neuroprotektivno djelovanje (Yadav i sur., 2014)
- poboljšava motorička, olfaktorna, mitohondrijska i sinaptička oštećenja kod PINK1B9 *Drosophila melanogaster* genetičkog modela Parkinsonove bolesti (Poddigh i sur., 2014)
- na štakorima dokazana učinkovitost profilaktičke primjene ekstrakta sjemenki prema otrovu Azijske kobre – Naje, na ostale zmijske otrove preslabi učinak (Fung i sur., 2014)
- na miševima dokazan antidepresivni učinak ekstrakta sjemenki preko dopaminergičkog sustava (Rana i sur., 2014)
- na štakorima dokazan hipoglikemijski efekt ekstrakta sjemenki (Bhaskar i sur., 2008)
- na štakorima dokazana antikataleptička i antiepileptička aktivnost ekstrakta lista (Champatisingh i sur., 2011)

Klinički dokazi

- dokazana efikasnost i podnošljivost kod Parkinsonove bolesti, brži početak djelovanja i duže trajanje, bez povećanja diskinezije, što ukazuje na prednost prirodnog izvora L-dope pred konvencionalnim L-dopa preparatima (Katzenschlager i sur., 2004)
- slabija bioraspoloživost levodope nego kod standardnih formulacija lijeka (levodopa+benzerazid, levodopa+karbidopa), što je i očekivano zbog nedostatka inhibitora periferne dopa dekarboksilaze (Contin i sur., 2015)
- uzimanje 5 g praškasto usitnjenih sjemenki tijekom 2-3 mjeseca dovodi do povećanja razine testosterona i kvalitete sjemene tekućine kod neplodnih muškaraca - mogući tretman neplodnosti (Shukla i sur., 2009)
- proteolitički enzim mucunain koji je smješten u dlakama na mahunama u ljudi može uzrokovati kontaktni dermatitis i svrbež (Lampariello i sur., 2012)
4.9. **Fructus mirobalani – China**

Biljna vrsta: *Terminalia chebula* Retz.

Sinonimi: *Myrobalanus chebula* (Retz.) Gaertn., *Terminalia acuta* Walp.

Engleski naziv: black myrobalan, chebulic myrobalan

Opis biljke i rasprostranjenost: Biljka je listopadno drvo do 25 m visine sa zaobljenom krošnjom i uzdužno popucalom korom. Listovi su ovalni, elipsoidni ili obrnuto jajasti. U pazušćima listova razvijaju se žućkasto bijeli cvjetovi neugodnog mirisa. Plod je koštunica (www.mchemist.com). Kad se ubere nezreo i osuši crne je boje i poznat kao crni mirobalan. Potpuno zreo plod žute je boje, sušenjem postaje tvrd i naziva se žuti mirobalan. Biljka potječe iz JI Azije ([Jokar i sur., 2016](http://www.onlyfoods.net)).

Slika 24. Plod biljke *Terminalia chebula* (porijeklo Kina)

Porodica: Combretaceae

Slika 25. Fotografija biljke *Terminalia chebula* (preuzeto s www.onlyfoods.net)
Tradicionalna medicinska primjena: Mirobalanov plod se često koristi u indijskoj medicini kao i u drugim azijskim tradicionalnim sustavima za liječenje različitih bolesti, jer posjeduje iznimnu ljekovitу vrijednost. Popularan je kao adstringens zbog visokog udjela trjeslovina te kao homeostatik, antitusik, laksativ, diuretik i kardiotonik. Koristi se kod astme, upale grla, povračanja, proljeva, dizenterije, hemoroida, ulkusa, gihta, bolesti srca i mjehura (Lee i sur., 2005; Bag i sur., 2013; Jokar i sur., 2016).

Fitokemijski sastav: Tradicionalno se koristi plod koji je bogat trjeslovinama (30-40%, galna, elagna, čebulna, neočebulna, čebulinična, čebulagična i taninska kiselina).UDIO trjeslovin raste s dozrijevanjem ploda. Prisutni su i ostali fenolni spojevi, flavonoidi (kvercetin, kemferol), druge fenolne kiseline (ferulična, šikiminska), antrakinoni te masne kiseline (Jokar i sur., 2016).

Slika 26. Strukture elagne, čebulne i čebulinične kiseline

Znanstveno dokazano djelovanje:

In vivo

- različiti ekstrakti plodova pokazali antibakterijsko djelovanje
- citoprotektivni i antioksidativni učinak ekstrakata plodova i pojedinih izoliranih fenolnih sastavnica
- povećana sekrecija inzulina iz β-stanica gušterače
- čebulinička kiselina inhibira H⁺K⁺-ATP-aze (Jokar i sur., 2016; Bag i sur., 2013)

In vitro

- na animalnom modelu dokazan antidiabetički i hipolipemički učinak ekstrakta ploda
- na miševima dokazano antinociceptivno djelovanje vodenog ekstrakta plodova
- topički primjenjen etanolni ekstrakt lista ubrzava zacjeljivanje rana
- na animalnom modelu dokazan gastroprotektivni i antiulkusni učinak ekstrakta ploda i čebulinične kiseline
- čebulagična kiselina pokazuje antiartritičko djelovanje (Jokar i sur., 2016; Bag i sur., 2013)
- plodovi djeluju kao antitusik (Ul Haq i sur., 2013)

Kliničke studije

- randomiziranom, dvostruko slijepom, placebo kontroliranom ukriženom studijom na zdravim dobrovoljcima na modelu mehaničke boli dokazan je analgetski učinak standardiziranog vodenog ekstrakta ploda (Pokuri i sur., 2016)
4.10. Jatropha curcas – Früchte – Basilien

Slika 27. Plod vrste Jatropha curcas L. (porijeklo Brazil)

Porodica: Euphorbiaceae

Biljna vrsta: Jatropha curcas L.

Sinonimi: Curcas curcas (L.) Britt., Ricinus americanus Mill.

Engleski naziv: Barbados nut, purging nut, physic nut, Barbados nut tree, bubble bush, Mexican pine, physic nut tree, poison nut. purging nut tree

Hrvatski naziv: jatrofa

Opis biljke i rasprostranjenost: Biljka je porijeklom iz tropske Amerike, a uzgaja se u tropskim i suptropskim područjima širom svijeta. Otrovn je i poluzimzeleni grm ili manje drvo visine do 6 m. Listovi su okruglasti do jajasti, a sitni zeleno-žuti cvjetovi smješteni u pazušcima. Plod je orah. Okrugao je, zelen i mesnat kad je nezreo, a kad sazrije postaje tamnosmeđi te otpušta 2 – 3 sjemenke (www.inchem.org).

Slika 28. Fotografija biljke Jatropha curcas (preuzeto s www.zimbabweflora.co.zw)

31
Tradicionalna medicinska primjena: Svi dijelovi biljke naširoko se koriste u tradicionalnoj narodnoj medicini u zapadnoj Africi. Mlade grančice se kuhaju i jedu, a starije koriste za čišćenje zubi. Plodovi se koriste kod moždanog udara, kod Zubobolje, protiv utrnulosti nakon uboda buba, te za „čišćenje krvi“ majke tijekom trudnoće. Sjemenke se primjenjuju kao purgativ, antihelmintik, abortiv, za liječenje ascitesa, gihta, problema na koži, kod Zubobolje i za jačanje desni. Ulje sjemenki primjenjuje se u liječenju reumatskih oboljenja, svrbeža i kožnih bolesti te u liječenju groznice, žutice i gonorje, kao diuretik i za ispiranje usta (Pandey i sur., 2012; www.cabi.org; www.inchem.org).

Fitokemijski sastav: Svi dijelovi biljke, posebice sjemenke i plodovi te biljni sok, su otrovni zbog sadržaja toksalbumina (fitotoksina) kurkin, tip 1 ribosom inaktivirajućeg proteina (Lifang i sur., 2017). Sjemenke sadrže masno ulje (40%) koje sadrži malu količinu kurkanolenske kiseline iritirajućeg djelovanja. Najviše u ulju, ali i u ostalim dijelovima biljke, prisutni su diterpenoidi poput jatrofona (www.nerdtests.com).

![Slika 29. Struktura jatrofona](image)

Znanstveno dokazano djelovanje:

In vitro

- proteinski ekstrakt izoliran iz ulja sjemenki djeluje protiv *Toxoplasme gondii*, parazita koji uzrokuje toksoplazmozu (Soares i sur., 2015)
- citotoksičnost diterpena izoliranih iz korijena protiv 5 vrsta ljudskih stanica raka (Liu i sur., 2013)
- protuupalno djelovanje ekstrakta korijena (Othman i sur., 2015)

In vivo

- insekticidno i larvicidno djelovanje ekstrakta lista, kore i korijena na kućne muhe (*Musca domestica*) (Chauhan i sur., 2015)
4.11. Joannesia princeps – Früchte – Brasilien

Slika 30. Plod vrste Joannesia princeps (porijeklo Brazil)

Porodica: Euphorbiaceae

Biljna vrsta: Joannesia princeps Vell.

Sinonimi: Anda brasiliensis Raddi, Joannesia insolita Pittier, Andicus pentaphyllus Vell.

Engleski naziv: arara nut tree

Opis biljke i rasprostranjenost: Biljka je stablo do 50 m visine, prirodno joj je stanište Brazil, a uzgaja se u tropskim regijama Azije i Afrike. Listovi su eliptični, nasuprotni, a cvjetovi maleni i žućkasti. Plod je veliki oraščić s 2-3 jajaste sjemenke (www.flowersofindia.net; Waibel i sur., 2003).

Slika 31. Fotografija biljke Joannesia princeps (preuzeto s www.panoramio.com)
Tradicionalna medicinska primjena: Sjemenke se tradicionalno u Brazilu koriste kao laksativ, većinom u veterinarskoj praksi, kod menstrualnih tegoba, kao antihelmintik, zbog antimikrobnog djelovanja, za smanjenje edema i poboljšanje zacjeljivanja rana (Araújo i sur., 2016; Waibel i sur., 2003).

Fitokemijski sastav: Sjemenke su bogate polifenolnim spojevima: sadrže neolignane amerikanol A, izoamerikanol A i izoamerikanin A, lignan 3,3′-bisdemetilpinorezinol kao i seskvineolignane. Također sadrže i masno ulje (Araújo i sur., 2016; Waibel i sur., 2003).

![Slika 32. Struktura izoamerikanola A](image)

Znanstveno dokazano djelovanje:

In vivo

- topikalna primjena ulja sjemenki pomaže zacjeljivanju rana kod miševa, to se djelovanje pripisuje linolnoj i oleinskoj kiseline (in vitro dokazano da povećava angiogenezu, migraciju keratinocita, aktivnost fibroblasta, smanjuje upalni odgovor i oksidativno oštećenje) (Donato-Trancoso i sur., 2014)
- dokazano laksativno djelovanje ekstrakta sjemenki povećanjem motiliteta crijeva na štakorima (Araújo i sur., 2016)
4.12. Lagerstroemia reginae – Früchte – Ceylon

Porodica: Lythraceae

Biljna vrsta: Lagerstroemia speciosa (L.) Pers.

Sinonimi: Lagerstroemia flos-reginae Retz., Lagerstroemia reginae Roxb.

Engleski naziv: banaba, giant crape-myrtle, pride-of-india, queen’s crape-myrtle,

Opis biljke i rasprostranjenost: Biljka može biti veličine od grma do velikog stabla visine do 15 metara. Ima široku krošnju i koru svijetlo smeđe boje, koja se često ljušti u velikim površinama te otkriva glatku novu koru koja se formira ispod. Listovi su jajasti i kožasti. Cvjetovi oblikuju racemozan cavit, a boja im varira od bijele, ljubičaste do boje lavande. Plod je tobolac, koji kada se osuši puca i oslobađa sjemenke. Prirodno stanište joj je JI Azija, ali se uzgaja u svim tropskim i suptropskim dijelovima svijeta (http://ntbg.org/).

Slika 33. Plod vrste Lagerstroemia speciosa (porijeklo Šri Lanka)

Slika 34. Fotografija biljke Lagerstroemia speciosa (preuzeto s www.flickr.com)
Tradicionalna medicinska primjena: Ekstrakt biljke se koristi u JI Aziji za liječenje dijabetesa i bolesti bubrega (Liu i sur., 2001).

Fitokemijski sastav: U plodovima i listovima prisutna je triterpenska kiselina, korozolna kiselina i elagtanini te su izolirani tanin lagerstroemin i elagtanini lagerstanin A i B iz ploda te lagerstanin C iz lista (Stohs i sur., 2012).

![Strukture korozolne kiseline i lagerstroemina](image)

Slika 35. Strukture korozolne kiseline i lagerstroemina

Znanstveno dokazano djelovanje:

In vitro

- antioksidativno, antifungalno, antineoplastično, osteoblastično, antihiperglikemijsko; hipoglikemijski učinak pripisuje se korozolnoj kiselin i elagtaninima (Stohs i sur., 2012)

In vivo

- na miševima dokazan hipolipemički (smanjenje ukupnog kolesterol i triglicerida) učinak ekstrakta ploda te smanjenje tjelesne težine i gubitak masnog tkiva, što indicira da bi korozolna kiselina mogla biti korisna kod metaboličkog sindroma (Stohs i sur., 2012)

In vivo i kliničke studije

- hipoglikemijski učinak korozolne kiseline i biljnog ekstrakta standardiziranog na korozolnu kiselinu dokazani su na različitim animalnim modelima i nekoliko studija na ljudima; izolirani su i drugi spojevi s in vitro dokazanim hipoglikemijskim djelovanjem poput elagtanina, lagerstroemina, flosina B, reginina i derivata metil elagne kiseline (Stohs i sur., 2012)
4.13. **Leucadendron capense** – Früchte – Capland

![Leskovica vrste Leucadendron sp. (porijeklo Južnoafrička Republika)](image)

Slika 36. Plod vrste *Leucadendron* sp. (porijeklo Južnoafrička Republika)

Porodica: Proteaceae

Biljna vrsta: nije moguće utvrditi točan identitet

Opis biljke i rasprostranjenost: Rod *Leucadendron* obuhvaća oko 80 vrsta koje su endemi Južnoafričke Republike. Većinom su zimzeleni grmovi visoki 1-2 m, s široko eliptičnim listovima, ponekad nalikuju iglicama, jednostavni, cjeloviri, spiralno raspoređeni, često prekriveni s voštanom prevlakom, s cvjetovima koji oblikuju guste cvatove na vrhovima grana. Drvenasti češeri sadrže brojne sjemenke (https://www.inaturalist.org/taxa/186152-Leucadendron).

Tрадиционная медицинская примена: nema podataka da su se vrste tog roda koristile u narodnoj medicini

![Image of dried plant](image1)

Slika 37. Plod vrste Carobrotus acinaciformis (porijeklo Južnoafrička Republika)

Porodica: Aizoaceae

Biljna vrsta: *Carpobrotus acinaciformis* (L.) L. Bolus

Sinonimi: *Mesembryanthemum acinaciforme* L., *Abryanthemum acinaciforme* (L.) Rothm.

Engleski naziv: Sour Fig, Hottentot Fig

Opis biljke i rasprostranjenost: Prirodno stanište biljke je južna Afrika, a proširila se i na područja sa sličnom klimom. Robusna, sukulentna, brzo rastuća, puzajuća i invazivna biljka, koja nadvladava ostale biljne vrste. Stabljike su zakrivljene pri tlu i duge do 2 m. Lišće je mesnato, debelo, sočno, sabljasto, gusto raspoređeno duž stabljike, nasuprotno, oštro, s 3 bridge, zakrivljeno prema gore i crveno uz rub. Cvjetovi su pojedinačni, na kratkim stapkama, dvopolni sa mnogo prašnika, a boja varira od svjetlo do tamno ljubičaste. Plod je mesnata, crveno-smeda boba (www.llifle.com).

![Image of plant](image2)

Slika 38. Fotografija biljke Carobrotus acinaciformis (preuzeto s www.pinterest.com)
Tradicionalna medicinska primjena: Preparati ploda uzimaju se oralno kod tuberkuloze i drugih plućnih infekcija. Mliječni sok lišća djeluje adstringentno i primjenjuje se na rane i opekline, a primijenjen oralno djeluje diuretički i pomaže kod dizenterije. Preparati lišća i ploda koriste se kod različitih bolesti srca, za ispiranje usta kod upale grla ili ranica u ustima (www.plantzafrica.com).

Fitokemijski sastav: Biljka sadrži alkaloid mesembrin (www.plantzafrica.com).

![Struktura mesembrina](https://www.plantzafrica.com)

Znanstveno dokazano djelovanje: Nema dostupnih studija.
4.15. Mesua ferrea – Früchte – Ceylon

Slika 40. Plod vrste Mesua ferrea (porijeklo Šri Lanka)

Porodica: Calophyllaceae

Biljna vrsta: Mesua ferrea L.

Sinonim: Mesua nagassarium (Burm. f.) Kosterm.

Engleski naziv: Ceylon ironwood, Indian rose chestnut, cobra's saffron, ironwood tree

Opis biljke i rasprostranjenost: Srednje visoko do visoko zimzeleno stablo koje naraste 20 do 30 m u visinu, s debalom promjera do 2 m. Listovi su jednostavni, nasuprotni, usko jajasti do lancetasti. Cvjetovi su dvospolni, bijele ili ružičaste boje, pojedinačni ili u obliku metlice sastavljene od 9 cvjetova. Plod je jajast do loptast tobolac, tanko odrvenjen, sa 1-2 sjemenke. Radte u tropskim dijelovima Šri Lanke i Indije te u JI Aziji (Lim, 2014).

Slika 41. Fotografija biljke Mesua ferrea (www.homeremediess.com)
Tradicionalna medicinska primjena: U Indijskoj tradicionalnoj medicini sjemenke se preporučuju kod bolnih i upalnih stanja poput artritisa, zacjeljivanja rana, kod kožnih bolesti te kao antimikrobno sredstvo (Jalalpure i sur., 2011). Biljka se također kao karminativ, ekspektorans, kardiotonik, diuretik, antipiretik te kod prehlade i astme (Chahar i sur., 2012).

Fitokemijski sastav: Sjemenke sadrže masno ulje (trigliceridi linolne, oleanolne, palmitinske i stearinske kiseline), kumarine mesuol i mameigin, trjeslovine te druge fenolne spojeve, ugljikohidrate i proteine (Jalalpure i sur., 2011).

Slika 42. Struktura mesuola

Znanstveno dokazano djelovanje:

In vitro
- antimikrobni, antioksidativni, hepatoprotektivni, antikolinesterazni, larvicidni i antiproliferativni učinak (Teh i sur., 2013)

Ex vivo
- sirovulje sjemenki pokazuje spazmolitički učinak, dok je primjenom pročišćenog ulja na izoliranom ileumu štakora navedeni učinak izostao (Lim, 2014)

In vivo
- dokazan antiartritički učinak ekstrakta sjemenki na štakorima s induciranim artritisom (Jalalpure i sur., 2011)
- na štakorima dokazano antioksidativno i imunomodulacijsko djelovanje fenilkumarina mesuola izoliranog iz sjemenki (Chahar i sur., 2012)
- in vitro i in vivo na miševima dokazan antibakterijski učinak ekstrakta cvjeta (Mazumder i sur., 2004)
4.16. Prosopis strombulifera – Früchte – Chile

Porodica: Leguminosae, Fabaceae

Biljna vrsta: Prosopis strombulifera (Lam.) Benth.

Sinonimi: Strombocarpa strombulifera (Lam.) A.Gray, Acacia strombulifera (Lam.) Willd.

Engleski naziv: Argentine screwbean, creeping screwbean

Opis biljke i rasprostranjenost: Biljka je grm porijeklom iz Argentine, Čilea i Perua, a ima je i u SAD-u. Ima dugo i mrežasto korijenje i može narasti do 1,5 m. Listovi su voštane teksture, sastavljeni od malih nasuprotnih liski. Bjelkaste bodlje veličine do 2 cm pojavljuju se u blizini lisnih baza. Cvat je okrugli s mnogo uskih žutih cvjetova širine do 1,5 cm. Plod je svijetlo žuta mahuna smotana čvrsto u cilindrični oblik, duga do 5 cm i sa nekoliko zelenkastih sjemenki (https://en.wikipedia.org; Saragusti i sur., 2012; http://idtools.org).

Slika 43. Plod vrste Prosopis strombulifera (porijeklo Čile)

Slika 44. Fotografija biljke Prosopis strombulifera (preuzeto s www.flickr.com)
Tradicionalna medicinska primjena: Plodovi biljke koriste se kod Zubobolje, zbog adstringentnog i protuupalnog učinka, te kod dijareje (Saragusti i sur., 2012).

Fitokemijski sastav: Plodovi sadrže flavonoide (luteolin, luteolin-7-glukozid, viteksin, izoviteksin, kvercitrin, ramnozil viteksin i rutin), trjeslovine, ugljikohidrate te malu količinu saponina i steroida (Hapon i sur., 2014).

Znanstveno dokazano djelovanje:

In vitro
- analgetičko, antimikrobno i citotoksično djelovanje (Hapon i sur., 2014; Saragusti i sur., 2012)

In vivo
- ekstrakt ploda inhibira nociceptivni odgovor na animalnom modelu formalinom inducirane boli umjerenog intenziteta (pokazuje o dozi ovisnu inhibiciju neurogene i inflamatorne faze) djelujući preko L-arginin-NO puta, i taj se učinak pripisuje polifenolima (Saragusti i sur., 2012)

Porodica: Arecaceae

Biljna vrsta: *Raphia vinifera* P.Beauv.

Engleski naziv: Bamboo palm, king bamboo palm, raphia palm

Opis biljke i rasprostranjenost: Biljka je zimzelena s debelim donjim nerazgranatim dijelom bez lišća, visoka do 5 m, a na vrhu ima krunu od listova. Raste u tropskom dijelu Afrike. Cvate tek nakon nekoliko godina, te nakon što proizvede sjeme propada. Plod je žuto smeđa koštunica (https://www.prota4u.org/).

Slika 45. Plod vrste *Raphia vinifera* (porijeklo srednja Afrika)

Slika 46. Fotografije biljke *Raphia vinifera* (preuzeto s www.palmpedia.net)
Tradicionalna medicinska i druga primjena: Mladi listovi se koriste kao izvor vlakana za izradu kapa, odjeće, košara, torbi i uža. Plod je jestiv, ali malo gorak. Ulje iz mezokarpa ploda je jestivo, sirovi se plod koristi kao mamac za ptice i kao otrov za ribe, a dekopt vršnih pupoljaka koristi se kod gonoreje i drugih genitalno-urinarnih infekcija (http://tropical.theferns.info/; http://uses.plantnet-project.org/).

Fitokemijski sastav: Nema podataka.

Znanstveno dokazano djelovanje: Nema dostupnih studija.
4.18. Solanum insidiosum – Früchte – Brasilien

![Image of plums](image)

Slika 47. Plod vrste Solanum insidiosum (porijeklo Brazil)

Porodica: Solanaceae

Biljna vrsta: Solanum insidiosum Mart.

Engleski naziv: jurumbeba, jerubeba

Opis biljke i rasprostranjenost: Iako je naziv službeno prihvaćen, nije dostupan opis ove biljne vrste. Međutim, pojam „prava jurumbeba“ podrazumijeva ustvari označava mnogo bolje istraženu i korištenu vrstu Solanum paaniculatum L. (Hartwich, 1897).

Tradicionalna primjena: „Prava jurubeba“ ima vrlo dugu i dobro dokumentiranu tradicionalnu primjenu u Brazilu u liječenju bolesti jetre, želuca, groznice, kao laksativ te kod mamurluka (http://www.henriettes-herb.com).

Fitokemijski sastav: Nema podataka.

Znanstveno dokazano djelovanje: Nema dostupnih studija.

Porodica: Malvaceae

Biljna vrsta: *Cola acuminata* (P. Beauv.) Schott & Endl.

Sinonim: *Sterculia acuminata* P. Beauv.

Engleski naziv: cola tree, cola nuts

Opis biljke i rasprostranjenost: Biljka je zimzeleno drvo visoko 12-20 m, s dugoljastim i sjajnim lišćem, žutim cvjetovima i plodovima u obliku zvijezde. Plod je orah s mahunastim i mesnatim sjemenkama veličine 2,5 do 4 cm, koje su išarane bijelom, smedom i crvenkasto-sivom bojom, gorkog okusa, starenjem postaju aromatične. Prirodno stanište biljke je Afrika, ali se uzgaja i u različitim tropskim krajevima svijeta, posebno u američkim tropima (www.britannica.com).

Slika 48. Plod vrste *Cola acuminata* (porijeklo Južnoafrička Republika)

Slika 49. Fotografija biljke *Cola acuminata* (preuzeto s www.dogaltedavi.net)
Tradicionalna medicinska i druga primjena: U Africi se kola oraščići žvaču radi stimulativnog djelovanja, da se ukloni osjećaj gladi i umora te prije obroka za poboljšanje probave (www.britannica.com). Mnoge afričke žene koriste ih kod jutarnje mučnine i za prevenciju migrena, a smatraju ih i afrodizijakom (http://entheology.com/). Koriste se za pripremu napitka za jačanje, očuvanje budnosti, umanjenje gladi i umora, za poboljšanje probave i povećanje izdržljivosti. U Brazilu i zapadnoj Indiji koriste se kod intoksikacije, mamurluka i dijareje (www.britannica.com).

Fitokemijski sastav: Oraščići sadrže ksantinske alkaloide, kofein i teobromin te trjeslovine (www.britannica.com).

![Strukture kofeina i teobromina](image)

Slika 50. Strukture kofeina i teobromina

Znanstveno dokazano djelovanje:

In vitro

- antiacetilkolinesterazno (lijekovi s tim djelovanjem se koriste u terapiji Alzheimerove bolesti) i antioksidativno djelovanje ekstrakta sjemenki na moždanim stanicama (Oboh i sur., 2014)
- antimikrobno djelovanje ekstrakta biljke na klinički izolirane sojeve *Staphylococcus albus, Candida albicans, Aspergillus niger, Klebsiella pneumonia*, ali ne na soj *Staphylococcus aureus* (Sonibare i sur., 2009)

In vivo

- kofein, glavna djelatna sastavnica kole, djeluje kao nespecifični inhibitor A1 i A2A receptora te aktivira otpuštanje uglavnom ekscitacijskih transmirtora; na miševima blokada A2A receptora utječe na spavanje i motoričke aktivnosti, dok blokada A1 i A2A utječe na otkucaje srca, temperaturu i potrošnju kisika
- kod štakora i miševa smanjuje motoričke simptome Parkinsonove bolesti i pojačava učinke L-dope (Nehling, 2016)
Klinički podaci

- kofein u umjerenim količinama (200-400 mg) ne predstavlja rizik za ljudsko zdravlje i ne bi se trebao prestati konzumirati kod starijih
- dovodi do dozi ovisnog povećanja energetskog uzbuđenja, hedonističkog osjećaja i povećanja koncentracije, uglavnom eliminacijom distraktora
- u dozi od 75 mg skraćuje vrijeme reagiranja i poboljšava vizualnu pažnju te kontinuiranu pozornost kod dugih i zahtjevnih obaveza, posebno je efektivan u situacijama smanjenog uzbuđenja, kao što su pad pozornosti nakon ručka, kod prehlade, rada u noćnoj smjeni i vožnje noću
- 100 mg (=1 šalica kave) može odgoditi san i skратiti ukupno vrijeme spavanja (ako se konzumira prije spavanja, a veće količine mogu utjecati čak i ako se konzumiraju ujutro)
- poboljšava raspoloženje, smanjuje rizik od depresije i suicida (češće kod starijih)
- dovodi do anksioznosti kod visokih doza
- povećava učink analgetika kod glavobolja i migrena,
- može povećati kognitivnu rezervu kod starijih osoba, osobito žena (smanjuje pad preformansi, poboljšava vrijeme reakcije i radnu memoriju), redovita konzumacija tijekom života smanjuje rizik od razvoja Alzheimerove bolesti te ovisno o dozi smanjuje ili odgađa razvoj Parkinsonove bolesti (Nehling, 2016)
4.20. Thevetia neriifolia – Früchte – Venezuela

Biljna vrsta: *Cascabela thevetia* (L.) Lippold

Engleski naziv: yellow oleander, lucky nut, bastard oleander, exile oleander, tiger apple, Captain Cook tree, dicky plant, foreigner’s tree, Mexican oleander, still tree

Opis biljke i rasprostranjenost: Biljka je uspravni, zimzeleni jako razgranati grm ili manje drvo najčešće 2,5-3,5 m visine. Listovi su spiralno raspoređeni duž stabljike, sjajno zeleni s gornje strane, a svjetliji s donje. Ima svijetlo žute cjevaste cvjetove duge 5-7 cm s 5 latica. Plod je velik a i mesnat a koštunica, tvrda u sredini, zelena i sjajana kada je nezrela, sazrijevanjem pocrni, nosi 2-4 spljoštene sjemenke. Prirodno stanište biljke je tropska Amerika (Peru, Meksiko, Karibi), a kultivira se i u drugim tropskim i suptropskim područjima (https://keyserver.lucidcentral.org/).

Slika 52. Fotografija biljke *Cascabela thevetia* (preuzeto s https://keyserver.lucidcentral.org/)

Slika 51. Plod vrste *Cascabela thevetia* (porijeklo Venezuela)

Porodica: Apocynaceae
Tradicionalna medicinska primjena: Koristi se već dugo kao abortiv, antipiretik, rotenicid, kao antibakterijsko sredstvo te u terapiji srčanog zatajenja (Samanta i sur., 2016; Cheng i sur., 2016).

Fitokemijski sastav: Biljka je bogata kardiotiničnim glikozidima, posebno korišten je korijen i sjemenke. Izolirani su tevetin A-C, acetyltevetin A-C, nerifolin, peruvozid, tevetoksin i ruvozid (Samanta i sur., 2016; Cheng i sur., 2016; Kohls i sur., 2012).

Znanstveno dokazano djelovanje:

In vitro
- citotokičnost kardiotoničnih glikozida iz sjemenki (Cheng i sur., 2016)
- antioksidativni učinak ekstrakta ploda (Arias i sur., 2016)
- slabi antibakterijski učinak (Hassan i sur., 2011)

In vivo
- ekstrakt kore inhibira spermatogenezu u muških štakora, što indicira mogućnost razvoja muškog biljnog kontraceptiva (Gupta i sur., 2011)
- ekstrakt lista smanjuje koncentraciju progesterona kod ženskih štakora, što ukazuje na moguću antifertilni učinak (Samanta i sur., 2016)
- na animalnom modelu dokazano antidijarogično djelovanje (Hassan i sur., 2011)
Klinički podaci

Izolirani kardiotonični glikozidi djeluju slično digoksinu te primarno inhibiraju enzim Na⁺-K⁺ ATP-azu u kardiovaskularnom sustavu. Opisana su slučajna otrovanja kod djece, koja ga konzumiraju ili zbog zamjene sa plodom neke druge biljke ili zbog znatiželje. Miješanje suhih dijelova biljke u čajne mješavine također je rezultiralo slučajnim otrovanjima kod odraslih. Cijela biljka je otrovna te se često javljaju slučajevi ubojstava i samoubojstava ingestijom sjemenki i lišća. Saznanje o toksičnosti biljke, između lokalnog stanovništva, dodatno je pogodovalo trovanjima ovom biljkom, koja nema specifični antidot, međutim može se liječiti s Fab specifičnim protutijelom, gastričkom lavažom i aktivnim ugljenom (Kumar i sur., 2015).
4.21. Toxicodendrum capense – Früchte – Capland

Biljna vrsta: *Hyaenanche globosa* (Gaertn.) Lamb & Vahl

Engleski naziv: hyaena poison, gifboom

Opis biljke i rasprostranjenost: Biljka je veliki zimzeleni grm ili malo drvo, visine 2-4 m i okruglog oblika. Endemska je vrsta planinskog područja Južnoafričke Republike. Listovi su tamnozeleni i kožasti, usko eliptični ili suličasti, dolaze po 4 u pršlenovima. Muške i ženske biljke imaju male crvene aksilarne cvjetove bez latica. Plod je okrugli tobolac s 3 do 4 režnja. Sjemenke su velike, crne i sjajne (www.plantzafrica.com; Momtaz i sur., 2010).

Slika 54. Plod vrste *Hyaenanche globosa* (porijeklo Južnoafrička Republika)

Porodica: Euphorbiaceae

Slika 55. Fotografija biljke *Hyaenanche globosa* (preuzeto s www.ispotnature.org)
Tradicionalna primjena: Plodovi su izrazito toksični i prije su ih farmeri koristili kao otrov za uništenje hijena i drugih štetočina. Od toga i dolazi naziv Hyaenanche, grčka riječ koja u prijevodu znači otrov za hijene (www.plantzafrica.com; Momtaz i sur., 2010).

Fitokemijski sastav: Biljka sadrži nekoliko toksičnih seskviterpenskih laktona, kao što su tutin, hienancin, melitoksin i izodihidrohienancin (Momtaz i sur., 2010).

Slika 56. Struktura tutina

Znanstveno dokazano djelovanje:

Klinički podaci

- glavni toksin tutin uzrokuje konvulzije, delirij i komu kod ljudi (Momtaz i sur., 2010).

In vitro

- ekstrakt ploda posjeduje antimikrobnu, antitirozinaznu i citotoksičnu aktivnost (Momtaz i sur., 2010)
5. ZAKLJUČAK

Rezultati ovog diplomskog rada omogućuju usvajanje novih znanja o fitokemijskom sastavu i primjeni ljekovitog bilja koje se tradicionalno već stoljećima koristi u južnoameričkim, afričkim i azijskim zemljama. Ukazuju na potrebu daljnjih znanstvenih istraživanja u svrhu opravdanja njihove tradicionalne primjene te potencijalnog otkrivanja novih molekula koje bi se u budućnosti mogle koristiti kao lijekovi.
6. LITERATURA

Alpinia galanga,

Bag A, Bhattacharyya SK, Chattopadhyay RR. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. *Asian Pac J Trop Biomed*, 2013, 3(3), 244-252.

Chahar MK, Sanjaya Kumar DS, Lokesh T, Manohara KP. In-vivo antioxidant and immunomodulatory activity of mesuol isolated from Mesua ferrea L. seed oil. *Int Immunopharmacol*, 2012, 13(4), 386-391.

Fotografija biljke Lagerstroemia speciosa,

Fotografija biljke Prosopis strombulifera,

Fotografija i opis biljke Cascabela thevetia,

Grdinić V, Kremer D. Ljekovito bilje i ljekovite droge: farmakoterapijski, botanički i farmaceutski podaci. Zagreb, Hrvatska ljekarnička komora, 2009, str. 41

JACK BEAN Canavalia ensiformis (L.) DC,

Jatropha curcas L. Description of the plant, 1994.,

Joannesia princeps, 2016.,

Nirmal NP, Rajput MS, Prasad RG, Ahmad M. Brazilin from *Caesalpinia sappan* heartwood and its pharmacological activities: A review. *Asian Pac J Trop Med*, 2015, 8(6), 421–430.

Ye M i sur. Braziltein, an important immunosuppressive component from *Caesalpinia sappan* L. *Int Immunopharmacol*, 2006, 6(3), 426-432.

7. **SAŽETAK/SUMMARY**

Kolekcija biljnih droga dr. Theodora Schuchardta važan je sastavni dio Farmakognoške zbirke Zavoda za farmakognoziju Farmaceutsko-biokemijskog fakulteta Sveučilišta u Zagrebu. Sadrži oko stotinjak biljnih droga koje su se tradicionalno koristile u liječenju u dalekim prekomorskim zemljama još krajem 19. stoljeća od kada ta zbirka datira. U okviru ovog diplomskog rada teorijski su istraženi svi ljekoviti plodovi koje kolekcija sadrži. Monografijski prikaz dvadeset i jedne biljne droge obuhvaća fotografiju droge u izvornom spremniku, botaničke podatke o biljnoj vrsti iz koje se droga dobiva, opis tradicionalne medicinske i druge korisne primjene te recentne podatke o fitokemijskom sastavu i znanstveno dokazanom djelovanju droge. Prikupljeni podaci omogućuju usvajanje novih znanja iz područja farmakognozije te proširenje spoznaja o stručnoj, znanstvenoj i kulturnoj vrijednosti ove kolekcije biljnih droga.

The dr. Theodor Schuchardt collection of herbal drugs represents an important part of the pharmacognostic collection of the Department of Pharmacognosy of Faculty of Pharmacy and Biochemistry of University of Zagreb. It holds about hundred herbal drugs which have been used as traditional medicine in distant overseas countries in late 19th century when the collection was founded. In this thesis all medicinal fruits belonging to the collection have been studied theoretically. The monographic overview of the twenty-one herbal drugs includes the photo of drug in the original container, botanical data on plant source, data on the traditional and other useful uses, phytochemical composition and scientific evidence on the pharmacological activity. The collected data allow acquiring new knowledge in the field of pharmacognosy as well as enlargement of the knowledge about professional, scientific and cultural values of this herbal drugs collection.
Temeljna dokumentacijska kartica

Sveučilište u Zagrebu
Farmaceutsko-bioFitokemijski fakultet
Zavod za farmakognoziju
Marulićev trg 20/II, 10000 Zagreb, Hrvatska

Diplomski rad

LJEKOVITI PLODOVI U ZBIRCI BILJNIH DROGA DR. THEODORA SCHUCHARDTA

Andrea Zrna

SAŽETAK

Kolekcija biljnih droga dr. Theodora Schuchardta važan je sastavni dio Farmakognoške zbirke Zavoda za farmakognoziju Farmaceutsko-biokemijskog fakulteta Sveučilišta u Zagrebu. Sadrži oko stotinjak biljnih droga koje su se tradicionalno koristile u liječenju u dalekim prekomorskim zemljama još krajem 19. stoljeća od kada ta zbirka datira. U okviru ovog diplomskog rada teorijski su istraženi svi ljekoviti plodovi koje kolekcija sadrži. Monografski prikaz dvadeset i jedne biljne droge obuhvaća fotografiju druge u izvornom spremniku, botaničke podatke o biljnoj vrsti iz koje se droga dobiva, opis tradicionalne medicinske i druge korisne primjene te recentne podatke o fitokemijskom sastavu i znanstveno dokazanom djelovanju droge. Prikupljeni podaci omogućuju usvajanje novih znanja iz područja farmakognozije te proširenje spoznaja o stručnoj, znanstvenoj i kulturnoj vrijednosti ove kolekcije biljnih droga.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži: 73 stranice, 56 grafičkih prikaza i 162 literaturna navoda. Izvornik je na hrvatskom jeziku.

Ključne riječi: farmakognoška zbirka; ljekovite biljne droge; dr. Theodor Schuchardt

Mentor: Dr. sc. Biljana Blažeković, docentica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Ocjenjivač: Dr. sc. Biljana Blažeković, docentica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Maja Bival Štefan, viša asistentica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Kroata Hazler Pilepić, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta

MEDICINAL FRUITS IN THE DR. THEODOR SCHUCHARDT’S HERBAL DRUGS COLLECTION

Andrea Zrna

SUMMARY

The dr. Theodor Schuchardt collection of herbal drugs represents an important part of the pharmacognostic collection of the Department of Pharmacognosy of Faculty of Pharmacy and Biochemistry of University of Zagreb. It holds about hundred herbal drugs which have been used as traditional medicine in distant overseas countries in late 19th century when the collection was founded. In this thesis all medicinal fruits belonging to the collection have been studied theoretically. The monographic overview of the twenty-one herbal drugs includes the photo of drug in the original container, botanical data on plant source, data on the traditional and other useful uses, phytochemical composition and scientific evidence on the pharmacological activity. The collected data allow acquiring new knowledge in the field of pharmacognosy as well as enlargement of the knowledge about professional, scientific and cultural values of this herbal drugs collection.

The thesis is deposited in the Central Library of the University of Zagreb Faculty of Pharmacy and Biochemistry.

Thesis includes: 73 pages, 56 figures and 162 references. Original is in Croatian language.

Keywords: Traditional chinese medicine; herbal drugs; phytochemistry; pharmacological effects; European pharmacopoeia

Mentor: Biljana Blažeković, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

Reviewers: Biljana Blažeković, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
 Maja Bival Štefan, Ph.D Senior Assistant, University of Zagreb Faculty of Pharmacy and Biochemistry
 Kroata Hazler Pilepić, Ph.D Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

The thesis was accepted: July, 2017