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Biochemistry of apoptotic cell death

KARMELA BARISIC Apoptosis is a physiological cell suicide program that is
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e critical for the developmoent and maintenance of healthy
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tissues. Revulation of programmed cell death allows the
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and to protect itself from rogue cells that threaten ho-
meostasis. The changed activity of numerous genes in-
fluences switching of cells to a self-destruction program.
Apoptosis requires co-ordinated action and fine tuning
of a set of proteins that are either regulators or exccutors
of the process. Cancer, autoimmune diseases, immuno-
deficiency disease, reperfusion injury and neurodegene-
rative disorders are characterised by disregulation of
apoptosis. Modulation of the expression and activation
of the key molecular components of the apoptotic pro-
cess has emerged as an attractive therapeutic strategy for
many diseases.
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There are two distinct types of cell death, death by injury and death by suicide.
Cells that are damaged by injury, such as mechanical damage or exposure to toxic chem-
icals, undergo a series of changes characterised by swelling of cells and their organelles,
leakage of cell content and inflammation of the surrounding tissues. In other words,
cells die by necrosis. In contrast, apoptosis is an organised, genetically directed process,
which leads to cell death. Thereby, the term »programmed cell death« has been estab-
lished as a synonym for apoptosis. Cells dying by apoptosis share unique morphological
features, distinct from autolytic, degenerative cell changes observed during necrosis.
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MORPHOLOGY OF APOPTOSIS

Morphological changes of an apoptotic cell might be easily detected under the mi-
croscope. Some of these dmnocs can be seen even by light microscopy using specific

dyes, while other can be detected only by electron microscopy.

The dying cell, as observed by light microscopy, starts to sever its attachments to
other cells and to extracellular matrix, and to round up. It starts to show protrusion from
the plasma membrane, referred to as blebs (1). Staining DNA with certain dyes allows
observation of the condensation of the cell nucleus, which usually starts as a condensed
ring along the nuclear envelope. The condensed nucleus can disassemble into several
fragments. The entire cell condenses and is reorganised into apoptotic bodies, which are
membrane-bound vesicles varying in size and composition, containing the entire cell
content in various combinations, such as cytosolic elements, organelles or parts of con-
densed nuclei (2). Additional changes have been described by electron microscopy. Con-
densation or swelling of mlt(\chondna (3), dilatation of endoplasmic reticulum (ER) (4),
vacuolisation of cytoplasm (5) and loss of plasma membrane microvilli (6) have been ob-
served. At a certain point, apoptosis affects all compartments and organelles in a dying
cell.

Phagocytosis of apoptotic cells or apoptotic bodies is an integral feature of apopto-
sis. Uptake and degradation of apoptotic cells is rapid and can be conducted both by
professional phagocytes such as macrophages and non-specialised cells, like epithelial
cells (2). It seems that apoptotic cells could be digested by a lysosomal pathway, organ-
ised inside the phagocytosing cell, although a lmk to autophagy, a cell-autonomous au-
todigestion of cellular components th‘rough the lysosomal pathway, has also been sug-
gested (7).

BIOCHEMISTRY OF APOPTOSIS

There are three different mechanisms by which a cell commits suicide: one is gener-
ated by signals arising within the cell, another is triggered by death activators bmdmﬂ to
receptors at the cell surface, and the third might be induced by dangerous reactive oxy-
gen species (ROS).

Apoptotic process, either induced by signals arising within the cell or triggered by
the activation of death receptors at the cell surface, is characterised by the activation of a
family of intracellular cysteine proteases, called caspases (8, 9). However, the third me-
chanism of apoptosis initiation and execution is caspase-independent. Members of the
calpain family of Ca®*/calmodulin-activated proteases seem to be able to cleave the
same substrates as caspase (10). In addition, particular endonucleases and chromatin-
-modifying factors (endonuclease G and apoptosis-inducing factor, AlF) can recapitulate
some of the nuclear changes that are typical of the caspase-dependent apoptotic process
(11, 12).
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Caspases

Most of the morphological changes observed during apoptotic cell death are caused
by caspases. Therefore, these proteases are considered to be the central executioners of
the apoptotic pathway. Caspases have been subdivided into subfamilies based on their
substrate preference, extent of sequence identity and structural similarities.

Caspases cleave substrates at Asp-Xxx bonds, and their distinct substrate specificity
is determined by the four residues amino-terminal to the cleavage site (8, 13). Caspases
cleave their protein substrates usually at one or, occasionally, at a few positions in the
primary sequence. In most cases, this cleavage can result in inactivation of the target
protein, but the target protein could also be activated due to the cleavage of the negative
regulatory domain or due to the inactivation of the regulatory subunit. Although nu-
merous caspase substrates have been identified, the characteristic features of apoptosis
can be currently explained only by caspase-mediated cleavage of a few of them.

DNA ladder nuclease, the enzyme that cuts genomic DNA between nucleosomes
generating DNA fragments of approximately 180 bp is responsible for the characteristic
DNA Iaddm pattern observed after DNA electrophoresis. This DNA ladder nuclease,
also called caspase-activated DNase or DNA fragmentation factor (CAD/DFF40), pre-
-exists in ]i\fix'\g cells as an inactive complex with an inhibitory regulatory subunit
ICAD/DFF45. Caspase-3 cleaves off the inhibitory subunit leading to the activation of
the catﬂlyhc subunit, and thus, to the internucleosomal DNA fragmentation (14-16).
Caspases were also found responsible for the cleavage of nuclear lamins, leading to nu-
clear shrinking and budding (17, 18).

On the other hand, cleavage of proteins participating in the organisation of focal ad-
hesion, such as focal adhesion kinase (FAK), may contribute to the detachment of apo-
ptotic cells from the Surrounding matrix (19).

Loss of the overall cell shape is caused by “le‘avaqe of cytoskeletal proteins. It has
been shown that actin reorganisation is rec pmod for the formation of apoptotic blebs
and ring-like structures along the cell periphery (20). p21-Activated kinase 2 (PAK2) is
activated b_y cleavago occun‘ing between 1(:gul,amry and catal Y tic subunits, and activa-
ted PAK2 participates in the remodelling of actin cytoskeleton leading to apoptotic bleb-
bing (21). In addition, other cytoskeleton-associated proteins, such as gelsolin, myosin
light chain kinase (MLCK), Rho proteins, and heat shock protein 27 (hsp27) might also
have an important role in apoptotic blebbing.

Caspases implicated in apoptosis are divided into two groups, initiator (upstream)
and effector (downstream) caspases (22). All of the known caspases are synthesised as
zymogens, enzymatically inert proteins. These inactive procaspases contain three do-
mains, N-terminal prodomain, p20 and p10 domains. An activated caspase is a hetero-
tetramer containing two p20/pl0 heterodimers and two active sites (22). Most caspases
are activated by proteolytic cleavage of the zymogen between p20 and pl0 domains or
between the prodomain and p20 domain. This cleavage occurs at the Asp-Xxx site,
which is a caspase substrate site, suggesting the possibility of autoactivation. Indeed, the
simplest way of activating procaspase is to expose it to another, pwvmuslv activated
caspase molecule. This cascade model of caspase activation could be applied for the acti-
vation of downstream effector caspases, such as caspase-3, -6, and -7. However, this mo-
del, responsible for the majority of substrate cleavage observed during apoptosis, cannot
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explain the activation of upstream caspases (23). Initiator caspases are activated in re-
sponse to pro-apoptotic stimuli and are responsible for the activation of effector caspa-
5€8.

The cell death pathway initiated hrough engagement of certain members of the tu-
mour necrosis factor receptor family (or plasma mLme ane-associated death receptors)
leads to activation of caspase-8. Upon wand binding, death receptors, such as CI95
(Apo-1/Fas), aggregate and form memb1ane—bound signalling complexes. These com-
plexes recruit procaspase-8 molecules via adapter molecules, such as the Fas-associated
protein with death domain (FADD) and/or the tumour necrosis factor receptor associ-
ated protein with death domain (TRADD). High local concentration of procaspase-8 re-
sults in its autoactivation. Under such amwd(’d conditions, the low intrinsic protease ac-
tivity of procaspase-8 is sufficient to allow the proenzyme molecules to cleave and
activate each other and other downstream caspases, leading to the induction of the apop-
totic process (9).

The mitochondrial pathway of apoptosis is used extensively in response to diverse
forms of cellular stress (DNA damage, growth factor withdrawal, cell-cycle perturba-
tion, exposure to cytotoxic drugs). These stressors promote release of cvtochrome ¢ from
mitochondria and it seems that pro-apoptotic members of the Bel-2 family, including
Bax, Bad, Bim, and Bid, might have a role in the perturbation of mitochondrial mem-
brane integrity. Once released into the cytosol, cytochrome ¢ associates with the apopto-
tic protease-activating factor 1 (Apaf 1) and procaspase-9 to form apoptosome. Both,
Apaf 1 and cytochrome ¢ are required for caspase-9 activation. It seems that Apaf 1 is
not only a transient activator of caspase-9; it is rather an essential regulatory subunit of
ca 5pdse-9 holoenzyme (24, 25). Therefore, Apaf 1/caspase-9 complex is nowadays
thought to represent the true active form of caspase 9 (26).

The death-receptor and mitochondrial pathways converge at the level of caspase-3
activation. The evidence for the cross-talk and integration of these two pathways is pro-
vided by Bid, a pro-apoptotic member of the Bcl-2 famil v. In some cell types, death re-
ceptor-associated caspase-8 activation is insufficient to activate downstream caspases. In
these cells caspase-8 can propagate the death snjna] by engaging the mitochondrial
pathway through proteolytic processing of the Bid. Truncated Bid translocates to mito-

chondria where it causes cytochrome ¢ releasc.

In addition, cvtotoxic T Iymphocytes (CTL) promote apoptosis by delivering a se-
rine protease granzyme BB, which has similar substrate specificity as caspases, into the
cell. Granzyme B can promote caspase activation directly or by engaging the mitochon-
drial pathway by Bid truncation. Activation of caspase-3, either by death-receptor or by
mitochondrial pathways, promotes a cascade of events resulting in cellular destruction,
as shown in Figure 1.

Caspases differ in their pro-domain structure and this difference is related to the
mode of their activation. Caspases with a long pro-domain contain in their pro-domain a
protein-protein interaction module, which allows them to bind to and associate with
their upstream regulators. Caspases-8 and -10 contain a death effector domain (DED)
and they arve activated by their interaction with the intracellular domains of death vecep-
tors. Caspases with caspase nctivati(‘m and recruitment domains (CARDs), which inclu-
de caspases-1, -2, -4, -5, -9, -11 and -12, are most probably activated by the Apaf 1/cas-
pase-9 complex. These two domams share little sequence identity, but they fold into a
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Fig. 1. Apoptotic signalling pathways.

very similar three-dimensional structure consisting of six anti-parallel alpha-helices (27).
The same folding pattern is also present in the death domain (DD) of the upstream regu-
lators of apoptosis, such as death receptors and the adapter molecule FADD (28). Caspa-
ses with a short prodomain, such as caspase-3, might be activated by most of the known
caspase pathways (29).

Neurons, and some other cells, have another way of self-destruction that, unlike the
two pathways described above, does not involve caspases. AlF is a flavoprotein normal-
ly located in the inner membrane space of mitochondria. Once it is released from mito-
chondria, it migrates into the nucleus and binds to DNA, leading to DNA destruction
and apoptosis (30).
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cl-2 family

Bel-2 family members are important regulators of the mitochondrial apoptotic path-
way. These members include both anti-apoptotic proteins (Bel-2, Bel-x, Mcl-1, Bel-w,
A-T) and pro-apoptotic proteins (Bax, Bak, Bid, Bad, Bik).

The family was n amcd after its founding member isolated as a gene involved in B-

-cell lymy >shoma (”3C) -2 family consists of three functional groups. Members of the
first group (Bd—_, Bel-x ] -w, ete.) arve characterised by four conserved Bel-2 homology
(BH) domains (BH1-BI ;{‘: )A "hey have a C-terminal hydrophobic tail, which localises the

pr otcms to the outer surface of the mitochondrial, ER and nuclear membrane, with the
bulk of the protein facing cytosol. They possess anti-apoptotic activity. The second group
consists of pro-apoptotic Bcl-2 Famrh members having hydrophobic tails and BH1-BH3
domains (Bax, Bak, Bok, Bcl-xg). The third group is represented by the Bcl-2 family
members (Bik, Blk, Bim, Bid, Bad, etc.) having pro-apoptotic activity and sharing se-
quence homology only in the BH3 domain (31-36). Several models have been proposed
for the involvement of the Bel-2 family members in apoptosis regulation. Bel-2 family
members exert their apoptosis-modulating effects at least by controlling the release of
cytochrome ¢ from the mitochondrial intermembrane space into cytosol (37, 38). It seems
that Bax-like death factors oligomerise and/or interact with voltage-dependent anion
channel/adenine nucleotide transporter (VDAC/ANT) to form a protein conducting
pore/channel that releases cytochrome ¢ (39-41). Bcl-2 proteins can also interfere with
the apoptotic process by heterodimerisation between anti-apoptotic and pro-apoptotic
family members (42).

Inhibitors of apoptosis family of proteins (IAP)

IADs have a protective role during the apoptotic process (43). The prototype of IAPs
was first discovered in baculovirus (H) wo motifs were identified in baculovirus IADs
the baculovirus IAD repeat (BIR) and the so-called RING domain. The BIR is a ~70 resi-
due zinc-binding domam which seems to be essential for the anti-apoptotic properties
of IAPs. In sevoml cases, this domain has been directly involved in the binding and inhi-
bition of caspases (45). The RING domain is also a Zn-binding motif present in bacu-
loviral TAPs and several mammalian TAPs. RING-containing proteins can catalyse both
their own degradation and select target proteins through ubiquitylation (46). It has been
shown that TAPs participate in the ubiquitylation of some apoptotic substrates (47-49).
All human TAPs, except NAIP, function as direct inhibitors of activated effector caspa-
ses, caspases-3 and -7 cIAP1 and ¢lAP2 may inhibit death receptor and mitochondrial
apoptotic pathways (50). The level of 1APs expression is regulated transcriptionally,
post-transcriptionally or by regulatory proteins. For example, survivin, a member of the
IAP family, is regulated in a cell cycle-dependent manner (51), while cIAP2 and XIAP
are regulated by the nuclear factor NF-xB (52). Post-transcriptional control includes ubi-
quity lation of IAPs, directing them cither to degradation by pmtc&mmox or modifying
their biological activity anc /01 subcellular l()mhsatmn (47, 53). TAP regulatory pmtcm
known as Smac/DIABLO (second mitochondria-derived activator of mspasos/ direct
IAP-binding protein with low pl} has been identified (54, 55). Smac/DIABLO is local-
ised in the mitochondrial inter-membrane space and can be released into cytosol in re-

156



K. Barisic et al.: Biochemistry of apoptotic cell death, Acta Pharn. 53 (2003 151-164.

sponse to apoptotic stimuli. This protein binds to XIAP and probably several other TADs,
thus neutralising their anti-apoptotic activity (56).

Heat shock proteins (Hsps)

Hsp/ and hsp27 protect cells from death-inducing stimuli. Hsp70 renders cells
highly resistant to death induced by tumor necrosis factor (ITNF), monocyte, oxidative
stress, ceramide, UV-radiation, caspase-3 overexpression and several hemotherapeutic
drugs (57-60).

It has been reported that hsp70 can rescue cells from apoptosis induced by TNF af-
ter activation of effector caspases, and that it can delay the death process mduc(‘d by
cytochrome c (61). Hsp70 binds to Bel-2-associated athanogene 1 (BAG-1), the anti-apop-
totic protein that inhibits its chaperon activity (62). Hsp70 could also antagonise apop-
tosis by inhibition of AIF (63).

Hsp27 possesses survival-enhancing activity and blocks apoptotic pathways indu-

ced by death receptors, monocytes, hydrogen peroxide and anticancer drugs (58, 64, 65).
Hsp27 protects cells from death caused by ROS indirectly by increasing the cellular glu-
tathione levels (64), and directly by ncutmhsmw the toxic effects of ())xldl%(_‘d proteins by

its chaperone-like activity {66).

In some scenarios, anti—ap<,>ptotic activity is related to the prevention of activation of
stress kinases. These kinases, namely c-Jun N-terminal kinase/stress-activated protein
kinase (JNK/SAPK) and p38 MAP <, bcl(mg to the superfamily of mitogen-activated
protein kinases (MAPKs). Stress kinases are activated in many stressful conditions
through a signalling pathway that involves the small GTP-binding proteins, MAP3Ks
and MAP2Ks, which in turn phosphorviate and activate JNK/SAPK and p38 MAPK
{67). It has been shown that elevated levels of hsp70 expression inhibit activation of INK
and p38 (68).

Pro-engulfment signal

Cells undergoing apoptosis can display a number of »eat me« signs. Some of them
are relatively well characterised, such as exposure of phosphatidylserine, which is nor-
mally restricted to the inner membrane leaflet, to the outer face (69), or changed surface
sugars, which can be detected by phagocyte lectins (70). Studies of the ingestion of apop-
totic cells in vitro by phagocytes have revealed a variety of candidate molecules involved
in phagocyte recognition of apoptotic cells and their clearance. They include integrins,
scavenger receptors, CD14, Clq receptor, Byp-GPI receptors on phagocyte cells and TSP-
-binding sites, oxidised LDL-like sites, ICAM-3 and Clg-binding sites on apoptotic cells.
Molecules localised on the p phagocyte cell surface can interact with their partner mole-
cules on the apoptotic cell surface directly or via serum-derived bridging molecules, such
as TSP, iC3b, and (3,-GPI (71-74).

Engulfment of apoptotic cells was previously considered only as a protective waste
disposal. However, recent data indicate that the removal of apoptotic cells by phagocy-
tes modulates inflammation, controls tissuc remodelling by phagocyte-directed cell kill-
ing, and regulates the immune response (75).
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APOPTOSIS AND DISEASES

Nervous system

Neurotrophins regulate neural survival through the action of protein kinase path-
ways, such as the phosphatidylinositol-3 kinase (PI-3K)/ Akt and MAPK pathways (706,
77). Trophic factor withdrawal in developing brain induces apoptosis through JNK acti-
vation and subsequent phosphorylation of transcriptional factor c-Jun, which in turn in-
duces expression of DP5/Hrk, a known activator of pro-apoptotic protein Bax (78).

Pathological apoptosis in adult brain and physiological apoptosis in developing
brain share a similar mechanism in the effector phase of the process, but the key differ-
ence lies in the mechanism of apoptosis induction. Toxic insults resulting from bioche-
mical or genetical accidents might trigger neurodegenerative diseases by co-opting apop-
totic signalling pathways, either through free-radical generation or caspase activation.
Amyloid-f protein, which is implicated in the pathogenesis of Alzheimer’s disease,
might induce apoptosis by interacting with neuronal receptors, p75 neurotrophin recep-
tor or amyloid precursor protein (79). Different mutations of presenilin, the other pro-
tein playing an important role in Alzheimer’s disease, increase neuronal vulnerability to
apoptosis (80).

Immune system

In the immune system, apoptosis regulates lvmphocyte maturation, rece
toire selection and homeostasis. At the initiation of the immune response, it is important
for the cells of the immune system to be resistant to apoptosis, which enables them to
exert their function. On the other hand, in order to prevent autoimmunity, it is impor-
tant to switch off the activated cells to down regulate the immune response. Two mem-
bers of the TNF receptor superfamily, CD40 and CD95, have adverse roles in this con-
text: CD40-CDA0L stimulate survival, and the CD95-CDYSL system induces cell death
(81).

ptor reper-

Cancer

Tumour cells express several proteing that render them resistant to apoptosis: anti-
-apoptotic members of the Bcl-2 family, AlPs, hsp70 and hsp27. Increased activity of
such protective proteins might result in aggressively growing and therapy-resistant tu-
mours (65, 82-84).

Apoptosis modulating therapy

Targets of apoptosis-modulating therapy are molecular components of the cell
death machinery, such as Bel-2, TNF-related apoptosis-inducing licand (TRAIL), survi-
vin, caspases, hsp70 and hsp27. Bel-2, survivin, hsp70 and hsp27 are targels for disrup-
tion of gene function with anti-sense oligonucleotides, caspases are targets for regula-
tion of their activity using specific inhibitors, and TNF-related apoptosis can be regu-
lated by recombinant TRAIL. Apoptosis-directed therapeutic agents are expected to se-
lectively influence the apoptotic process in disorders where insufficient apoptosis occurs
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(for example cancer) or in those diseases where excessive apoptosis occurs and needs to
be attenuated (e.g., in neurodegenerative diseases) (85).

CONCLUSION

[n this review, we have focused on some areas of research investigating the mecha-
nism, molecular components, 1‘egulators and disregulatm's of the apopt‘()tic process.
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SAZETAK

Biokemija apoptoti¢ne stani¢ne smrti

KARMELA BARISIC, JOZSEF PETRIK i LADXA RUMORA

Apoptoza je fizioloski proces programiranog stani¢nog samoubojstva. Taj je proces
vaZzan za razvoj i odrZavanje tkiva. Reguliranje programirane stani¢ne smrti omogudcava
organizmu da kontrolira broj stanica i veliinu tkiva, te da se zastiti od stanica koje ugro-
Zavaju homeostazu. Promijenjena aktivnost mnogih gena utjece na aktiviranje programa
samouniStenja u stanicama. Apoptoza zahtjeva koordinirano djelovanje i fino uskladi-
vanje mnogih proteina, koji su ili regulatori ili izvrsitelji procesa. Rak, autoimune i imu-
nodeficitne bolesti, reperfuzija te neurodegenerativne bolesti povezane su s poremede-
nom regulacijom apoptoze. Moduliranje ekspresije i aktivacije klju¢nih molekularnih
gimbenika apoptotickog procesa predstavija atraktivan terapeutski pristup u lijecenju
mnogih bolesti.

Kljuéne rijeci: apoptoza, kaspaze, Bel-2 proteinska obitelj, obitelj ¢imbenika koji induciraju apoptozu
(AIL), obitelj inhibitora apoptoze (IAP), proteinske kinaze aktivirane mitogenima (MADKs), protei-
ni toplinskog Soka (Hsps)
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ABBREVIATIONS

ATF — apoptosis-inducing factor

Apaf 1 - apoptotic protease-activating factor 1

BAG-1 — Bel-2-associated athanogene 1

BH ~ Bel-2 homology

BIR - baculovirus inhibitor of apoptosis repeat

CAD/DFF 40 ~ caspase-activated DNase/DNA fragmentation factor 40

CARD - caspase activation and recruitment domain

CTL - cytotoxic T lymphocyte

DD - death domain

DED ~ death effector domain

ER - endoplasmic reticulum

FADD - Fas-associated protein with death domain

FAK - focal adhesion kinase

Hsp - heat shock protein

IAP - inhibitor of apoptosis

ICAD/DFF 45 — inhibitor of CAD/DNA fragmentation factor 45

JNK/SAPK ~ ¢-Jun N-terminal kinase/stress-activated protein kinase

MAPK ~ mitogen-activated protein kinase

MAP2K ~ MAPK kinase

MAP3K -~ MAPK kinase kinase

MLCK - myosin light chain kinase

NF-xB - nuclear factor kappa B

PAK2 - p2l-activated kinase 2

PI-3K - phosphatidylinositol-3 kinase

ROS — reactive oxygen species

Smac/DIABLO - second mitochondria-derived activator of caspases/direct TA P-binding protein
with low pl

TNF ~ tumour necrosis factor

TRADD ~ TNF receptor associated protein with death domain

TRAIL ~ TNF-related apoptosis-inducing ligand

VDAC/ANT - voltage-dependent anion channel/adenine nucleotide transporter
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