Učestalost genotipova ABO sustava krvnih grupa u oboljelih od kolorektalnog karcinoma

Šonjić, Pavica

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Pharmacy and Biochemistry / Sveučilište u Zagrebu, Farmaceutsko-biokemijski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:178433

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-10-06

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb - Diplomski radovi Farmaceutsko-biokemijskog fakulteta
Pavica Šonjić

Učestalost genotipova ABO sustava krvnih grupa u oboljelih od kolorektalnog karcinoma

DIPLOMSKI RAD

Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2018.

Zahvaljujem se svim djelatnicima Odjela za molekularnu dijagnostiku Hrvatskog zavoda za transfuzijsku medicinu na pruženoj pomoći, a posebno mentoricama prof. dr. sc. Karmeli Barišić i dr. sc. Jasni Bingulac-Popović, znanstvenoj savjetnici na svim stručnim savjetima i pomoći u izradi diplomskog rada.
7.2. Summary ... 31
8. PRILOZI ... 32
 8.1. Kratice .. 32
9. TEMELJNA DOKUMENTACIJSKA KARTICA/ BASIC DOCUMENTATION CARD 33
1. UVOD

1.1. Eritrocitne krvne grupe

1.2. ABO sustav krvnih grupa

Početkom XX. stoljeća austrijski znanstvenik Karl Landsteiner dobio je Nobelovu nagradu za otkrivanje prvog sustava krvnih grupa, čime je objasnio pojavu aglutinacije seruma različitih pojedinaca. Riječ je o ABO sustavu krvnih grupa, određenom odgovarajućim antigenima i protutijelima (Labar i sur., 2007). Ljudi na antigene sustava ABO razvijaju tzv. prirodna protutijela tipa IgM, anti-A i anti-B protutijela (Hoffbrand i Moss, 2011). Landsteiner je definirao 3 krvne grupe, no u narednim godinama sustav je proširen i s AB fenotipom (Labar i sur., 2007; Cid i sur., 2012). Slijedio je otkriće nasljeđivanja ovih krvnih grupa te kodominantnost gena za A i B antigen. Nasljeđivanje ABO krvnih grupa jedna je od prvih dokazanih ljudskih nasljeđnih osobina (Dean, 2005; Cid i sur., 2012). ABO lokus nalazi se na duljem kraku kromosoma 9, na poziciji 9q34.1-q34.2 (Dean, 2005). Sastoji se od 7 eksona veličine oko 18kb (Slika 1.). Ekson 7 najveći je i sadrži najveći dio kodirajuće sekvence. A i B aleli se razlikuju u 7 nukleotida, no 4 od tih nukleotidnih supstitucija uzrokuju promjene u aminokiselinskom sastavu translacijskoga produkta. Razlike u aminokiselinama na pozicijama 266 i 268 konačnog proteina odgovorne su za razliku u njihovim funkcijama. O alel se pak razlikuje od A alela u deleciji gvanina na položaju 261. To
uzrokuje pomak ovjera čitanja i stvaranje proteina koji nema odgovarajuću enzimsku aktivnost (Dean, 2005).

Slika 1. Kromosom 9 s naznačenom lokacijom ABO lokusa (preuzeto s ghr.nlm.nih.gov)

Karakteristika ABO sustava krvnih grupa jest stvaranje prirodnih protutijela na one antigene sustava koji nisu izraženi na staničnim membranama eritrocita pojedinca. Ta se protutijela stvaraju od rane dobi, kada osoba preko hrane ili mikroorganizama dođe u doticaj s antigenima koji su slični ili isti ABO sustavu. Osim na staničnim membranama eritrocita, ABO antigeni su izraženi na različitim tkivima, većini epitelnih i endotelnih stanica. Leukociti i trombociti imaju iste ABO antigene, ali ih apsorbiraju iz plazme. Neke osobe su „sekretori“ pa su topljivi ABO antigeni prisutni u njihovoj slini i tjelesnim tekućinama (Dean, 2005). Specifična fukozil-transferaza, koja katalizira sintezu sekretornog H antigena, kodirana je
pomoću Se lokusa na kromosomu 19 (FUT2). Ona je izražena na epitelu sekretornih tkiva kao što su žlijezde slinovnice, gastrointestinalni i respiratorni trakt (Dean, 2005).

Opisane su brojne slabe podgrupe fenotipa A te nešto manji broj podgrupa fenotipa B, no to su fenomeni koji se javljaju rijetko. Dva glavna fenotipska podtipa krvene grupe A su A₁ i A₂ fenotip (Dean, 2005; Hoffbrand i Moss, 2011). A₁ alel je dominantan pred A₂ alelem, te kodira glikozil-transferaze s višim afinitetom i reaktivnošću za supstratom od A₂ glikozil-transferaze. Serum osoba sa B krvnom grupom sadrži dva tipa anti-A protutijela, prvi je anti-A, a drugi je anti-A₁. Prvi reagira s oba fenotipa A antigena, dok je drugi specifičan za A₁ tip (Cid i sur., 2012). ABO antiueni izazivaju snažan imunosni odgovor. Primanje nekompatibilnog uzorka krvnog pripravka dovodi do vezanja anti-A ili anti-B protutijela za membrane eritrocita. Aktivira se kaskada sustava komplementa, što uzrokuje lizu eritrocita i posljedično intravaskularnu hemolizu (Dean, 2005). Zastupljenost krvnih grupa sustava ABO u Hrvatskoj je A 42 %, B 17 %, O 34 % i AB 7 % (www.hztm.hr).

Slika 2. Struktura antigena ABO sustava krvnih grupa (preuzeto iz Hoffbrand i Moss, 2011.)

1.2.1. Nasljeđivanje sustava ABO krvnih grupa

naslijedivanjem te kombinacije alela nastaje AB fenotip. Kako je O alel recessivan, osoba treba naslijediti oba O alela, kako bi ispoljila O fenotip (Dean, 2005; Labar, 2007; Calaffel, 2008).

1.3. ABO krvne grupe i bolesti

Neka patološka stanja mogu izmijeniti fenotip krvne grupe, uzrokovati gubitak ABO antigena ili pak utjecati na promjenu u šećernoj strukturi molekule antigena (Dean, 2005.). Brojna su istraživanja povezanosti ABO fenotipova s predispozicijom za različite bolesti (kardiovaskularne bolesti, gastrointestinalne bolesti, infekcije i tumore). Sve su raširenije i GWAS studije (genome wide association studies) u pokušaju povezivanja polimorfizama ABO lokusa s različitim bolesnim stanjima (Cid i sur., 2012). Time se pokušava objasniti uloga ABO antigena u fiziološkim i patološkim uvjetima, ispitujući i mogući molekularni mehanizam u pozadini te povezanosti.

Jedna od prvih utvrđenih poveznica između ABO krvnih antigena i predispozicije za neku bolest bila je između osoba s krvnom grupom O te želučnim i duodenalnim ulkusom (Garratty, 2005). Ove su bolesti kasnije povezane s infekcijom bakterijom Helicobacter pylori, koja se veže za antigene ABO sustava. Različiti sojevi bakterije pokazuju različiti afinitet prema vezujućim šećerima. Većina ih se veže i za sva tri antigena, ali određeni sojevi pokazuje specifičnost prema O antigenu (Yamamoto i sur.,2012; de Mattos, 2017).

U istraživanju povezanosti ABO krvnih grupa i bolesti, ističu se i studije kojima je ukazano na viša incidencija arterijskih i venskih trombotičkih bolesti kod pojedinaca s A, B i AB krvnom grupom u odnosu na pojedince s O krvnom grupom (Cid i sur., 2012.; Garratty, 2005). ABO krvna grupa u velikoj mjeri određuje koncentracije koagulacijskih čimbenika FVIII i von Willebranda. Osobe s krvnom grupom O imaju u plazmi oko 25 % niže razine ovih glikoproteina od osoba nositelja krvne grupe A. ABO antigeni sadrže iste N-glikane kao i von Willebrandov čimbenik, što produljuje poluživot i povećava razine ovog proteina u krvi pojedinaca nositelja ne-O krvne grupe (Anstee, 2010). Ova povezanost ima bitno kliničko značenje, jer visoke razine ovih koagulacijskih proteina predstavljaju trombotički rizik za ishemijsku bolest srca i vensku tromboemboliju (Garratty, 2005; Yamamoto, 2012). Sve je veći broj studija koji krvne antige ne povezuje s bitnim proteinima imunosnog sustava kao što su adhezijske molekule (Garratty, 2005). Brojna istraživanja sugeriraju da eritrocitni ABO antigeni mogu djelovati kao receptori za parazite, bakterije i virusute (Garratty, 2005). Infektivni agensi često koriste stanične površinske gliko-konjugate kao receptore na koje će se vezati. Upravo glikozilacijski polimorfizmi ABO krvnih grupa mogu utjecati na interakciju između domaćinovog imunosnog sustava i patogena, što rezultira različitim vjerojatnostima
za infekciju, tj. primitivnije među osobama ovisno o krvnoj grupi kao što je vidljivo na primjeru infekcija bakterijama *H. pylori* i *Plasmodium falciparum* (Anstee, 2010; Yamamoto i sur., 2012).

1.4. ABO krvne grupe i tumori

Promjene koje uzrokuju tumorske stanice zahvaćaju i ABO antigene. Smanjene ekspresije A, B i H antigena zabilježene su kod osoba s hematološkim poremećajima, ali i kod solidnih tumora (Yamamoto i sur., 2012). U nekim se slučajevima praćenje izražaja antigena ABO sustava koristi kao prognostički biljeg uznepredovalost bolesti (Dean, 2005.; Cid i sur., 2012). ABO antigeni izraženi su i na tkivima, posebice epitelu gastrointestinalnog trakta. Pretpostavlja se da imaju funkciju adhezijskih i signalnih molekula među stanicama što može potpomagati širenje malignih procesa i njihovu progresiju.

Nova je studija iz 2016. na 1,6 milijuna dobrovoljnih davatelja krvi iz Danske i Švedske ispitala povezanost između ABO krvnih grupa s različitim karcinomima. Rezultati ovog velikog ispitivanja pokazali su postojanje povezanosti ne-O krvnih grupa s povećanim ili sniženim rizikom za 13 specifičnih sjella tumora na fenotipskoj razini. Potvrđena su prethodna istraživanja koja su krvnu grupu A povezala s većim rizikom za obolijevanje od karcinoma želuca i gušterače (Vasan SK i sur., 2016). Pozitivna povezanost ne-O krvnih grupa pronađena je za još 6 sjella: karcinome dojke, žlijezda slinovnica, usne šupljine, maternice i mokraćnog mjehura te kroničnu limfocitnu leukemiju. S druge pak strane za 5 sjella ovim istraživanjem nisu potvrđene prethodne spoznaje, te su rezultati pokazali sniženi rizik ne-O krvnih grupa za obolijevanje od karcinoma ždrijela, tankog crijeva i pleure, ezofagealnog adenokarcinoma i mijeloma.

Iste godine objavljen je i pregledni članak koji analizira dotada objavljena istraživanja povezanosti ABO krvnih grupa i ishoda bolesti kod pacijenata s različitim tipovima karcinoma (Franchini i sur., 2016). Članak ističe kako velik dio literature na ovu temu pokazuje povezanost između ABO krvnih grupa i ishoda bolesti kod pacijenata oboljelih od karcinoma. Tako se ne-O krvne grupe ističu kao nezavisni prediktori smrtnosti nakon operacije karcinoma bubrega. Nekoliko studija ukazuje na povezanost krvne grupe A s većim rizikom za razvoj karcinoma dojke te najtežim dijagnozama, dok neke druge studije ukazuju na grupe B i AB kao one sa smanjenom vjerojatnošću preživljavanja, odnosno da krvna grupa O ima nižu stopu progresivnih oblika karcinoma dojke i niži rizik smrtnosti.

Talijanska studija iz 2016. ispitala je rizik za obolijevanje od hepatocelularnog karcinoma s obzirom na ABO krvne grupe. Usporedbom oboljelih od navedenog karcinoma s dvije kontrolne skupine (pacijenti na listi za transplantaciju jetre s dekompenziranom cirozom jetre, ali bez hepatocelularnog karcinoma te zdravi dobrovoljni darivatelji krvi) dobiveni su rezultati koji su pokazali viši rizik za hepatocelularni karcinom kod nositelja ne-O krvnih grupa (Iavarone i sur., 2016). Također, među oboljelima zapažen je i manji udio onih s krvnom grupom O (35 %) u odnosu na kontrolne skupine (44 % i 45 %). Kao potencijalnu molekulsku poveznicu autorii ističu zapažene abnormalne ekspresije ABO antigena na jetrenom tkivu zahvaćenog hepatocelularnim karcinomom što može upućivati na promjene u enzimskoj aktivnosti glikozil-transferaza koje se odražavaju na karcinogenezu. Dodatno ističu i GWAS studiju kojom se povezuje mutacija u ABO lokusu s izmijenjenim plazmatskim koncentracijama TNF-α (tumorski nekrotizirajući faktor α), čimbenikom uključenim i u hepatokarcinogenezu.
Ove studije povezuju krvne grupe i rizik za pojavu karcinoma, ali ne rasvjetljavaju same mehanizme. Neke od ovih poveznica postaju temelj za sve češće GWAS studije kojima bi se mogle potvrditi povezanosti na genskoj razini. Na tragu toga, rezultati ovih studija mogli bi poslužiti kao polazišta za detaljnija ispitivanja mehanizama povezanosti ABO genotipova i karcinogeneze.

1.5. Kolorektalni karcinom

1.5.1. Učestalost kolorektalnog karcinoma u Hrvatskoj i svijetu

Nakon bolesti srca i krvoožilnog sustava, rak je drugi uzrok smrti u Hrvatskoj, predstavljajući bitan javnozdravstveni problem (Hrvatski zavod za javno zdravstvo, 2016). Prema podacima iz 2014. godine iz Registra za rak Republike Hrvatske od raka je umrlo 13939 osoba, od toga 7911 muškaraca i 6028 žena (omjer M:Ž je iznosio 57:43) (Hrvatski zavod za javno zdravstvo, 2016). Od toga, rak kolona treće je najčešće sijelo novih slučajeva raka kod muškaraca (10 %), a četvrto je rektum, rektosigma i anus (7 %). Također, i kod žena treće je najčešće sijelo kolon (8 %), dok u ukupnoj incidenciji raka, kolon, rektum, rektosigma i anus sudjeluju sa 17 % kod muškaraca i 12 % kod žena. Prema starosnoj dobi, kod muškaraca je rak kolona među najčešćim sijelima prisutan već od 40. godine starosti, a kod žena počinje biti zastupljen od 70. godine.

Prema podacima Međunarodne agencije za istraživanje raka (IARC) pri Svjetskoj zdravstvenoj organizaciji, 2012. među svjetskom populacijom, kolorektalni karcinom je bio treći najčešći kod raka kod muškaraca (746 000 slučaja), te drugi najčešći kod žena (614 000 slučaja). Gotovo 55 % slučajeva zabilježeno je u razvijenijim regijama svijeta (globocan.iarc.fr).

1.5.2. Dijagnostika i klasifikacija kolorektalnog karcinoma

Tumorske stanice karakteriziraju heterogene promjene u genomu zbog čega još uvijek nema pouzdanih prognostičkih i prediktivnih pokazatelja (Beketić-Orešković i Čović, 2011). Za većinu karcinoma ne zna se specifičan karcinogen, ali s vremenom izloženost određenim egzogenim mutagenima, poremećen imunosni sustav i neke nasljedne abnormalnosti sigurno pridonose razvoju karcinoma (Beketić-Orešković i Čović, 2011). U dijagnostici se primjenjuju kombinacije dijagnostičkih testova, a potvrda karcinoma jest patohistološki nalaz. Tako je za kolorektalni karcinom najraširenija metoda probira „test okultnog krvarenja“, no nalaz se dodatno potvrđuje kolonoskopijom (Vrdoljak DV i sur.,2011). Karcinoembrionalni
antigen (CEA) te karbohidratni antigen 19-9 (CA 19-9) tumorski su biljezi koji pokazuju povišene vrijednosti kod karcinoma gastrointestinalnog tkiva, pogotovo kolorektalnog karcinoma (Beketić-Orešković i Čović, 2011).

Više od 90 % karcinoma kolona su adenokarcinomi. Jedna od klasifikacija je TNM (T-primarni tumor, N-regionalni limfni čvorovi, M-udaljene metastaze) ili klasifikacija tumora na primarni tumor, metastaze u regionalnim limfnim čvorovima i udaljene metastaze. Preporuka je da se prema njoj određuju stadij bolesti i planira liječenje (Vrdoljak DV i sur., 2011). Koristi se i određivanje stupnja diferenciranosti stanica tumora, tzv. histološki gradus, čime se određuje agresivnost adenokarcinoma (www.cancer.ca). Stupanj diferenciranosti se najčešće ocjenjuje s niskim i visokim stupnjem. Niži stupanj označava manju progresiju tumora kod kojeg su stanice još uvijek visoko diferencirane. S druge pak strane, viši stupanj opisuje abnormalne, slabo diferencirane stanice. Često se koristi i brojčano ocjenjivanje diferenciranosti ocjenama od 1 do 3, gdje je niži broj znak nižeg stupnja.

1.5.3. Kolorektalni karcinom i ABO sustav krvnih grupa

Među studijama koje istražuju povezanost ABO krvnih grupa i rizika za obolijevanje od određenih karcinoma, malo je onih koje specifično ispituju povezanost ABO krvnih grupa i rizika za obolijevanje od kolorektalnog karcinoma. Tako američka studija iz 2011., napravljena pod vodstvom istog tima koji je ispitao povezanost ABO krvnih grupa s karcinomom gušterače, na iste dvije populacije nije pronašla statistički značajnu povezanost karcinoma i ABO grupa (Khalili i sur., 2011).

Turska studija iz 2012. također je ispitivala povezanost ABO krvnih grupa i rizika za obolijevanje od kolorektalnog karcinoma (Urun Y i sur., 2012). Skupina oboljelih uspoređena je s kontrolnom skupinom dobrovoljnih davatelja krvi. Za razliku od američke studije, zabilježena je povezanost nositelja ne-O krvnih grupa u odnosu na O krvnu grupu s rizikom za razvoj kolorektalnog karcinoma (OR=1,12; 95 % CI=1,00-1,24; p=0,033). Zabilježena je granična povezanost nositelja ne-A krvnih grupa u odnosu na A krvnu grupu s rizikom za razvoj kolorektalnog karcinoma (OR=1,10; 95 % CI=1,00-1,21; p=0,052).
2. OBRAZLOŽENJE TEME

Drugi najčešći uzrok smrti u hrvatskoj populaciji su karcinomi, od čega je i među ženama i među muškarcima treće najčešće sijelo kolon (Hrvatski zavod za javno zdravstvo, 2016). Ista situacija vidljiva i na svjetskoj razini gdje je kolorektalni karcinom drugi najčešći karcinom među ženama, a treći među muškarcima (globocan.iarc.fr). Upravo zbog povećane incidencije i smrtnosti ovaj oblik karcinoma predstavlja javnozdravstveni problem. Potrebno je detaljnije proučiti potencijalne rizične čimbenike, kao i istražiti pouzdane prognostičke i dijagnostičke pokazatelje kako bi se smanjio broj oboljelih i stopa smrtnosti uzrokovanih ovim karcinomom.

Proteklih nekoliko desetljeća učestale su studije koje ispituju povezanost ABO sustava krvnih grupa s rizikom za određene bolesti, između ostalih i za maligne bolesti. Studije na velikom broju populacija pokazale su povezanost dvaju gastrointestinalnih karcinoma s ABO krvnim grupama. Za maligne bolesti želuca i gušterače pokazana je veća incidencija ovih karcinoma kod osoba ne-OO krvnih grupa, uglavnom krvene grupe A (Garratty, 2005; Wolpin BM i sur., 2009; Edgren G. i sur., 2010; Greer i sur., 2010; Cid i sur., 2012; Yamamoto i sur., 2012; Vasan SK i sur., 2016; de Mattos, 2017). Osim na eritrocitima, antigeni ABO sustava izraženi su i na tkivima, posebice na epitelu gastrointestinalnog trakta. Pretpostavlja se da imaju funkciju adhezijskih i signalnih molekula. Pokazano je da u određenim karcinomima dolazi do smanjenja njihove ekspresije što može utjecati na procese karcinogeneze.

U znanstvenoj literaturi ne postoji mnogo studija ispitivanja povezanosti ABO sustava krvnih grupa s rizikom za obolijevanje od kolorektalnog karcinoma, a posebno ne na razini ABO genotipa. Stoga je cilj ovog rada bio ispitati postojanje korelacije na uzorku od 80 oboljelih iz hrvatske populacije. Metodom alel-specifične polimerazne lančane reakcije (PCR-SSP) provedena je ABO genotipizacija navedene skupine oboljelih, a primjenom odgovarajućih statističkih testova ispitan je postojanje statističke značajnosti za obolijevanje od kolorektalnog karcinoma između skupine oboljelih i kontrolne skupine od 303 dobrovoljna davatelja krvi kao predstavnika ispitanika zdrave populacije bez tumorskih bolesti.
3. MATERIJALI I METODE

3.1. Materijali

3.1.1. Ispitanici

Kontrolnu skupinu činilo je 303 dobrovoljna davatelja krvi pri Hrvatskom zavodu za transfuzijsku medicinu, čije je korištenje u svrhu istraživanja odobrilo Etičko povjerenstvo Hrvatskog zavoda za transfuzijsku medicinu (HZTM).

3.1.2. Uređaji i kemikalije

DNA uzorci pacijenata oboljelih od kolorektalnog karcinoma podvrgnuti su laboratorijskom ispitivanju u Odjelu za molekularnu dijagnostiku HZTM korištenjem postojećih uređaja i kemikalija Odjela.

Od pomoćnih materijala i uređaja za provođenje PCR-SSP reakcije, elektroforeze i slikanje gela korišteni su:

1) epruvete od 1,5 mL i 0,2 mL (Eppendorf, Njemačka)
2) pipete od 10, 100 i 1000 μL i pripadajući nastavci s filtrom (Eppendorf, Njemačka)
3) epruvete za PCR u stripu od 8 jažica (Applied Biosystems, SAD)
4) sterilni kabinet s laminarnim protokom zraka (Hereaus, Njemačka i Iskra pio LFVP 9, Slovenija)
5) PCR uređaji ABI 2700 i ABI 2720 (Applied Biosystems, SAD)
6) sustav Elchrom Scientific za elektroforezu (Elchrom, Švicarska)
7) UV transiluminator valne duljine od 254nm do 312nm (PSX-20-MC)
8) DC 120 Zoom Digital Camera- kamera za slikanje gelova (KODAK, SAD)
Od otopina i kemikalija za provođenje PCR-SSP reakcije, elektroforeze i slikanje gela korišteni su:

1) Taq DNA polimeraza (aktivnosti 5 U/μL)
2) deokspiribonukleozid-trifosfati (dNTP: dATP, dCTP, dGTP i dTTP) (10 mM smjesa, Applied Biosystems, SAD)
3) 10x pufer za amplifikaciju uz 15mM MgCl₂
4) bidestilirana voda (HZTM, Hrvatska)
5) smjesa višekratnika parova baza 100 bp (1,0μg/μL) (Thermofisher Scientific, SAD)
6) komercijalni gel za elektroforezu od 1 % Clearose sa 100 jažica- PCR CheckIT Wide Mini 4x25 with Ethidium Bromide gel (Elchrom, Švicarska)
7) pufer za nanošenje uzoraka na gel (Elchrom, Švicarska)
8) radni pufer za elektroforezu 1xTAE (50 mL 40xTAE: tris + Na₂EDTAXH₂O razijedeno s 2000 mL H₂O) i 80 μL otopine etidij bromida

3.2. Metode

3.2.1. Izolacija genomske DNA

Korišteni uzorci DNA izolirani su u Laboratoriju za personaliziranu medicinu u Zavodu za molekularnu medicinu Instituta „Ruđer Bošković“. DNA je izolirana iz uzorka pune krvi izvađene uz antikoagulans etilendiaminotetraoctenu kiselinu (EDTA) predoperativno pacijentima KB Merkur oboljelima od kolorektalnog karcinoma. Korištena je „in house“ metoda izolacije DNA iz leukocita kombinacijom fenola i kloroforma. Nakon izolacije, talog DNA je kratko posušen pri 37°C, otopljen u TE puferu (10mM Tris HCl, 1mM EDTA, pH 8.0) te pohranjen na +4°C.

3.2.2. ABO genotipizacija pomoću „in-house“ PCR-SSP metode

ABO genotipizacija provedena je prema detaljno opisanom postupku u Radnoj uputi „ABO genotipizacija“, oznake RU–OMD–009, koja se primjenjuje u Odjelu za molekularnu dijagnostiku HZTM (Dogić, 2017). Riječ je o „in-house“ metodi koja se sastoji od nekoliko dijelova: alel-specifične polimerazne lančane reakcije (PCR-SSP) od 8 reakcija za umnožavanje ABO alela, provjere dobivenih PCR-SSP produkata elektroforezom na agaroznom gelu te interpretacije rezultata. Osnovni elementi potrebni za provođenje PCR-SSP reakcije su:

1) genomska DNA kao kalup,
2) 8 parova specifičnih početnica za PCR-SSP,
3) pozitivna interna kontrola (ulomak gena humanog hormona rasta ili HGH),
4) Taq DNA polimeraza (koncentracije 5 U/μL),
5) deoksiribonukleozid-trifosfati (dNTP: dATP, dCTP, dGTP i dTTP) (10 mM smjesa),
6) 10x pufer za amplifikaciju uz 15mM MgCl₂,
7) bidestilirana voda,
8) smjesa višekratnika parova baza 100 bp.

Korišteni su sljedećih 8 parova specifičnih početnica za PCR SSP i ulomaka gena humanog hormona rasta:

O1-a 5’-TTA AGT GGA AGG ATG TCC TCG TCG TA -3’
O1-b 5’-TAA GTG GAA GGA TGT CCT CGT CGT G -3’
O1-r 5’-ATA TAT ATG GCA AAC ACA GTT AAC CCA ATG -3’
O2-a 5’-TCG ACC CCC CGA AGA AGC T -3’
O2-b 5’-CGA CCC CCC GAA GAA GCC -3’
O2-r 5’-AGT GGA CTG GGA CAT GGA GTT CC -3’
B-a 5’-ATC GAC CCC CCG AAG AGC G -3’
B-b 5’-CCG ACC CCC CGA AGA GCC -3’
B-r 5’-AGT GGA CTG GGA CAT GGA GTT CC -3’
A2-7 5’-CAG GCG GTC CGG AAC ACG -3’
A2-b 5’-CAG GCG GTC CGG AAC ACG -3’
A2-r/2 5’-GTG TGT GTG ATT TGA GGT GG GAC -3’
HGH a 5’-TGC CTT CCC AAC CAT TCC CTT A -3’
HGH b 5’-CCA CTC ACG GAT TTC TGT GTT TC -3’

Pripremne radnje za izvođenje PCR reakcije uključivale su pripremu pojedinačnih mješavina početnica i PCR mješavine, u sterilnom kabinetu s laminarnim protokom zraka. Priređeno je 8 mješavina početnica, svaka sa specifičnim parom početnica i pozitivnom internom kontrolom (HGH) u omjeru 1:9. Smjesa je pripremljena tako da se u 8 epruveta od 1,5 mL otpipetiralo po 100 μL 20 μM specifične početnice 5’ i specifične početnice 3’, po 10 μL 20 μM HGH -a i HGH -b te 780 μL bidestilirane vode, tako da je ukupni volumen smjese u svakoj epruveti bio 1 mL.

Protokol za pripremu PCR mješavine po jednom uzorku uključivao je pripremu smjese ukupnog volumena od 100 μL. U epruvetu od 0,2 mL otpipetirano je 20 μL 10xPCR pufera s 15 mM MgCl₂, 8 μL 10 mM dNTP, 2 μL Taq DNA polimeraze, 60 μL bidestilirane vode te 10 μL genomske DNA.
Potom je u pojedinačne jažice niza od 8 jažica stripa za PCR dodano po 10 μL odgovarajuće mješavine početnica te u svaku od 8 jažica po 10 μL PCR mješavine. Postupak je ponavljan 80 puta, za onoliko stripova koliko je bilo uzoraka genomske DNA. PCR stripovi s reakcijskim smjesama zatvoreni su i postavljeni u PCR uređaj za umnožavanje pod određenim temperaturnim uvjetima za denaturaciju, sljepljivanja početnica i prodlještenja lanca. Početna denaturacija genomske DNA izvedena je pri 96°C tijekom 2 min. Zatim je slijedio po 5 ciklusa: denaturacije pri 96°C tijekom 25 s, sljepljivanja početnica pri 70°C tijekom 50 s, elongacije pri 72°C tijekom 45 s; po 25 ciklusa denaturacije pri 96°C tijekom 25 s, sljepljivanja početnica pri 65°C tijekom 50 s, elongacije pri 72°C tijekom 45 s te po 10 ciklusa denaturacije pri 96°C tijekom 25 s, sljepljivanja početnica pri 61°C tijekom 50 s i elongacije pri 72°C tijekom 45 s. Nakon završenog umnožavanja slijedi održavanje temperature na 4°C.

Dobiveni PCR produkti provjereni su pomoću elektroforeze na komercijalnom 1 % Clearose gelu s etidij-bromidom kao interkalirajućim sredstvom prema radnoj uputi „Elektroforeza“ (RU-OMD-011) (Vukičević, 2017). U kadu za elektroforezu stavljeno je 2000 mL 1xTAE pufera i 80 μL topline etidij-bromida (koncentracija 0,4 μg/mL). U jažice komercijalnog Clearose gela nanošeno je 10 μL uzorka (8 μL PCR produkta i 2 μL pufera za nanošenje uzorka) i u svakoj četvrtini gela po jedan uzorak smjese višekratnika parova baza. Na gelu je bilo moguće provjeriti 12 umoženih PCR produkata. Elektroforeza je izvođena uz istosmjernu električnu struju napona 151 V i snage 998 mA, u trajanju od 15 minuta. Po završetku gel je postavljen na UV transiluminator kako bi se vizualizirali razdvojeni PCR produkti i fotografirali kamerom (Vukičević, 2015). Rezultati su očitani pomoću tablice koja omogućava razdiobu 15 mogućih genotipova za 4 ABO krvne grupe. Duljina PCR produkata prikazana je u Tablici 1. U svakoj od jažica koje nemaju umnoženu specifičnu vrpku DNA, trebao je biti umnožen ulomak gena HGH duljine 434 bp, kao pozitivna kontrola PCR reakcije.
Tablica 1. Tablica za očitavanje ABO genotipa

| broj SSP reakcije | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ABO |
|------------------|---|--|--|--|--|--|--|--|--|-----------|
| PCR produkt (pb) | 134| 133| 194| 193| 195| 194| 172| 173| |

rezultati genotip fenotip

- pozicija 1-poz. (O1)
 + - - + - + - + O1O1 O
 + + + + - + + O1O2 O
 + + - + + + + + O1B B
 + + - + - + - + O1A1 A
 + + - + - + + + O1A2 A

- pozicija 3-poz. (O2)
 - + + - - + - + O2O2 O
 - + + - + + - + O2B B
 - + + + - + + O2A1 A
 - + + + - + + + O2A2 A

- pozicija 5-poz. (B)
 - + + + - - - + BB B
 - + - + + + + O1A1 A
 - + - + + + + + O1A2 A

pozicije 2/4/6 poz. (non O1/O2/B)

3.2.3. Statistička obrada podataka

Statistička analiza rezultata ABO genotipizacije skupine oboljelih i kontrolne skupine provedena je uz pomoć statističkog programa MedCalc 12.5.0.0. Metodama deskriptivne statistike prikazana je dob sudionika, tako što su izračunate mjere centralne tendencije (aritmetička sredina, medijan te kvartili) i mjere rasipanja (standardna devijacija, interkvartilni raspon te najveće i najmanje vrijednosti raspona) (Miler, 2008).

Podaci su grupirani u kategorije ABO genotipova i fenotipova te su prikazani apsolutnom i relativnom učestalošću. Provedeni su testovi za usporedbu nebrojčanih ili kategoričkih podataka (omjer izgleda-OR uz 95% CI, Fisherov egzaktni test, Hi-kvadrat test i test razlike proporcija) (Nikolac, 2008.; www.medcalc.org).

Kako bi se ispitala vjerojatnost da osoba određenog ABO genotipa ima veći rizik za obolijevanje od kolorektalnog karcinoma, provedeno je ispitivanje omjera izgleda (eng. *odds ratio* ili OR) (Šimundić, 2008). OR govori o omjeru izgleda događaja u izloženoj skupini (skupina oboljelih) u odnosu na omjer izgleda događaja u neizloženoj skupini (kontrolna skupina) (Nikolac, 2008; McHugh, 2009). Ispitivanje je provedeno usporedbom predstavnika OO genotipova s pojedinačnim ne-OO genotipovima skupine oboljelih i kontrolne skupine. Zadana razina značajnosti testa (p-vrijednost) bila je 0,05, a ispitivanje razine značajnosti razlike između dviju skupina provedeno je primjenom Fisherovog egzaktnog testa. Na odabir Fisherovog egzaktnog testa utjecale su vrijednosti očekivanih frekvencija koje nisu
zadovoljile uvjete za provedbu Hi-kvadrat testa (više od 20 % polja s očekivanim frekvencijama <5, postojanje polja s očekivanim frekvencijama ≤1) (Nikolac, 2008). Hi-kvadrat test (χ^2 test) primijenjen je za određivanje razine značajnosti testa kod ispitivanja postojanja razlike između spolova i više skupina ispitanika (kategorizacije tumora na temelju histološkoga stupnja), izračunata p-vrijednost upućuje samo na postojanje ili odsutnost ukupne razlike između skupina, no ne i koja podskupina najviše pridonosi razlici (Nikolac, 2008). U ovom slučaju je bilo moguće primijeniti Hi-kvadrat test, jer su očekivane frekvencije zadovoljile uvjete testa.

Konačno je proveden i test razlike proporcija, koji koristi iste kriterije kao i χ^2 test (Nikolac, 2008). Njime su ispitane razine značajnosti razlika između pojedinačnih ABO alela između skupine oboljelih i kontrolne skupine.
4. REZULTATI I RASPRAVA

4.1. REZULTATI

4.1.1. Usporedba skupine bolesnika i kontrolne skupine

Određivanje ABO genotipova krvnih grupa provedeno je za 80 pacijenata oboljelih od kolorektalnog karcinoma. Analizom skupine oboljelih prema dobi utvrđeno je da je varijabla normalno distribuirana te je medijan 66 godina, s rasponom od 35 do 85 godina i standardnom devijacijom 9,95 (Tablica 2.).

Tablica 2. Statistička analiza oboljelih od kolorektalnog karcinoma prema dobi

<table>
<thead>
<tr>
<th>Varijabla</th>
<th>Starosna dob oboljelih od kolorektalnog karcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>80</td>
</tr>
<tr>
<td>Srednja vrijednost</td>
<td>65,325</td>
</tr>
<tr>
<td>95 % CI</td>
<td>63,11-67,53</td>
</tr>
<tr>
<td>SD</td>
<td>9,9502</td>
</tr>
<tr>
<td>Medijan</td>
<td>66,0</td>
</tr>
<tr>
<td>95 % CI</td>
<td>64-69</td>
</tr>
<tr>
<td>Minimum</td>
<td>35,0</td>
</tr>
<tr>
<td>Maksimum</td>
<td>85,0</td>
</tr>
</tbody>
</table>

Kontrolnu skupinu čine 303 zdrava dobrovoljna davatelja krvi. Analizom ove skupine prema dobi utvrđeno je da varijabla ne slijedi normalnu razdiobu, stoga su izračunati medijan koji iznosi 39 godina, te interkvartilni raspon od 20 godina (Tablica 3.) (Miler, 2008). Na temelju ovoga je vidljivo kako su u kontrolnoj skupini zastupljeniji mladi pripadnici populacije u odnosu na skupinu oboljelih (75 % pripadnika kontrolne skupine ima ≤50 godina).

Tablica 3. Statistička analiza kontrolne skupine prema dobi

<table>
<thead>
<tr>
<th>Varijabla</th>
<th>Starosna dob kontrolne skupine</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>303</td>
</tr>
<tr>
<td>Srednja vrijednost</td>
<td>40</td>
</tr>
<tr>
<td>95 % CI</td>
<td>39,11 - 41,84</td>
</tr>
<tr>
<td>Medijan</td>
<td>39,0</td>
</tr>
<tr>
<td>95% CI</td>
<td>37,95 - 41</td>
</tr>
<tr>
<td>1. kvartil (Q1)</td>
<td>30,0</td>
</tr>
<tr>
<td>3. kvartil (Q3)</td>
<td>50,0</td>
</tr>
<tr>
<td>Interkvartilni raspon</td>
<td>20</td>
</tr>
<tr>
<td>Minimum</td>
<td>16,0</td>
</tr>
<tr>
<td>Maksimum</td>
<td>76,0</td>
</tr>
</tbody>
</table>
U skupini oboljelih od kolorektalnog karcinoma 36,25 % je žena, a 63,75 % je muškaraca. U kontrolnoj skupini je 40,6 % žena i 59,4 % muškaraca (Tablica 4.). Iz navedenih podataka vidljiv je veći udio muškaraca u obje skupine.

Tablica 4. Usporedba skupina prema spolu

<table>
<thead>
<tr>
<th>Spol i medijan</th>
<th>oboljni od kolorektalnog karcinoma (N=80)</th>
<th>kontrolna skupina (N=303)</th>
</tr>
</thead>
<tbody>
<tr>
<td>žene (%)</td>
<td>29 (36,25)</td>
<td>123 (40,6)</td>
</tr>
<tr>
<td>muškarci (%)</td>
<td>51 (63,75)</td>
<td>180 (59,4)</td>
</tr>
<tr>
<td>medijan (raspon godina)</td>
<td>66 (35-85)</td>
<td>39 (16-76)</td>
</tr>
</tbody>
</table>

U skupini oboljelih od kolorektalnog karcinoma najviše je ispitanika s krvnom grupom A (39 ispitanika ili 48,7 %), uz najčešći genotip O\(^A\)\(^1\) (25 ispitanika ili 31,2 %). Druga po zastupljenosti krvna grupa među oboljelima je O fenotip s 23 ispitanika (28,7 %), zatim slijede B krvna grupa s 14 oboljelih (16,3 %) i AB krvna grupa s 5 oboljelih (6,3 %). Među ispitanicima kontrolne skupine nešto je više osoba s krvnom grupom O (122 ispitanika ili 40,2 %), uz najčešći genotip O\(^1\)O\(^1\) (113 ispitanika ili 37,3 %). Druga po zastupljenosti krvna grupa među ispitanicima kontrolne skupine je A fenotip sa 115 ispitanika (38 %), uz najčešći genotip O\(^A\)\(^1\) (82 ispitanika ili 27,0 %). Slijede krvna grupa B s 50 ispitanika (16,5 %) i AB krvna grupa sa 16 ispitanika (5,3 %).

U skupini oboljelih nisu pronađeni O\(^2\)O\(^2\) i O\(^2\)A\(^2\) genotipovi, dok u kontrolnoj skupini jedna osoba ima O\(^2\)O\(^2\) genotip. U kontrolnoj skupini također nije pronađen genotip O\(^2\)A\(^2\), no nema ni genotipova A\(^2\)A\(^2\) i O\(^2\)B, koje imaju po jedna osoba u skupini oboljelih (Tablica 5.).
<table>
<thead>
<tr>
<th>ABO</th>
<th>genotip</th>
<th>oboljeli od kolorektalnog karcinoma</th>
<th>kontrolna skupina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>krvne grupe ABO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>O'O'</td>
<td>21</td>
<td>26,2</td>
</tr>
<tr>
<td></td>
<td>O'O'</td>
<td>2</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>O'O'</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>O'A'</td>
<td>25</td>
<td>31,2</td>
</tr>
<tr>
<td></td>
<td>O'A'</td>
<td>5</td>
<td>6,3</td>
</tr>
<tr>
<td></td>
<td>O'A'</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A'A'</td>
<td>3</td>
<td>3,7</td>
</tr>
<tr>
<td></td>
<td>A'A'</td>
<td>3</td>
<td>3,7</td>
</tr>
<tr>
<td></td>
<td>A'A'</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>O'B</td>
<td>11</td>
<td>13,7</td>
</tr>
<tr>
<td></td>
<td>O'B</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>AB</td>
<td>A'B</td>
<td>4</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>A'B</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>ukupno</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

4.1.2. Omjer izgleda

4.1.2.1. Omjer izgleda za ABO genotipove

Ne-OO ABO genotipovi su uspoređeni s OO genotipovima ispitivanjem omjera izgleda (eng. odds ratio ili OR), uz razinu značajnosti testa od p=0,05. Izračunati OR prikazani su uz pripadajući 95 %-tni interval pouzdanosti (95 % CI) te p-vrijednosti izračunate uz pomoć Fisherovog egzaktnog testa (Tablica 6.). Među dobivenim podacima nisu pronađene statistički značajne razlike u distribuciji kolorektalnog karcinoma između pojedinačnih ne-OO genotipova s OO genotipovima.
<table>
<thead>
<tr>
<th>ABO genotipovi</th>
<th>Broj oboljelih od kolorektalnog karcinoma</th>
<th>Broj zdravih osoba</th>
<th>ukupno</th>
<th>OR za kolorektalni karcinom u odnosu na OO skupinu</th>
<th>95 % CI</th>
<th>p (Fisherov egzaktni test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne-OO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1A1</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>1.32</td>
<td>0.34-5.07</td>
<td>0.713</td>
</tr>
<tr>
<td>A1A2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>3.18</td>
<td>0.71-4.25</td>
<td>0.135</td>
</tr>
<tr>
<td>O1A1</td>
<td>25</td>
<td>82</td>
<td>107</td>
<td>1.61</td>
<td>0.85-3.04</td>
<td>0.146</td>
</tr>
<tr>
<td>O1A2</td>
<td>5</td>
<td>11</td>
<td>16</td>
<td>2.41</td>
<td>0.76-7.59</td>
<td>0.588</td>
</tr>
<tr>
<td>O2A2</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>2.12</td>
<td>0.38-1.60</td>
<td>0.323</td>
</tr>
<tr>
<td>O2A1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.21</td>
<td>0.10-9.31</td>
<td>/</td>
</tr>
<tr>
<td>A2A2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.32</td>
<td>0.61-5.71</td>
<td>0.164</td>
</tr>
<tr>
<td>O1B</td>
<td>11</td>
<td>48</td>
<td>59</td>
<td>3.18</td>
<td>0.55-2.68</td>
<td>0.679</td>
</tr>
<tr>
<td>O2B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>15.63</td>
<td>0.61-5.71</td>
<td>0.164</td>
</tr>
<tr>
<td>BB</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1.21</td>
<td>0.23-0.47</td>
<td>0.414</td>
</tr>
<tr>
<td>A1B</td>
<td>4</td>
<td>13</td>
<td>17</td>
<td>15.63</td>
<td>0.48-5.45</td>
<td>0.489</td>
</tr>
<tr>
<td>A2B</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2.65</td>
<td>0.17-7.75</td>
<td>0.508</td>
</tr>
<tr>
<td>OO</td>
<td>O1O1/O1O2/O2O2</td>
<td>23</td>
<td>122</td>
<td>145</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.2.2. Omjer izgleda za ABO fenotipove

Omjer izgleda izračunat je i na razini ABO fenotipova, uspoređivanjem vjerojatnosti učestalosti kolorektalnog karcinoma između ne-O fenotipova s O fenotipovima. Izračunati OR prikazani su uz pripadajući 95 %-tni interval pouzdanosti (95 % CI) te p-vrijednosti izračunate uz pomoć Fisherovog egzaktnog testa (Tablica 7.). Prema dobivenim podacima uočena je statistička značajna razlika u distribuciji kolorektalnog karcinoma između krvne grupe fenotipa A u odnosu na krvnu grupu O fenotipa. OR za krvne grupe A fenotipa iznosi 1.79 uz p-vrijednost prema Fisheru u iznosu od 0,046, što je unutar razine značajnosti testa (p=0,05).
Tablica 7. Usporedba ne-O fenotipova s O fenotipom

<table>
<thead>
<tr>
<th>ABO fenotipovi</th>
<th>Broj oboljelih od kolorektalnog karcinoma</th>
<th>Broj zdravih osoba (kontrola) ukupno</th>
<th>OR za kolorektalni karcinom u odnosu na OO skupinu</th>
<th>95% CI</th>
<th>p (Fisherov egzaktni test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>39</td>
<td>115</td>
<td>154</td>
<td>1,79*</td>
<td>1,01-3,19</td>
</tr>
<tr>
<td>B</td>
<td>13</td>
<td>50</td>
<td>63</td>
<td>1,37</td>
<td>0,64-2,93</td>
</tr>
<tr>
<td>AB</td>
<td>5</td>
<td>16</td>
<td>21</td>
<td>1,65</td>
<td>0,55-4,97</td>
</tr>
<tr>
<td>O</td>
<td>23</td>
<td>122</td>
<td>145</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* statistički značajno

4.1.3. Usporedba skupine oboljelih od kolorektalnog karcinoma i kontrolne skupine prema spolu

Usporedbom vjerojatnosti pojave kolorektalnog karcinoma među spolovima nije pronađena statistički značajna razlika. Izračunati omjer izgleda iznosi 0,81 uz p-vrijednost izračunatu χ^2 testom od 0,490 koja je iznad zadane razine značajnosti testa (p=0,05) (Tablica 8.).

Tablica 8. Usporedba skupine oboljelih od kolorektalnog karcinoma i kontrolne skupine prema spolu

<table>
<thead>
<tr>
<th>Spol</th>
<th>Broj oboljelih od kolorektalnog karcinoma (%) N=80</th>
<th>Broj zdravih osoba (kontrola) (%) N=303</th>
<th>Ukupno</th>
<th>OR (95% CI)</th>
<th>P (χ^2 test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Žene</td>
<td>29 (19,1)</td>
<td>123 (80,9)</td>
<td>152</td>
<td>0,81</td>
<td>P=0,490 χ^2=0,498</td>
</tr>
<tr>
<td>Muškarci</td>
<td>51(22,08)</td>
<td>180 (77,92)</td>
<td>231</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.4. Usporedba značajnosti u razlici zastupljenosti gradusa karcinoma u genotipu O1A1 u odnosu na ne-O1A1 genotipove

Najzastupljeniji ABO genotip krvnih grupa među oboljelima od kolorektalnog karcinoma je O1A1 (25 ispitanika ili 31,2 %). Iz tog razloga uspoređene su razlike u zastupljenosti gradusa tumora između oboljelih s najčešćim genotipom O1A1 i ostalih oboljelih s drugim genotipovima. Primijenjen je χ^2 test, no nije pronađena statistički značajna razlika između pojavnosti gradusa tumora prema genotipovima među oboljelima od kolorektalnog karcinoma. Dobivena p-vrijednost iznosi 0,943 što je iznad zadane razine značajnosti testa (p=0,05) (Tablica 9.).
Tablica 9. Usporedba značajnosti u razlici zastupljenosti gradusa tumora u genotipu O1A1 u odnosu na ne-O1A1 genotipove

<table>
<thead>
<tr>
<th>Gradus tumora</th>
<th>Genotip</th>
<th>Ukupno</th>
<th>(P (\chi^2 \text{ test}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ne-O1A1</td>
<td>O1A1</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>17</td>
<td>7</td>
<td>24 (30 %)</td>
</tr>
<tr>
<td>II</td>
<td>33</td>
<td>16</td>
<td>49 (61,25 %)</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>2</td>
<td>7 (8,75 %)</td>
</tr>
<tr>
<td>Ukupno (%)</td>
<td>55 (68,75 %)</td>
<td>25 (31,25 %)</td>
<td>80</td>
</tr>
</tbody>
</table>

\(\chi^2 = 0,117 \)

4.1.5. Usporedba zastupljenosti pojedinih ABO alela kod oboljelih i u kontrolnoj skupini

Ispitivanjem razine značajnosti razlike udjela (ili zastupljenosti) pojedinih ABO alela pronađena je statistički značajna razlika između skupine oboljelih i kontrolne skupine za alel O1. Primjenom testa razlike proporcije dobivena je p-vrijednost od 0,04 što je unutar zadane razine značajnosti testa (p=0,05). U slučaju alela A2 izračunata p-vrijednost iznosi 0,06, što je neznatno iznad zadane razine značajnosti testa, tako da se može govoriti o statistički značajnoj razlici među skupinama. (Tablica 10.)

Tablica 10. Usporedba zastupljenosti pojedinih ABO alela u oboljelih i u kontrolnoj skupini

<table>
<thead>
<tr>
<th>ABO aleli</th>
<th>Broj oboljelih od kolorektalnog karcinoma N=160 (%)</th>
<th>Broj zdravih osoba (kontrola) N=606 (%)</th>
<th>(P) (test razlike proporcije)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>85 (53,1)</td>
<td>375 (62)</td>
<td>0,04*</td>
</tr>
<tr>
<td>O2</td>
<td>5 (3,1)</td>
<td>15 (2,5)</td>
<td>0,67</td>
</tr>
<tr>
<td>A1</td>
<td>40 (25,0)</td>
<td>129 (21)</td>
<td>0,276</td>
</tr>
<tr>
<td>A2</td>
<td>11 (6,9)</td>
<td>19 (3,5)</td>
<td>0,06*</td>
</tr>
<tr>
<td>B</td>
<td>19 (11,9)</td>
<td>68 (11)</td>
<td>0,72</td>
</tr>
</tbody>
</table>

* statistički značajno
4.2. RASPRAVA

Kolorektalni karcinom jedan je od pet najčešćih karcinoma među svjetskom i hrvatskom populacijom. Kako bi se smanjila njegova incidencija, nužno je pronaći pouzdane prognostičke i prediktivne pokazatelje, kao i čimbenike koji doprinose njegovom nastanku te molekulске mehanizme razvoja karcinoma. Time se može pomoći njegovom ranom otkrivanju, ali i pokušati poduzeti preventivne mjere. Brojne su studije pronašle poveznicu između ABO krvnih grupa i predispozicije za obolijevanje od određenih tumora. U slučaju gastrointestinalnih karcinoma uglavnom je riječ o ne-O krvnim grupama koje imaju veću predispoziciju za razvoj karcinoma. Takva zapažanja potvrđena su i ovom studijom. Nakon što je provedena genotipizacija 80 uzoraka pacijenata oboljelih od kolorektalnog karcinoma, rezultati su statističkim testom omjera izgleda uspoređeni s kontrolnom skupinom koju su obuhvaćala 303 dobrovoljna davatelja krvi. Rezultati izračuna omjera izgleda na razini genotipa između pacijenata oboljelih od kolorektalnog karcinoma i kontrolne skupine nisu pokazali statistički značajnu razliku. Na ovom uzorku se ne može zaključivati da neki od genotipova ima veći ili manji izgled za razvijanje kolorektalnog karcinoma. No, kad se uzorci usporede na razini fenotipa, rezultati izračuna omjera izgleda pokazuju da je incidencija za kolorektalni karcinom kod nositelja ne-O krvne grupe A statistički značajno veća (p=0,046) u odnosu na nositelje O krvne grupe (OR=1,79; 95 % CI=1,01-3,19). Iz navedenih rezultata se može zaključiti kako je rizik za razvijanje kolorektalnog karcinoma 1,79 puta veći kod nositelja krvne grupe A. U odnosu na učestalost krvnih grupa u hrvatskoj populaciji, skupina oboljelih je imala gotovo jednaku zastupljenost krvnih grupa (A 48,7 %, B 16,3 %, O 28,7 %, AB 6,3 %). Skupina ispitanika bez tumorske bolesti je pak imala veći udio krvne grupe O (40,2 %), a manji udio krvne grupe A (38 %) u odnosu na udjelu u hrvatskoj populaciji, dok su B (16,5 %) i AB (5,3 %) bile ekvivalentne (www.hztm.hr).

Testom omjera izgleda može se utvrditi postojanje povezanosti ili razlike među ispitivanim skupinama, može se utvrditi i jačina povezanosti, ali ne i podaci o apsolutnom riziku, kao ni potvrda uzročno-posljedične veze (Nikolac, 2008; Šimundić, 2008). Ovim usporedbama i ne govori se da je A krvna grupa uzrok kolorektalnog karcinoma, već da je moguć doprinos A antigena karcinogenezi.

U Americi je 2011. provedena studija na dvije populacije medicinskog osoblja tj. 1025 osoba oboljelih od kolorektalnih karcinoma među kojima je razdioba krvnih grupa bila slična onoj američke bjelačke populacije. Nije pronađena statistički značajna razlika za razvoj kolorektalnog karcinom na razini ABO fenotipova, iako je nađena samo statistički granična povezanost s B krvnom grupom za koju autori smatraju da je slučajna i ne mogu je objasniti.
jasnim biološkim mehanizmom (Khalili i sur., 2012). Druga recentna studija Urun i suradnika na uzorku turske populacije uspoređivala je 1620 oboljelih od kolorektalnog karcinoma s kontrolnom skupinom dobrovoljnih davatelja krvi. Rezultati ove studije su pokazali statistički značajnu razliku između ne-O krvnih grupa i O krvne grupe, iako samo marginalnu statističku značajnost za A krvnu grupu između dviju skupina. Također su ispitivali i RH status te KRAS te nisu dobili statistički značajnu povezanost (Urun Y. i sur., 2012).

Kineska kohortna studija iz 2017. godine rađena na 624 bolesnika s kolorektalnim karcinomom pokazala je također da nositelji A krvne grupe imaju statistički značajniji povećani rizik za bolest u odnosu na ne-A krvne grupe. To je objašnjeno ekspresijom antigena A na tumorskim stanicama kolona, koje značajnije utječu na povišenu staničnu proliferaciju i motilitet, što izravno doprinosi razvoju metastaza kolorektalnog karcinoma (Huang i sur., 2017).

Brojna slična istraživanja na drugim sijelima karcinoma gastointestinalnog trakta pokazala su statistički značajne razlike za obolijevanje od karcinoma između ne-O i O krvnih grupa. Još sredinom prošlog stoljeća pokazalo se da je karcinom želuca 20 % češći kod oboljelih s krvnom grupom A u odnosu na krvnu grupu O. Jedna od kohortnih studija Edgrena i suradnika je 2010., na uzorku od preko milijun dobrovoljnih davatelja krvi u Švedskoj i Danskoj te 686 bolesnika s karcinomom želuca, dokazala zaključke prethodnih istraživanja. Utvrđeno je da povećani relativni rizik od 20 % za karcinom želuca imaju oboljeli nositelji krvne grupe A u odnosu na nositelje O krvne grupe (Edgren i sur., 2010). Pojedinačne statističke i GWAS studije također su pokazale povećanu povezanost između obolijevanja od karcinoma gušterače i pojedinaca ne-O krvnih grupa (Cid i sur., 2012). Jedna od njih je studija iz 2009. koja je na ranije spomenutim dvjema američkim populacijama, u ovom slučaju ispitala povezanost ABO krvne grupe s rizikom za obolijevanje od karcinoma gušterače te pokazala da ne-O krvne grupe imaju veću vjerovatnost razvoja karcinoma gušterače (najveći rizik za B krvnu grupu, srednji rizik za A i AB) (Wolpin BM i sur., 2009; Yamamoto i sur., 2012).

Ispitivanjem vjerovatnosti obolijevanja od kolorektalnog karcinoma s obzirom na spol u ovoj studiji nije pronađena statistički značajna razlika. Na temelju dobivenih rezultata ne može se zaključivati da neki od spolova ima veći ili manji izgled za razvijanje kolorektalnog karcinoma. Ni usporedbom razlike u zastupljenosti histološkoga stupnja tumora između oboljelih s najčešćim genotipom O1A1 i ostalih oboljelih s drugim genotipovima nije pronađena statistički značajna razlika. Histološki stupanj tumora označava stupanj diferenciranosti stanica tumora čime se određuje agresivnost adenokarcinoma. No na temelju
izračuna omjera izgleda između navedenih skupina, ne može se zaključivati da neku skupinu ABO genotipova pogada agresivniji oblik karcinoma. Većina studija dosad nije ispitivala zastupljenost klasifikacije kolorektalnog karcinoma s ABO sustavom krvnih grupa. GWAS studije utvrđile su da je lokus ABO krvnih grupa povezan sa serumskim vrijednostima molekule E-selektina. Finim mapiranjem utvrđeno je da su serumskie vrijednosti E-selektina više povezane za subalele A krvne grupe. E-selektin povezuje se s brojnim bolestima, a za malignant je bolesti značajno da TNF-α povećava ekspresiju E-selektina (Paterson i sur., 2009). Buduća istraživanja o ulozi krvnih grupa i razlogu nijihovog dugog evolucijskog održanja sigurno će se baviti odnosom ABO sustava krvnih grupa i navedenih biopokazatelja.

S obzirom da je ova studija jedna od rijetkih koja je ispitivala povezanost kolorektalnih karcinoma s ABO genotipovima krvnih grupa a ne samo fenotipovima, ispitane je i utjecaj određenih 5 ABO alela s obzirom na pojavnost kolorektalnog karcinoma. Rezultati testa razlike proporcija pokazali su da postoji statistički značajna razlika između pojavnosti O1 alela u skupini ispitanika i kontrolnoj skupini (p=0,04). Zastupljenost alela O1 je statistički značajno veća u kontrolnoj skupini (0,62) u odnosu na skupinu oboljelih (0,53) pa se iz toga može zaključiti da alel O1 vrši zaštitnu funkciju kod nositelja s ne-O krvnom grupom, a koji nose O1. Iako je razina značajnosti testa za alel A2 (p=0,06) malo viša od zadane razine značajnosti testa (p=0,05), rezultat se može granično interpretirati kao postojanje statistički značajne razlike između pojavnosti A2 alela u skupini ispitanika i kontrolnoj skupini. Zastupljenost alela A2 je statistički niža u kontrolnoj skupini (0,035) u odnosu na skupinu oboljelih (0,069).

Ova case-control studija dokazala je kako je rizik za razvijanje kolorektalnog karcinoma 1,79 puta veći kod nositelja krvne grupe A u odnosu na ostale krvne grupe, ali treba naglasiti da je provedena na manjem uzorku oboljelih od kolorektalnog karcinoma. Rezultati statističkih ispitivanja pokazali su određene statistički značajne razlike. Ipak, ova je studija inicijalno istraživanje koje bi se moglo potvrditi ispitivanjem na većem uzorku oboljelih kako bi se dobila jača potvrda ovih rezultata. Isto tako, ovo istraživanje dodatna je potvrda sličnih istraživanja na drugim populacijama što dodatno upućuje na potrebu detaljnijeg proučavanja povezanosti pojavnosti karcinoma i ABO antigena.
5. ZAKLJUČCI

1. Cilj ovog ispitivanja bio je utvrditi postoji li povezanost genotipova ABO krvnih grupa s pojavom kolorektalnih karcinoma u hrvatskoj populaciji. Primjenom odgovarajućih statističkih testova ispitano je postojanje statističke značajnosti za obolijevanje od kolorektalnog karcinoma između skupine oboljelih i kontrolne skupine dobrovoljnih davatelja krvi kao predstavnika ispitanika zdrave populacije bez tumorskih bolesti. Rezultati su pokazali da je izgled za razvoj kolorektalnog karcinoma nositelja A krvne grupe 1,79 puta veći u odnosu na nositelje krvne grupe O.

2. Rezultati ovog istraživanja u skladu su s drugim studijama koje su pokazale veću predispoziciju za razvoj gastrointestinalnih karcinoma s ne-O krvnim grupama, ovisno o zastupljenosti ABO krvnih grupa u određenim populacijama.

3. Usporedbom vjerojatnosti pojave karcinoma debelog crijeva među spolovima nije pronađena statistički značajna razlika. Primjenom χ^2 testa također nije pronađena statistički značajna razlika između pojavnosti histološkog stupnja tumora prema genotipovima među oboljelima od kolorektalnog karcinoma.

4. Testom razlike proporcija pokazano je da je pojavnost alela O1 statistički značajno veća u kontrolnoj skupini u odnosu na skupinu oboljelih. Može se zaključiti da alel O1 vrši zaštitnu funkciju kod nositelja s ne-O krvnom grupom. Dobivena je i granična statistička značajnost prema kojoj je pojavnost alela A2 statistički manja u kontrolnoj skupini u odnosu na skupinu oboljelih.

5. Iako se ne može govoriti o uzročno-posljedičnoj vezi između nastanka kolorektalnog karcinoma i krvne grupe A, može se pretpostaviti da postoji određeni doprinos antigena u karcinogenezi. Dok je O1 antigen nešto više zastupljen u kontrolnoj skupini, A2 je nešto više zastupljen u skupini oboljelih. Ova zapažanja tek su temelj za nastavak istraživanja na većem broju ispitanika kako bi se dobila šira slika povezanosti ABO krvnih grupa i razvoja karcinoma. Također su dobro usmjerenje molekulskih i in silico istraživanja za ispitivanje mehanizama kojima krvni antigeni doprinose karcinogenezi.
6. LITERATURA

7. SAŽETAK / SUMMARY

7.1. Sažetak

Učestalost genotipova ABO sustava krvnih grupa u oboljelih od kolorektalnog karcinoma

Pavica Šonjić

Kolorektalni karcinom jedan je od pet najčešći karcinoma u svjetskoj i hrvatskoj populaciji. Kako bi se omogućilo preventivno djelovanje, pridonijelo njegovom ranom otkrivanju i poboljšao ishod liječenja, nužno je naći pouzdane prognoštičke i prediktivne pokazatelje kao i čimbenike rizika. Istraživanja povezanosti ABO sustava krvnih grupa s gastrointestinalnim karcinomima pokazuju povezanost ne-O krvnih grupa i povećanog rizika za obolijevanje. Takva istraživanja u slučaju kolorektalnog karcinoma malobrojna su i pokazuju oprečne rezultate. Cilj ovog istraživanja bio je utvrditi povezanost ABO genotipova i rizik od nastanka kolorektalnog karcinoma u hrvatskoj populaciji. Istraživanje je obuhvatilo 80 oboljelih od kolorektalnog karcinoma i kontrolnu skupinu od 303 zdrava dobrovoljna davanje krvi. Primjenom PCR-SSP metode provedena je genotipizacija na 5 alela (O1, O2, A1, A2, B) i 15 ABO genotipova. Rezultati su podvrgnuti statističkom testiranju pomoću omjera izgleda, χ² testa i testa razlike proporcija. Testom omjera izgleda nisu dobivene statistički značajne razlike između ABO-genotipova. Rezultati istog testa na fenotipskoj razini pokazali su 1,79 puta povećani rizik za obolijevanje od kolorektalnog karcinoma za krvnu grupu A u odnosu na krvnu grupu O (OR=1,79; 95 % CI=1,01-3,19). Testom razlike proporcija pokazano je da je pojavnost alela O1 statistički značajno veća u kontrolnoj skupini (0,62) u odnosu na skupinu oboljelih (0,53). Dobivena je i granična statistička značajnost prema kojoj je pojavnost alela A2 statistički niža u kontrolnoj skupini (0,035) u odnosu na skupinu oboljelih (0,069). Rezultati ovog istraživanja potvrđili su dosadašnja opažanja u slučaju gastrointestinalnih karcinoma i povezanosti s ABO krvnim grupama te predstavljaju dobru podlogu za genska i in silico istraživanja mehanizama kojima antigeni ABO krvnih grupa pridonose karcinogenezi.

Ključne riječi: ABO krvne grupe, ABO genotipizacija, kolorektalni karcinom, omjer izgleda, test razlike proporcija
7.2. Summary

Distribution of ABO genotypes among patients with colorectal cancer

Pavica Šonjić

Colorectal cancer is one of the most common cancers worldwide and among the Croatian population. To improve colorectal carcinoma prevention, contribute to its early detection and improve the outcome of treatment, it is necessary to find reliable prognostic and predictive factors as well as risk factors. Investigations of the ABO blood group correlation with gastrointestinal carcinoma show the association of non-O blood groups with an increased risk of disease. Such investigations in the case of colorectal cancer are few and show contradictory results. The aim of this study was to examine the association between the ABO genotypes and the risk of colorectal cancer in the Croatian population. The study included 80 patients with colorectal carcinoma and a control group of 303 healthy volunteer blood donors. Using the PCR-SSP method, genotyping was performed on 5 main alleles (O1, O2, A1, A2, B) and 15 ABO genotypes. The results were statistically tested by odds ratio, Chi-square test and an analysis of the proportional difference. No apparent statistically significant difference between ABO genotypes was obtained by odds ratio testing. The results of the same test at the phenotypic level showed 1.79 times the increased risk for colorectal carcinoma of blood type A compared to blood group O (OR=1.79; 95% CI=1.01–3.19). The proportional difference test showed that the incidence of allele O1 was statistically significantly higher in the control group (0.62) compared to the group of patients (0.53). Borderline statistical significance was obtained according to the presence of allele A2 which was statistically lower in the control group (0.035) compared to the group of patients (0.069). The results of this study confirmed the previous major findings due to gastrointestinal carcinoma and association with the ABO blood groups, and represent a good basis for genetic and in silico research of the mechanisms by which the ABO blood groups antigens contribute to carcinogenesis.

Key words: ABO blood groups, ABO genotyping, colorectal cancer, odds ratio, the proportional difference test
8. PRILOZI

8.1. Kratice

CA 19-9- karbohidratni antigen 19-9 (eng. carbohydrate antigen 19-9)
CEA- karcinoembrionalni antigen (eng. Carcinoembryonic antigen)
CI- interval pouzdanosti (eng. confidence interval)
DNA- deoksiribonukleinska kiselina (eng. Deoxyribonucleic acid)
dNTP- deoksiribonukleozid-trifosfati (eng. deoxyribonucleotide triphosphate)
EDTA- etilendiaminetetraoctena kiselina (eng. ethylenediaminetetraacetic acid)
FUT1- gen fuksil-transferaza 1 (eng. fucosyltransferase 1)
FUT2- gen fuksil-transferaza 2 (eng. fucosyltransferase 2)
GWAS- eng. genome wide association study
HGH- ulomak gena humanog hormona rasta (eng. fragment of Human Growth Hormone)
HZTM- Hrvatski zavod za transfuzijsku medicinu (eng. Croatian Institute for Transfusion Medicine)
IARC- Međunarodne agencije za istraživanje raka (eng. International Agency for Research on Cancer)
OR- omjer izgleda (eng. odds ratio)
PCR-SSP- metoda alel-specifične polimerazne lančane reakcije (eng. Single Specific Primer-Polymerase Chain Reaction)
TNF-α- tumor nekrotizirajuć antigen-α (eng. tumor necrosis factor alpha)
TNM kalsifikacija malignih tumora- T-primarni tumor, N-regionalni limfni čvorovi, M- udaljene metastaze (eng. Classification of Malignant Tumours tumour lymph nodes metastasis)
9. TEMELJNA DOKUMENTACIJSKA KARTICA/ BASIC DOCUMENTATION CARD
UČESTALOST GENOTIPOVA ABO SUSTAVA KRVNIH GRUPA U OBOLJELIH OD KOLOREKTALNOG KARCINOMA

Pavica Šonjić

SAŽETAK

Kolorektalni karcinom jedan je od pet najčešći karcinoma u svjetskoj i hrvatskoj populaciji. Kako bi se omogućilo preventivno djelovanje, pridonijelo njegovom ranom otkrivanju i poboljšao ishod liječenja, nužno je naći pouzdane prognostičke i prediktivne pokazatelje kao i čimbenike rizika. Istraživanja povezanosti ABO sustava krvnih grupa s gastrointestinalnim karcinomima pokazuju povezanost ne-O krvnih grupa i povećanog rizika za obolijevanje. Takva istraživanja u slučaju kolorektalnog karcinoma malobrojna su i pokazuju oprečne rezultate. Cilj ovog istraživanja bio je utvrditi povezanost ABO genotipova i rizik od nastanka kolorektalnog karcinoma u hrvatskoj populaciji. Istraživanje je obuhvatilo 80 oboljelih od kolorektalnog karcinoma i kontrolnu skupinu od 303 zdrava dobrovoljna davatelja krvi. Primjenom PCR-SSP metode provedena je genotipizacija na 5 alela (O1, O2, A1, A2, B) i 15 ABO genotipova. Rezultati su podvrgnuti statističkom testiranju pomoću omjera izgleda, χ² testa i testa razlike proporcija. Testom omjera izgleda nisu dobivene statistički značajne razlike između ABO-genotipova. Rezultati istog testa na fenotipskoj razini pokazali su 1,79 puta povećan rizik za obolijevanje od kolorektalnog karcinoma za krvnu grupu A u odnosu na krvnu grupu O (OR=1,79; 95 % CI=1,01-3,19). Testom razlike proporcija pokazano je da je pojavnost alela O1 statistički značajno veća u kontrolnoj skupini (0,62) u odnosu na skupinu oboljelih (0,53). Dobivena je i granična statistička značajnost prema kojoj je pojavnost alela A2 statistički niža u kontrolnoj skupini (0,035) u odnosu na skupinu oboljelih (0,069). Rezultati ovog istraživanja potvrdili su dosadašnja opažanja u slučaju gastrointestinalnih karcinoma i povezanosti s ABO krvnim grupama te predstavljaju dobru podlogu za genska i in silico istraživanja mehanizama kojima antigeni ABO krvnih grupa pridonose karcinogenezi.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži: 35 stranica, 2 grafička prikaza, 10 tablica i 8 literaturnih navoda. Izvornik je na hrvatskom jeziku.

Ključne riječi: ABO krvne grupe, ABO genotipizacija, kolorektalni karcinom, omjer izgleda, test razlike proporcija

Mentor: Dr. sc. Karmela Barišić, redoviti profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Jasna Bingulac-Popović, znanstvena savjetnica, Hrvatski zavod za transfuzijsku medicinu

Ocjenjivači: Dr. sc. Karmela Barišić, redoviti profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Jasna Bingulac-Popović, znanstvena savjetnica, Hrvatski zavod za transfuzijsku medicinu.
Dr. sc. Nada Vrkić, izvanredni profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad prihvaćen: veljača 2018.
DISTRIBUTION OF ABO GENOTYPES AMONG PATIENTS WITH COLORECTAL CANCER

Pavica Šonjić

SUMMARY

Colorectal cancer is one of the most common cancers worldwide and among the Croatian population. To improve colorectal carcinoma prevention, contribute to its early detection and improve the outcome of treatment, it is necessary to find reliable prognostic and predictive factors as well as risk factors. Investigations of the ABO blood group correlation with gastrointestinal carcinoma show the association of non-O blood groups with an increased risk of disease. Such investigations in the case of colorectal cancer are few and show contradictory results. The aim of this study was to examine the association between the ABO genotypes and the risk of colorectal cancer in the Croatian population. The study included 80 patients with colorectal carcinoma and a control group of 303 healthy volunteer blood donors. Using the PCR-SSP method, genotyping was performed on 5 main alleles (O1, O2, A1, A2, B) and 15 ABO genotypes. The results were statistically tested by odds ratio, Chi-square test and an analysis of the proportional difference. No apparent statistically significant difference between ABO genotypes was obtained by odds ratio testing. The results of the same test at the phenotypic level showed 1.79 times the increased risk for colorectal carcinoma of blood type A compared to blood group O (OR=1.79; 95% CI=1.01–3.19). The proportional difference test showed that the incidence of allele O1 was statistically significantly higher in the control group (0.62) compared to the group of patients (0.53). Borderline statistical significance was obtained according to the presence of allele A2 which was statistically lower in the control group (0.035) compared to the group of patients (0.069). The results of this study confirmed the previous major findings due to gastrointestinal carcinoma and association with the ABO blood groups, and represent a good basis for genetic and in silico research of the mechanisms by which the ABO blood groups antigens contribute to carcinogenesis.

The thesis is deposited in the Central Library of the University of Zagreb Faculty of Pharmacy and Biochemistry.

Thesis includes: 35 pages, 2 figures, 10 tables and 38 references. Original is in Croatian language.

Keywords: ABO blood groups, ABO genotyping, colorectal cancer, odds ratio, the proportional difference test

Mentor: Karmela Barišić, Ph.D. Full Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Jasna Bingulac-Popović, Ph.D. Scientific adviser, Croatian Institute of Transfusion Medicine

Reviewers: Karmela Barišić, Ph.D. Full Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Jasna Bingulac-Popović, Ph.D. Scientific adviser, Croatian Institute of Transfusion Medicine
Nada Vrkić, Ph.D., Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

The thesis was accepted: February 2018.