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SUMMARY 

 

Introduction and aim: External quality assessment (EQA) is an integral part of quality 

management systems in medical biochemical laboratories enabling monitoring of individual 

results as well as harmonisation and standardisation of measurement procedures (MPs) used in 

the clinical setting. Commutability of control samples is a major prerequisite for assessing 

laboratory and MP performance according to the unique target value. Commutable control 

samples show the same properties in different MPs as well as patient samples. Commutability 

is usually evaluated using regression analysis and statistically determined criteria of acceptance 

without taking into consideration analytical performance specifications for the analyte. The 

aim of this research is to propose a new model for the evaluation of commutability criteria 

using analytical performance specifications for each analyte within the EQA program for 

medical biochemical laboratories. 

Materials and methods: Lyophilised control samples were distributed together with native 

and spiked serum samples to all participants of Croatian EQA (CROQALM). The participants 

analysed both samples using routine MPs. Commutability of control samples was evaluated 

using the results of two kinds of samples and newly proposed false flagging method. The results 

for commutability were compared to statistically determined commutability criteria obtained 

by recommended regression analysis for commutability evaluation of EQA control samples. 

Three lyophilised EQA control samples were evaluated for commutability for 22 biochemistry 

analytes and related MPs used in medical biochemical laboratories. 

Results: The controls were found commutable for 13 analytes: AMY, AST, CK, glucose, iron, 

LDH, phosphate, potassium, sodium, proteins, triglycerides, urate and urea. High 

noncommutability of control materials was found for chloride in all three control samples and 

HDL-cholesterol, AP, creatinine and calcium in two out of three control samples. Unequal 

criteria in statistically defined commutability limits resulted in commutability conclusions that 

are dependent on measurement results of patient serum samples by evaluated MPs. 

Conclusions: The false flagging method, proposed in this thesis, can be used for evaluating 

commutability of control samples within the EQA program of medical biochemical 

laboratories. The commutability limits are equally designed for all MP combinations and 

connected to established analytical performance specifications of the analytes. 

Keywords: commutability, external quality assessment, false flagging method 



 
 

SAŽETAK 
 

Uvod i cilj: Vanjska procjena kvalitete sastavni je dio sustava za upravljanje kvalitetom 

medicinsko-biokemijskih laboratorija. Osim prosudbe mjernih rezultata, vanjska procjena 

kvalitete ima za svrhu praćenje globalnih ciljeva harmonizacije i standardizacije mjernih 

postupaka koji se koriste u laboratorijima. Cilj takvog praćenja je osiguranje mjeriteljske 

sljedivosti rezultata analiza te mogućnost da se koriste jedinstveni referenti materijali i slijede 

istovrsne kliničke smjernice. Komutabilnost kontrolnih uzoraka nužan je preduvjet za valjanu 

prosudbu kvalitete prema jedinstvenoj ciljnoj vrijednosti, a definirana je kao bliskost 

numeričkog odnosa između rezultata različitih mjernih postupaka za referentni materijal kao i 

za reprezentativne uzorke pacijenata, ovisno o namjeni referentnog materijala. Premda 

proizvođači i programi vanjske kontrole kvalitete nastoje osigurati komutabilne uzorke za 

prosudbu laboratorija, komutabilnost je vrlo često ugrožena zbog nastojanja da se osiguraju 

dovoljne količine kontrolnog uzorka stabilnog kroz duže razdoblje i koji sadrži različite 

koncentracijske raspone ispitivanih analita. Metode koje se najčešće koriste za ispitivanje 

komutabilnosti temelje se na regresijskoj analizi i na usporedbi kontrolnih uzoraka s uzorcima 

pacijenata uz interval pouzdanosti od 95% oko linije regresije kao kriterija prihvata. Statistički 

kriteriji za prosudbu komutabilnosti omogućavaju objektivnu, brojčanu prosudbu rezultata 

mjerenja, no kriteriji prihvata u velikoj mjeri ovise o stupnju usporedivosti dvaju mjernih 

postupaka na uzorcima pacijenata. Do sada predloženi statistički kriteriji ne uzimaju u obzir 

svrhu korištenja ispitivanih kontrolnih uzoraka, te ciljeve analitičke ili kliničke kvalitete za 

pojedini analit. Stoga je cilj ovog doktorskog rada postavljanje i validacija nove metode za 

prosudbu komutabilnosti kontrolnih uzoraka kojom se komutabilnost kontrolnih uzoraka 

prosuđuje ovisno o postavljenim analitičkim ciljevima kvalitete i njihovoj konačnoj namjeni 

procjene točnosti rezultata mjerenja i standardizacije/harmonizacije mjernih postupaka. 

Materijali i metode: U ovom istraživanju korišteni su svježi serumi dobrovoljnih davatelja 

krvi; svježi serumi dobrovoljnih davatelja krvi s dodatkom glukoze, ureje, natrija, kalija, 

klorida i bilirubina, ostatni uzorci seruma pacijenata koji se prikupljaju nakon rutinske 

laboratorijske obrade, te tri liofilizirana komercijalna kontrolna uzorka (C1/2016, C2/2016 i 

C3/2016) različitih proizvođača koji se koriste u vanjskoj procjeni kvalitete medicinsko-

biokemijskih laboratorija u Hrvatskoj. Rezultati mjerenja 12 ispitivanih analita (glukoze, 

ukupnog kolesterola, triglicerida, HDL-kolesterola, ureje, kreatinina, natrija, kalija, klorida, 

AST, ALT i GGT) u liofiliziranim kontrolnim uzorcima uspoređivani su s rezultatima mjerenja 

istih analita u ostatnim serumima pacijenata upotrebom pet rutinskih mjernih postupaka. Prvi 



 
 

korak u prosudbi komutabilnosti kontrolnih uzoraka bila je regresijska analiza. U okviru 

vanjske procjene kvalitete medicinsko-biokemijskih laboratorija, kontrolni uzorci i serumi 

dobrovoljnih davatelja krvi analizirani su u 180-184 medicinsko-biokemijska laboratorija 

tijekom 2016. godine, korištenjem standardnih mjernih postupaka, u tri ciklusa vanjske 

procjene kvalitete CROQALM. Analiza uzoraka obuhvatila je mjerenje svih biokemijskih 

pretraga obuhvaćenih ovim programom koje ulaze u opseg rada danog laboratorija. Dobiveni 

rezultati grupirani su prema mjernim uređajima i metodama u 143 mjerna postupka koji su 

korišteni za mjerenje 22 analita: glukoza, ureja, kreatinin, bilirubin, urati, natrij, kalij, kloridi, 

kalcij, ukupni kolesterol, trigliceridi, HDL-kolesterol, AST, ALT, AP, GGT, CK, LDH, 

amilaze, željezo i ukupni proteini. Procjena statistički značajnih razlika između rezultata 

mjerenja kontrolnih uzoraka i uzoraka seruma provedena je analizom varijance (ANOVA). 

Kako bi se omogućila analiza velikog broja uzoraka i MP, predložena je i razvijena nova 

metoda, tzv. metoda lažnog odstupanja (engl. false flagging method), kojom se prosuđuje 

komutabilnost kontrolnih uzoraka. Metoda se temelji na određivanju najvećeg dopuštenog 

udjela odstupanja u prolaznosti laboratorija na kontrolnim uzorcima u usporedbi s udjelom 

prolaznosti na uzorcima seruma. Rezultati prolaznosti laboratorija prema zadanim ciljevima 

kvalitete za svaki analit uspoređivani su za svaku vrstu uzorka u pojedinom ciklusu distribucije 

(kontrolni uzorak i serum).  

Rezultati: Korištenjem regresijske analize, sva tri kontrolna uzorka pokazala su komutabilnost 

za ispitivane parove mjernih postupaka koji se koriste za mjerenje kalija, natrija, GGT, AST i 

triglicerida. Nekomutabilnost je dokazana za kolesterol, HDL-kolesterol i glukozu u sva tri 

kontrolna uzorka te kloride u kontrolama normalnog i kreatinina visokog koncentracijskog 

raspona ispitivanog analita. Nekomutabilnost kontrolnog uzorka C3/2016 dokazana je za 

većinu usporedbi između parova mjernih postupaka za ALT. Kako bi se utvrdila statistički 

značajna razlika između mjerenja dobivenih na kontrolnim uzorcima i uzorcima seruma u istoj 

seriji na uređaju, u okviru vanjske procjene kvalitete medicinsko-biokemijskih laboratorija, 

uspoređivani su rezultati mjerenja obje vrste uzoraka analizom varijance. Dobiveni rezultati 

upućuju na postojanje statistički značajnih odstupanja između kontrolnih uzoraka i uzoraka 

seruma za 22 – 36,1% parova mjernih postupaka ovisno o vrsti kontrole. Sve tri kontrole 

pokazuju komutabilnost za kalcij, CK, proteine i ureju, a nekomutabilnost za većinu 

kombinacija mjernih postupaka za mjerenje klorida i HDL-kolesterola. Primjenom nove 

predložene metode za prosudbu komutabilnosti kontrolnih uzoraka, kontrolni uzorci 

prosuđivani su prema postavljenim analitičkim ciljevima kvalitete za svaki analit. Metodom 

lažnog odstupanja ispitana je komutabilnost kontrolnih uzoraka za 22 analita i 331-426 parova 



 
 

mjernih postupka koji se koriste u rutinskom radu laboratorija. Sva tri kontrolna uzorka 

pokazuju komutabilnost za većinu kombinacija mjernih postupaka za mjerenje amilaze, AST, 

CK, glukoze, željeza, LDH, fosfata, kalija, natrija, proteina, triglicerida, urata i ureje. 

Nekomutabilnost sva tri kontrolna uzorka dokazana je za kloride, te HDL-kolesterol, AP, 

kreatinin i kalcij u dvije kontrole. Sveukupno, kontrolni uzorci Seronorm Human (C1/2016 i 

C2/2016) proizvođača SERO pokazuju veći ukupni postotak komutabilnosti za ispitivane 

analite i mjerne postupke (83,1% i 87,6%) od kontrolnog uzorka C3/2016 proizvođača Fortress 

Diagnostics (76,1%). 

Zaključci: Postupak regresijske analize za procjenu komutabilnosti kontrolnih uzoraka koji se 

koriste u programima vanjske procjene kvalitete, organizacijski je i financijski zahtjevan zbog 

velikog broja analita koje treba ispitati za sve mjerne postupke koji se rutinski provode u 

medicinsko-biokemijskim laboratorijima. Osim toga, kriteriji prosudbe komutabilnosti koji se 

koriste u regresijskoj analizi ovise o statističkim značajkama dobivenih rezultata i različiti su 

za svaku ispitivanu kombinaciju mjernih postupaka. Primjenom metode lažnog odstupanja 

istovremenom analizom kontrolnog uzorka i uzorka svježeg seruma na velikom broju mjernih 

postupaka, moguća je prosudba komutabilnosti kontrolnih uzoraka u okviru sheme vanjske 

procjene kvalitete. Utvrđivanjem najvećeg dopuštenog udjela lažnog odstupanja rezultata 

mjerenja kontrolnog uzorka od rezultata mjerenja na uzorku seruma, komutabilnost kontrolnih 

uzoraka prosuđuje se na temelju razlike udjela prolaznosti laboratorija na dvije vrste uzoraka. 

Ukoliko je udio prolaznosti laboratorija značajno različit na kontrolnim uzorcima u usporedbi 

s uzorcima seruma, potvrđuje se različito ponašanje kontrolnih uzoraka od uzorka seruma na 

istim mjernim postupcima, odnosno nekomutabilnost kontrolnih uzoraka. Ovim postupkom su 

kriteriji prosudbe jednoznačni za sve parove mjernih postupaka, omogućavajući prosudbu 

kliničke i/ili analitičke jednakovrijednosti kontrolnih uzoraka prema dijagnostičkim 

značajkama samog analita. Metoda lažnog odstupanja predložena u ovom radu predstavlja novi 

pristup u prosudbi komutabilnosti i može se primijeniti istovremeno za veliki broj analita i 

mjernih postupaka u okviru vanjske procjene kvalitete medicinsko-biokemijskih laboratorija.  

 

Ključne riječi: komutabilnost, vanjska procjena kvalitete, metoda lažnog odstupanja 
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1. INTRODUCTION 

   Laboratory diagnostics plays an important role in overall patient management and is often 

included in diagnosis, follow-up and treatment of various diseases (1). The number and the 

variety of laboratory tests performed in medical biochemical laboratories increases over time 

and the results obtained in the laboratory regularly serve as a basis for clinical decision making. 

In order to meet high standards regarding patient safety and medical care, quality management 

of the total testing process (TTP) became an indispensable part of laboratory medicine (2,3). 

   The purpose of laboratory quality management is validation, implementation and monitoring 

of all pre-analytical, analytical and post-analytical processes in the laboratory, thus identifying 

key quality indicators to be evaluated and very often improved over time. Assessment of 

laboratory performance and quality of total TTP is usually validated through guidelines and 

regulations provided by national and international regulatory bodies, such as Clinical 

Laboratory Improvement Amendments (CLIA), Guideline of the German Medical Association 

on Quality Assurance in Medical Laboratory Examinations (RiliBÄK), Croatian Chamber of 

Medical Biochemists (CCMB) and ISO 15189:2012 (4–7). 

   Quality assessment of the analytical part of TTP relies mainly on data from internal quality 

controls (IQC) and external quality assessment (EQA) programs. In addition to the validation 

and/or verification of the measurement procedures (MPs) used in medical biochemical 

laboratories (MBL) and regular performing of IQC, participation is EQA programs is nowadays 

an “integrated professional activity of medical laboratories”, providing quality assessment and 

bases for improving activities ensuring high-quality standards in medical care for the patients 

(8,9). 
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1.1 External quality assessment 

1.1.1 General aspects  

   External quality assessment (EQA) was recognised more than half a century ago as a tool to 

recognise methods with poor performance in an interlaboratory comparison survey described 

by Belk and Sunderman in 1947 (10). Initially conducted only for several analytes, the EQA 

evolved in forthcoming years in a number of surveys and scope and was recognised by 

professionals as an essential component of quality management. The term external quality 

assessment is used to describe the method or process that allows comparison of laboratory’s 

testing to that of a source outside the laboratory – peer group of laboratories or reference 

laboratory (11). The term is very often used interchangeably with proficiency testing (PT), 

however, EQA usually implies broader spectrum of quality assessment, including educational, 

supportive and structured approach towards improvement in laboratory performance (12,13). 

Although traditionally addressing analytical quality, EQA can be applied to other aspects of 

total testing, both pre-analytical and post-analytical processes (14–16). Participation in an EQA 

program provides objective assessment and information on performance and quality of results 

delivered to patients and physicians. It helps to monitor individual laboratory performance over 

time, identifying problems in analytical and extra-analytical processes, gives information on 

the suitability of diagnostic systems, the accountability and competence of the laboratory staff 

and indicates areas that need improvement (17,18). In terms of analytical performance, it 

provides information on the reliability of applied methods and equipment as well as the validity 

of uncertainty claims. Over time, participation in EQA program can lead to an improvement in 

the quality of laboratory performance, assuming monitoring and root causes of any discrepancy 

in EQA result are properly addressed and actions toward improvement taken (19,20). The 

information from EQA reports can be used to reduce the bias of the methods, confirm the 

quality of results and increase the confidence in laboratory performance (21). It also serves as 

a compliance proof for a laboratory’s ability to meet aimed quality standards, often the subject 

of close inspection from various regulatory and accreditation bodies.  
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1.1.2 Harmonisation and standardisation in laboratory medicine  

   In addition to individual laboratory evaluation, EQA has a central role in monitoring and 

promoting global initiatives towards standardisation and harmonisation of laboratory results 

(21–23). Comparable, or harmonised, test results across different measurement systems, 

laboratories, time and locations becomes an important activity of scientific and professional 

community (24,25). The underlying reason for all harmonisation efforts is an overall benefit 

for patients who are often diagnosed and treated across different medical facilities, even health 

care systems, where the results from the laboratories are shared between those. In such 

perspective, test results must be harmonised or equivalent between laboratories allowing the 

use of same evidence-based clinical guidelines, reference intervals and decision levels in 

interpreting results. For example, using internationally accepted guidelines such as Kidney 

Disease Improvement Global Outcomes (KDIGO) guidelines for the diagnosis and 

management of chronic kidney disease is valid only if the results for creatinine from the patient 

laboratory are comparable to the results of laboratories used in the clinical studies (14,26). In 

addition, harmonisation of test results also raises the level of confidence in laboratory 

diagnostics and diminishes confusion of both doctors and patients. As Plebani (27) observed 

in terms of present differences in measurement and cut-off limits for troponins in acute 

myocardial infarction, it should be possible to diagnose acute myocardial infarction 

irrespective of the choice of analyte (cardiac troponin I or cardiac troponin T) and analyser. 

   A very important aspect of harmonisation in consolidation and networking is the benefit of 

sharing patient results by a wide range of users across different levels of the healthcare system, 

often as a part of patient’s electronic record (28,29). The need for harmonisation goes even 

beyond methods and analytes, and includes all parts of TTP (27,30). 

   Harmonisation in measurements from different analytical systems is commonly achieved 

through standardisation and traceability of all procedures to a higher-order reference system 

(31–33). Reference materials (RMs) are defined in ISO documents as materials, sufficiently 

homogenous and stable with respect to one or more specified properties, which have been 

established to be fit for their intended use in a measurement process (34). Although closely 

linked and often used interchangeably, harmonisation and standardisation refer to two distinct 

concepts in metrology principles. Standardisation implies traceability of results reported in SI 

units (Système International Units, SI) to higher-order RMs and/or methods, whereas 

harmonisation means consistency, or comparability of measurement results (24,27). 
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Comparability in measurement results can be achieved by standardisation for defined chemical 

entities, traceable to SI units. For heterogeneous, complex analytes not directly traceable to SI 

units, where neither higher order primary RM and/or method exist, harmonisation can be 

achieved either by consensus traceability to some reference or comparison between methods 

following mathematical corrections (24,35,36). For example, pursuing harmonisation trough 

standardisation is possible for rather “simple” analytes such as glucose, electrolytes or 

cholesterol, but challenging for complex heterogeneous analytes such as troponins, tumour 

markers and many others. It however has to be noticed, that although in a minority, those 

“simple” analytes represent the most commonly requested tests in medical biochemical 

laboratories (22).  

  A very important step in implementing standardisation as a principal method in achieving 

harmonisation of measurement results is enforcement of the In Vitro Diagnostic Directive 

(IVDD) (33) from 1998 which requires manufacturers of diagnostic devices with CE 

(Conformité Européene) mark to provide traceability for assays and calibrators. Basic concepts 

and procedures are further defined and specified in ISO 17511:2003 (37). The calibration 

transfer protocol, as described in ISO 17511, is presented in Figure 1.  

 

Figure 1. Calibration transfer protocols for cases with primary reference MPs and primary calibrators
giving metrological traceability to SI. Abbreviations: ARML, Accredited reference measurement
laboratory; BIPM, Bureau International des Poids et Mesures; CGMIP, Conférence Générale des Poids
et Mesures; ML, Manufacturer’s laboratory; NMI, National Metrology Institute; uc (γ), uncertainty.
(Modified according to reference 37.) 
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It can be seen that primary RM can be prepared from chemically pure substance using primary 

reference procedure such as gravimetry. Such material further serves as a calibrator for 

secondary reference MP, which, in turn, is used to assign a true value to secondary RM used 

by manufacturers. It should be noted here that the secondary reference procedure is insensitive 

to matrix differences between its calibrator and secondary reference calibrator to be used by 

manufacturers of instruments and/or reagents. On this level, after being calibrated by secondary 

reference calibrator, manufacturers usually assign a value to their working calibrator or master 

calibrator. It further serves as a calibrator for end-users MPs in MBLs. Each of these steps in 

hierarchically organised traceability chain has its measurement uncertainty, resulting in a 

combined overall uncertainty of the end-user’s calibrators and patient results. Measurements 

of cholesterol and HbA1c are examples of successful standardisation processes with 

consequential clinical impact (38). However, even standardisation and traceability to higher-

order reference systems must be monitored and acceptable measurements uncertainties fit for 

clinical use have to be defined (39,40). Otherwise, the theoretical benefit of the whole 

traceability process might be absent, resulting in the poor harmonisation of results due to 

different types of metrological chains used by manufacturers with large “grey zones” regarding 

acceptable measurement uncertainties across the traceability protocol (41,42). Achieving 

harmonisation is a global activity that needs active involvement from all stakeholders, i.e. 

metrologists, international standards organisations, IVD method manufacturers, 

regulation/accreditation bodies, EQA providers and medical biochemical laboratories (43). In 

those terms, EQA is recognised as an important and powerful tool in monitoring and supporting 

harmonisation and standardisation in laboratory medicine (14,22,31). In order to support 

worldwide comparability and harmonisation, the Joint Committee for Traceability in 

Laboratory Medicine (JCTLM) was formed as an international committee in 2002 by Bureau 

International des Poids et Mesures (BIPM), International Federation of Clinical Chemistry 

and Laboratory Medicine (IFCC) and International Laboratory Accreditation Cooperation 

(ILAC), bringing together governmental organisations, clinical laboratory professionals and 

the IVD industry (44). JCTLM recognised three pillars in standardisation and metrological 

traceability: higher-order RMs, higher-order reference methods and accredited reference 

laboratory services. In addition to forming the web-based database of higher-order materials, 

methods and reference laboratory services, JCTLM promotes and actively encourages all 

traceability concepts in agreement with internationally accepted standards, recognises and 

objectively evaluates new materials and methods and provides educational material for all 

stakeholders involved (45,46). In addition to the three pillars identified by JCTLM, laboratory 
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professionals identified three more: universal reference intervals and medical decision levels, 

EQA programs using commutable samples with reference method target values, and limits for 

uncertainty and error of measurement fit for clinical use (23,39,40,47,48). EQA is thus 

recognised as an indispensable tool in verifying performance and the quality standard achieved 

in a participating laboratory, but also in monitoring and promoting metrological traceability, 

standardisation and harmonisation of laboratory results.  

1.1.3 Principal characteristics of the EQA program and survey design  

   An EQA program can be organised in a national, international or regional level depending 

on the participating laboratories and the demands of various governmental, healthcare or 

professional agencies. Furthermore, the various EQA programs differ significantly in terms of 

the organisation; the scope of the program (analytical, pre-analytical and post-analytical phase 

of laboratory work), variety of tests offered, number of EQA surveys per year, the obligation 

of participation in the program, evaluation particularities, etc. In order to meet the intended use 

of the EQA in quality improvement and education, EQA providers share the knowledge and 

cooperate to constantly improve their service to participants and are often governed, even 

evaluated according to various international guidelines and standards (11,17,49,50).  

   The usual EQA survey is conducted by sending a set of samples with an unknown 

concentration of one or many analytes to participating laboratories, together with instructions 

on proper handling, preparing and analysing the samples (Figure 2). According to given 

instructions, participating laboratories perform the analysis of received samples as if they were 

patient samples and send the results back to scheme organiser. The scheme organiser collects 

and evaluates data sent from participants to create EQA reports, important feedback tool for 

laboratories. The reports should be understandable and comprehensive, containing information 

on assigned values and analytical performance specifications for specific measurand, supported 

by the graphical presentation of laboratory’s results compared to the results of other 

laboratories (51). The reports usually contain the evaluation analysis on laboratory 

performance, as well as the method and/or instrument performance based on the results from 

many laboratories. Every laboratory is expected and encouraged to follow up any inconsistency 

or unacceptable EQA result, find a root cause to inconsistency or unacceptable result, take 

corrective actions and document changes (13,52). Many schemes provide a graphical 
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presentation of laboratory performance over time, thus enabling laboratories to follow up the 

quality of their laboratory procedures and evaluate new trends in terms of deterioration or 

improvement observed.  

 

 

 

1.1.4 Interpretation of results within the EQA program: analytical 

performance specifications and target values 

Analytical performance specifications. The key elements in results evaluation within 

the EQA program are target values and acceptance limits around those values, or analytical 

performance specifications for the measurand. Analytical performance specifications should 

be defined prior to result analysis and criteria or rationale for their setting must be clear to 

participants. This way the laboratories can have confidence in the scheme and are informed on 

the quality level needed or achieved in EQA (51,53,54). Analytical performance specifications 

differ largely in various EQA schemes and it is quite possible that individual result or quality 

level achieved in the laboratory might be considered differently by these schemes in terms of 

EQA 
samples 

Analysis  

Results 
Statistical 
analysis 

Laboratory 
EQA report

Evaluation 

EQA organiser Laboratory 

Figure 2.The flowchart of an EQA survey. 
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fulfilling appropriate quality standards (14,55). The terminology used to describe allowed 

deviations from the assigned values is also different throughout literature and EQA programs, 

referred to as Analytical Performance Specifications, Allowable Limits of Performance, 

Acceptability Limits, and Quality Goals. The term Analytical Performance Specifications 

(APS) is preferred and adopted by European Federation of Clinical Chemistry and Laboratory 

Medicine (EFLM), Task and Finish Group on Performance Specifications for EQAS (TFG-

APSEQA) to be in the line of the terminology used in Milan strategic conference on analytical 

performance goals in 2014 (56). The Milan conference was a follow-up conference held by 

EFLM to revise the original hierarchy of APS established in Stockholm (57). The structured 

approach criteria in setting APS in laboratory medicine originally proposed in so-called 

Stockholm criteria is somewhat shortened and simplified in Milan, and three models for 

establishing APS were suggested (Table 1). 

 

Model Bases on which different models for APS are set 

1 Effects of test performance on clinical outcome 
Direct outcome studies – investigating the impact of the performance of the test on 
clinical outcome 
Indirect outcome studies – investigating the impact of the performance of the test 
on clinical classification or decision 
 

2 Components of biological variation of the measurand 
 

3 State-of-the-art of the measurement – the highest level of analytical performance 
technically achievable 

 

 

Hierarchically organised, the criteria are based on the clinical outcome, components of 

biological variation and state-of-the-art. The preferred model for setting APS is a model based 

on the expected effect on clinical outcome, coming from direct or indirect clinical studies. 

Although this model is set on the top of the hierarchy, clear evidence by randomised control 

trials on the effect of established APS on clinical outcome is still lacking (58). However, 

outcome-related studies reflect the clinical needs of patients and should be encouraged. The 

model based on components of biological variation is the most widely used model in 

establishing APS. The database of desirable, minimum and maximum quality specifications is 

hosted at http://www.westgard.com and future updates are set to be handled by EFLM (59,60). 

The third model, the model based on the state-of-the-art, is the highest level that can be 

Table 1.Recommended models in setting analytical performance specifications 
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achieved using current technology. Although the models are distinct in their basic principle, 

they can be used simultaneously, for example, a state-of-the-art model can be chosen to set 

desirable, optimal or minimal criteria from the biological variation of specific measurands (61). 

Criteria for assigning measurands to different models largely depend on the role of the 

measurand in a clinical setting (diagnosis, monitoring) and the ability of IVD industry and 

laboratories to meet different levels of quality (62). Furthermore, the level of quality depends 

on the expected response by participants to failure, and can be set by EQA scheme as passable 

or satisfactory (favoured approach for regulatory requirements), favourable (where further 

improvement is not needed) and aspirational (aiming at improving quality or performance) 

(53). 

Target values.  The target value is another key element when assessing individual 

performance through the EQA program since every result is compared to that particular value. 

In order to evaluate laboratory performance, results are usually presented as the difference 

between laboratory result and the target value (D-score), expressed as a percentage, thus 

allowing comparison with established APS (17). Following this criterion, and regardless of the 

choice or rationale used for setting APS, a laboratory result is ‘flagged’ if the relative deviation 

from target value exceeds allowed APS. 

   Z-scores are also commonly used through EQA for evaluation of the individual result. They 

are the difference between the laboratory result and target value corrected for variability (51). 

The Z-score is sometimes referred as statistically-based acceptance criterion, where scores with 

an absolute value below 2 are considered as acceptable, between 2 – 3 questionable (“warning 

signal”) and Z-scores greater than 3 are considered unacceptable (13,17). Very often, the 

performance is evaluated by a combination of performance scores, supported by a graphical 

presentation of results and interpretative comments from the EQA provider to sustain the 

educational role of EQA.  

   The example of one EQA evaluation report for individual laboratory and analyte is given in 

Figure 3. It shows the participant’s results of the iron analysis in two EQA samples. The top 

two graphs present the histograms of all data submitted with the laboratory’s method group 

separated from all groups with a different colour. The result reported by the laboratory is 

presented with a red dot on the histogram and numerically underneath the graph, together with 

the percentage deviation from the target value (XT). The statistical analysis of the laboratory’s 

method group and all results submitted are shown below the histograms. The graphs on the 

bottom present current and the previous results with the green-shaded area of acceptance limits 

in percentage (bottom left) and absolute (bottom right) deviations from the target value. These 
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graphs show the laboratory performance over a longer period of time and can be used to detect 

any long-term bias. 

 

 

 

 

Figure 3. Laboratory EQA report for iron analysis in two control samples. XT - assigned target value; 
x – consensus mean value; s – standard deviation; SEM – standard error of the mean; CV% - coefficient 
of variation, n – number of reported results, Diff% - percentage deviation from assigned target value, 
Diff. mmol/l – absolute deviation from assigned target value. Dark blue bars in the histogram represent 
the results from the laboratory’s (own) peer group and light-blue rectangles represent all results. Green-
shaded areas in the bottom two graphs represent the acceptance limits in percentages deviations and z-
scores (bottom left) and absolute deviations from target value (bottom right). The results from the 
current EQA survey are presented with red dots and the results from the previous surveys with black 
dots. The grey dots indicate the laboratory’s peer group consensus mean. 
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   The choice of the target value is very important when assessing the distance of received 

results from the target value and in calculating various performance scores, like D-score or Z-

score. EQA organizers have used two types of target values: consensus target values and 

assigned target values. The essential difference is that consensus values are derived from 

reported results and are determined using statistical calculations for estimation of a central 

value, whereas assigned target values are known to EQA organizers beforehand and are not 

dependent on participants’ results. Consensus values can be calculated from all participants in 

a homogenous population, assuming correct use of statistical techniques and methods to solve 

major issues that might jeopardize correct statistical evaluation such as the exclusion of 

outliers, bimodality and skewness (51,63). The commonly used consensus target values are 

robust estimators of a central value, such as median and “all method trimmed mean”, mostly 

depending on the particular choice of the EQA organizer (50,64). The consensus value can be 

also derived from results obtained from “best performing laboratories” or few laboratories 

chosen by EQA organizer. The assigned target value is ideally obtained by analysing the EQA 

samples in a reference laboratory using the reference method. The list of such laboratories and 

services is provided by JCTLM in order to support traceability and standardization of MPs to 

higher-order RMs. The reference value in some EQA programs is assured using a transfer 

protocol by which selected laboratories are measuring both certified RM and EQA sample, and 

the target value is determined after correction of observed bias from RM (65). EQA programs 

with target values assigned by reference methods and materials allow accuracy-based 

evaluation of both laboratories and MPs on the market. In order to fit for that purpose, 

commutability of EQA samples must be validated to ensure that the difference from the 

assigned target value is caused by calibration bias rather than matrix-related bias (52,66). When 

commutability is not assessed or reference MPs are not available, the choice of the target values 

is restricted to consensus target values in peer-groups which are expected to have the same 

result for particular EQA sample (67). Hence, besides the availability of applicable references, 

it is the quality and characteristics of EQA samples that mainly determine the choice of target 

values and evaluation capabilities of EQA (23,52,68) 
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1.1.5 The characteristics of EQA samples  

   EQA samples can be prepared by EQA organizers or acquired from an external source, 

usually commercial suppliers of control materials. Regardless of the source of the samples, 

they must be suitable for clinical use and cover the analytical range of interest, usually in the 

low, “normal”, and high levels compared to the reference interval of an analyte. Furthermore, 

every laboratory should get substantially equal sample material for analysis; so, homogeneity 

and stability must be assured for the time samples are transported and analysed by participants. 

Since the samples are only one part of an EQA program, the expenses for their preparation or 

purchase have to be reasonable and affordable by participating laboratories. Above all, 

considering the fact that EQA samples have to be used as routine samples, they should behave 

in the same manner as patient samples in laboratory MP, i.e., they should be commutable. 

Fulfilling all of those requirements is very demanding in practice, and some compromises are 

usually necessary for the preparation of EQA samples. The most important characteristic of 

EQA samples is commutability with patient samples, very often being contrary, or even 

antagonistic to other criteria. In other words, in the pursuit of samples with acceptable stability, 

concentration, price and other requirements for ideal EQA sample, commutability of control 

samples is often compromised (52,69). Every intervention in authentic human samples like 

spiking (supplementation with analytes), pooling, freeze-thaw cycles, lyophilisation, filtration, 

etc. can lead to noncommutability with authentic patient samples. Various manufacturing 

procedures cause matrix modifications, which in turn can lead to alternations of physical and 

chemical properties of one or more components or introduce non-native molecules. The matrix 

here is defined as the total of all components of the material except the analyte itself (37). For 

example, lyophilisation irreversibly denaturates lipoproteins, causing modifications in 

viscosity, turbidity, pH and surface tension (70,71). The difference from patient samples is 

sometimes the result of changes in analyte rather than the matrix, like the addition of enzymes 

from the non-human origin which sometimes have different properties than human enzymes 

like optimal substrate and pH, the effect of inhibitors, etc. (70,72). Even minor interventions in 

serum preparation like sterile filtration, storage before aliquoting and freezing may disturb the 

equilibrium between protein-bound and free thyroid hormone and endanger commutability 

(73). 

   It has been commonly agreed that minimally altered or processed off-the-clot serum samples 

are likely to be commutable with patient samples, and the validity of such assumption is mostly 
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based on the stringency of their preparation (52,66,69,74). Single-donation serum or pooled 

serum samples may be used, due to the fact that high volumes are usually needed and the 

possibility that interferents present in single-donation serum may influence commutability 

(69). On the other hand, pooling the samples may introduce further interactions and complex 

formation between different components in serum and thus compromise the original 

characteristics of native serum samples. It has been hypothesized and further reported that 

supplementation with purified simple analytes doesn’t influence the commutability of EQA 

material (70,74). This assumption has to be taken with caution, since more complex analytes 

may not behave in the same manner or even be obtained in highly purified forms. Every 

artificial procedure and intervention applied to native clinical specimens may introduce 

noncommutability of samples, causing changes in reactivity through matrix-sensitive 

procedures, such that measurement characteristics are no longer representative of patient 

samples. It is thus important to verify the commutability of EQA samples used to simulate 

closely relevant properties of patient samples intended to be measured.  

Thus, commutability with clinical patient samples is one of the most important concepts 

affecting the design and interpretation of EQA programs. 

 

1.2 Commutability 

1.2.1 Definitions and description 

   Commutability is the property of RMs indicating the same inter-assay relationship of those 

materials and authentic patient samples. RMs hereby refer to all materials used to calibrate a 

MP or to assess the trueness of measurement results, including calibrators used in medical 

biochemical laboratories, trueness controls and certified RMs (75). To be able to serve as 

calibrator or trueness control in certain steps of metrological traceability chain, commutability 

of RM has to be assessed, and fitness for the intended use established (76). The term 

commutability was initially used to describe the ability of control materials to show the same 

characteristics as patient samples in different MPs for enzymes, and it was later expanded to 
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other analytes (77,78). Several definitions of commutability are used throughout scientific 

literature and standard documents. ISO documents define commutability as the equivalence of 

mathematical relationship between the results of different MPs for a RM and for the 

representative samples from healthy and diseased individuals (37). The International 

Vocabulary of Metrology (VIM) states that commutability is a property of RM, demonstrated 

by the closeness of agreement between the relation among the measurement results for a stated 

quantity in this material, obtained according to two given MPs, and the relation obtained 

among the measurement results for other specified materials, further noted as routine samples 

(79). Basic principles in both definitions are similar, and,  translated in common language; the 

commutability describes the same behaviour of RM as native patient samples in different MPs. 

Although the property of a RM, commutability is in fact attributed to analyte-material-method 

interaction, and a specific material can be found commutable for some analytes and methods, 

and noncommutable for others. For example, RM ERM-DA470k/IFCC used as the common 

calibrator for serum proteins was found commutable for all proteins except C-reactive protein 

(CRP) and ceruloplasmin (80,81). Commutability of a RM goes even beyond analytes and 

methods and includes even specific reagent lots interactions (82). It is thus common to evaluate 

commutability of RM for specified MP, which includes method specifications, instrument and 

reagents in use. Noncommutability is sometimes referred to as matrix-effect or matrix-related 

bias implying the influence of the milieu of the analyte that is different from the native samples 

intended to be measured by MP (83). However, the source of influence may include differences 

between the analyte, intended to be measured, and measurand itself (e.g. ditauro bilirubin in 

processed samples vs. conjugated bilirubin in native patient samples, enzymes of non-human 

origin used to spike the control material). Therefore, the term commutability includes all the 

differences in MP observed with processed samples, originating from a non-native form of the 

analyte or by the matrix itself. It has to be taken into consideration that measurands have to be 

clearly defined when assessing commutability. For example, the same protein can be measured 

using different immunochemical MPs targeting at different epitopes, thus implying different 

measurand for the same analyte. The specificity of measurement procedure towards the 

measurand is an important issue in commutability assessment, and MPs found to be non-

specific towards measurand in patient samples are more likely to be the source of 

noncommutability of RMs. Furthermore, if the origin of differences observed in measurement 

results is clearly attributed to the influence of an endogenous substance present in abnormal 

concentration (like high bilirubin concentration in samples), such difference is generally 
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considered as interference, which magnitude can be further quantified in terms of the analyte 

and interfering substance (84). 

1.2.2 Commutability in EQA programs 

   Following traceability scheme presented in Figure 1, the critical step in the attempt of 

standardisation and harmonisation of measurement results is the use of commutable secondary 

calibrator for value assignment to MPs designed for routine use with native patient samples in 

medical biochemical laboratories. The true value is assigned by the reference measurement 

procedure, preferably listed in the JCTLM database. If commutability of RMs used as common 

calibrators cannot be assured, then comparability, or harmonisation of MPs cannot be expected. 

The clear example of non-harmonisation due to the noncommutability of RM was described 

by Zengers et al. (81), on the example of observed differences in EQA results for ceruloplasmin 

between commonly used nephelometric and turbidimetric methods. All methods were traceable 

to RM ERM-DA470, certified as a common calibrator for 15 serum proteins, including 

ceruloplasmin. Although the use of the common calibrator for serum proteins resulted in the 

reduction of biases between methods for the majority of certified proteins, the results of 

ceruloplasmin showed large discrepancies between some commonly used methods. It was 

further investigated and proved that the ERM-DA470 was noncommutable for several method 

combinations, which resulted in large differences between ceruloplasmin measurements using 

these methods. The assumption on commutability can even lead to wrong conclusions on 

standardisation and applicability of MPs for patient samples, leading to even larger bias 

between methods. For example, Thienpont LM et al. (68) used 14 fresh-frozen, single donation 

sera to access the trueness of photometric methods for cholesterol and glucose measurement. 

They found that the mean biases (+5,2% for a cholesterol-oxidase method and +3,7% for 

glucose-oxidase method) were much higher than almost bias-free results observed in the EQA 

program using lyophilised samples. Li et al. (85), reported the false sense of confidence in 

measurement results of GGT coming from one instrument: the results obtained on lyophilised 

EQA samples were comparable to other used instruments, whereas the results on patient 

samples revealed the relative difference between samples from 18% to 27%. Further inspection 

of the differences revealed that the EQA samples were not commutable for this instrument, and 

thus cannot be compared to a target value and cannot be considered a substitute for patient 
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samples. In addition, calibration with noncommutable RM may even cause non-pathological 

results to change to pathological, and vice versa (68,72). Although the impact of 

noncommutable RMs on measurement results is well documented, the assessment of 

commutability is still not regularly performed and many RMs lack the information on 

commutability (44,76). Meng et al. (86) examined the commutability of ten commercial control 

materials used worldwide for triglyceride measurements and discovered that all of the materials 

showed noncommutability (both positive and negative bias) in 9 out of 14 methods investigated 

and used in Chinese laboratories. 

   The commutability of EQA samples is crucial if results from different MPs are to be 

compared in the same groups and according to the true value of the analyte. In the traceability 

era, it is EQA samples that serve as post-market vigilance tool for different products used in 

medical biochemical laboratories and are very often the unique proof to verify the 

appropriateness of manufacturers’ claims in MP (23). EQA monitoring showed on several 

occasions that even despite clear regulations towards standardisation and traceability, 

measurement results in native sera show inadequate standardisation and harmonisation even 

for most common analytes (42,68,87). The role is also educational, because the root-cause of 

observed bias has to be closely inspected, all stakeholders informed, and possible solutions 

suggested to manufacturers, regulation bodies and end users. As an example, Figure 4 presents 

the results for EQA evaluation of trueness of serum alkaline phosphatase (AP) measurement 

on fresh-frozen serum samples in a group of Italian laboratories, where authors clearly identify 

the source of recorded discrepancies in EQA results (88). Comparing the results from seven 

major instrument groups coming from the four manufacturers, they observed clear 

underestimation on Cobas systems (Roche Diagnostics) and overestimation of AP 

measurements on AU systems (Beckman Coulter), both being outside of desirable bias for the 

clinical suitability of the results. After collecting the materials and information on traceability 

and uncertainty of calibrators from the manufacturers, they found that the Roche systems use 

an outdated method on their instruments, and Beckman Coulter states the traceability to an 

internal “master” calibrator, without traceability anchorage to higher-level RMs. Despite to 

recommended standardisation approach and availability of the IFCC reference measurement 

procedure, both manufacturers fail to prove compliance with recommendations, which at the 

end results in poor harmonisation of measurement results for AP between laboratories. 
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   If commutability of EQA samples is not assured or accessed, the participating laboratories in 

EQA program cannot be evaluated according to unique target value because the difference 

observed from target value can also be attributed to noncommutability of control material. It is 

not possible to determine whether any observed biases are caused by inadequate, or 

noncommutable EQA samples, or genuine biases of evaluated methods. Such evaluation is 

restricted to forming homogenous peer-groups of participants, usually gathered on the bases of 

the manufacturer of reagents and instruments used. Peer-groups are expected to have the same 

matrix-related biases for a given EQA sample, and the evaluation is restricted to the peer-

related consensus target value. Such evaluation assures participating laboratories that they use 

MPs according to manufacturer’s specifications, and in agreement with other laboratories using 

the same technology (52). Peer-group evaluation within EQA is still a necessity for analytes 

without defined higher-order RM or method, such as lipoproteins, many hormones, tumour 

markers, etc. Although EQA programs strive to use commutable EQA samples, peer-group 

evaluation due to potential noncommutability of control material is still used by the majority 

of providers (22,42,89).  

   The EQA programs are nowadays classified into 6 categories, according to evaluation 

capabilities which are dependent on commutability of RMs, target value assignment by 

Figure 4. The alkaline phosphatase results for two EQA samples obtained by participants using 
different measuring systems shown with different colors in a Youden plot. 
(Reprinted with permission from reference 88.) 
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reference laboratory and the use of repeated samples in order to separate differences from bias 

and/or imprecision of methods (Table 2) (52,90). On the top of the classification is category 1 

EQA program with replicate commutable samples in one EQA survey with target values 

assigned by the higher order reference method. It offers the possibility for evaluation of both 

laboratories and MPs in medical biochemical laboratories, thus both standardisation 

achievements and individual laboratory performance EQA programs in categories 3 and 4 also 

use commutable samples, but have no value assignment by reference MPs, often due to the 

lack of formally recognised reference systems. Nevertheless, they provide valuable information 

on harmonisation status of laboratory measurements. Last two categories have samples that are 

most likely noncommutable and are therefore restricted to peer-group evaluation without being 

able to further inform participants on standardisation or harmonisation of MPs. 
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 *RMP- reference measurement procedure, CRM – certified reference material, MP – measurement procedure 
 

1.2.3 Methods for commutability assessment 

   Different approaches are used for assessing the commutability of RMs. The aim is to provide 

an objective evaluation of numeric relationship for measurement results of examined 

measurand in native patient samples and RMs. The approaches differ in the statistical analysis 

used to describe the relationship, the RM under study (calibrator or control), the number of 

methods for which commutability has to be assessed and the availability of reference MP for a 

given measurand. 

   Describing and evaluating the relationship between patient samples and control materials was 

initially performed using correspondence analysis (91). It is a multivariate descriptive 

technique comparing relationships, or associations between studied elements (e.g. patient 

samples and methods), plotted in the two-dimensional graphs. It provides a “snapshot” of all 

the data in graphic plots, giving information on the strength of relationships between elements, 

enabling evaluation of superimposed associations of control materials (92,93). However, it 

doesn’t provide clear numerical criteria in distinguishing commutable from noncommutable 

materials. 

Table 2. Evaluation capability of EQA related to the program design. (Reprinted with permission from 
reference 52.) 
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   The least-squares linear regression analysis in assessing commutability was proposed by 

Eckfeldt et al. (94) and it is the most used method in validating commutability of RMs. The 

protocol was initially used by College of American Pathologists (CAP) for control samples and 

was further adopted and refined in a guideline EP-14 of the Clinical and Laboratory Standards 

Institute (CLSI) (83). In this approach, the relationship between two MPs is obtained with 

patient samples using regression analysis and two-sided 95% prediction interval for future 

observations. Measurement results of RMs are further compared to the regression line and its 

prediction interval. Measurements that fall into limits of 95% prediction interval defined with 

patient samples are considered commutable whereas the measurements outside the limits are 

defined as noncommutable (Figure 5). The regression analysis offers an objective, numeric 

relationship between measurements of patient samples and processed, control samples using 

two MPs.  

 

 

 

 

Figure 5. Scatter plots of measurement results of patient samples (black circles) and processed materials 
(diamonds) on reference and routine MPs. The blue solid line is regression line and black dashed lines 
present two-tailed 95% prediction interval defined by measurements of patient sera with both MPs. The 
processed materials falling outside 95% prediction interval are considered noncommutable (red 
diamonds) and materials inside these limits are commutable (green diamonds). 
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   Initially, ordinary linear regression (ORL) was proposed for analysis. This protocol assumed 

no variability in comparative method represented on the x-axis and was thus most appropriate 

for evaluating field methods with reference methods with negligible bias. Such analysis has 

drawbacks for assessing commutability of EQA samples because numerous methods used in 

medical biochemical laboratories cannot be considered uncertainty-free, and the conclusion on 

commutability might theoretically depend on the choice of corresponding axes for each 

method. The ORL was displaced by Deming regression by some authors and in the third edition 

or the CLSI document (95) due to the advantage of allowing variability of results for both x 

and y-axes. In cases where the linear relationship between measurements with two methods 

cannot be assured, CLSI protocol and some authors suggest the use of best fitting polynomial 

regression model, with its prediction interval in validating commutability (76,83,93). 

   Following regression analysis, evaluation of normalised residuals was introduced by Franzini 

et al. (96) for assessing commutability of control materials. In this analysis, the regression line 

for two MPs is constructed using patient samples, and the distance of measurement results of 

RM from the regression line is calculated. The residuals are therefore the differences between 

the observed and predicted values from the regression analysis. Normalised residuals are 

calculated by dividing the difference with residual standard deviation (SDyx) of patient sera. 

RM is considered commutable if its normalised residual is within ± 3 SDyx, as presented in 

Figure 6. This protocol was used in commutability studies for many RMs and it was noted that 

it is sensitive to differences in the imprecision of MPs compared, where larger imprecision 

would cause wider 95% prediction interval and thus more materials to appear commutable 

(72,97,98). It was suggested that the effect of imprecision can be somewhat reduced using 

mean values of multiple replicate measurements in the analysis. Having to deal with numerous 

methods involved in measuring HDL cholesterol in an EQA program, Baadenhuijsen et. al. 

(99) described an alternate study in order to simplify the native serum acquisition needed for 

regression analysis (99). This so-called twin-study design was a multicentre protocol with the 

same patient samples (split-patient-sample) being shared between laboratories organized in 

pairs. The pairs of laboratories were formed to achieve adequate replication and coverage of 

all methods used in the EQA program. Due to the absence of unbiased reference method for 

HDL cholesterol measurement, the authors used bivariate regression analysis according to 

Passing and Bablok (100). It is a robust, distribution-free method that is not sensitive to outliers, 

does not require constant standard deviation over the measuring range and assumes variability 

in both methods under study (101). However, the prediction intervals are larger than those 

coming from the procedures based on least-squares linear regression, which may result in more 
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accepted control materials for commutability than an analysis based on least-squares linear 

regression. Adding to a larger confidence interval using distribution-free regression analysis, 

the scatter of results coming from laboratory pairs is larger, which has been seen by the authors 

as an advantage since imprecision of methods and potential matrix-effect are presented to the 

maximum degree. To minimize the effects of larger observed imprecision, the perpendicular 

distances of RMs were normalized by expressing them as multiples of the state-of-the-art 

within-laboratory SD observed in an EQA program. Using the same criteria of ± 3SD being 

acceptable (commutable), the authors were able to evaluate commutability of RM according to 

state-of-the-art criteria of their own EQA program. Once established, the commutability is 

further monitored using native spy sample with approximately the same analyte concentration. 

The ratio between results obtained with EQA sample and the native sample is compared and 

the significance of differences examined using a Student's t-test (23).  

 

 

 

 

   All these analysis models adopted statistical limits to validate commutability of RMs; using 

boundaries of 95% prediction interval or limits defined by a number of normalised residuals 

Figure 6. Commutability assessment of RM (diamonds) using normalized residuals (circles) and ±3 SD 
limits (dashed black line). Noncommutable RMs are presented as red diamonds and commutable RM 
as green diamonds. 
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from the regression analysis. In the approach from Ricos et al. (102) the RM residuals were 

expressed as percentage bias from predicted values and further compared by the biological 

variation-based criteria for bias. In addition, the authors compared three criteria in assessing 

commutability of RM in creatinine analysis: the 95% prediction interval boundaries, ± 2 

standardised residual criteria from Passing and Bablok regression and comparison of 

percentage bias observed to fixed limits of bias. It was concluded that at high concentration 

levels, all three models gave concordant results, whereas at normal and low concentrations, ±2 

standardised residual criteria were too permissive classifying more RM as being commutable. 

The observation was explained by non-constant variability along measuring range where larger 

variability can be seen with low concentration levels.  

   The difference in bias approach in the evaluation of EQA samples for measurements of HDL 

and LDL cholesterol was further investigated by two independent groups of authors (103,104). 

In both groups bias of measurements of patient samples and control samples with the associated 

uncertainty of measurements was compared to fixed criteria of allowed bias from CDC’s 

(Centers for Disease Control) Lipid Standardisation Program, considered as medical 

requirement criteria. EQA samples validated appeared to be mostly noncommutable when 

using favourable medical requirement criteria over criteria based on random error. Further 

discussed, the approach offers evaluation of RM according to clinical intended use, but the 

criteria seem to be too stringent considering the fact that if patient samples (commutable by 

definition) were evaluated according to the same criteria, only 23% - 27% were found to be 

commutable, against 83% - 87% using criteria based on random error components (104). The 

authors explain that the possible explanation lies in the specimen specific effects known to be 

influencing homogenous methods for HDL and LDL and the performance characteristics of 

MPs under evaluation.  

   The assessment of commutability using fixed criteria was very recently proposed by IFCC 

Working Group on Commutability (IFCC-WGC) (105–107). The recommendations are divided 

into three parts in order to cover many aspects of commutability: definitions and descriptions 

of RMs for which commutability assessment should be used, the experimental design, 

requirements for clinical samples and MPs included in design, evaluation criteria to determine 

commutability for various RMs and the statistical approaches in validating commutability of 

EQA samples and calibrators. The IFCC-WGC describes statistical criteria in evaluating 

commutability as less desirable and does not recommend such criteria, stressing the importance 

of applying equal limits for the same measurand using different MPs. This was recognised as 

particularly important when comparing results of the RM on MPs with different precision 
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profiles, where less precise methods would yield more materials to be commutable comparing 

to the comparison of high-precision methods with consequent narrow confidence intervals. The 

authors even suggest the initial assessment or precision profiles for individual MPs to verify 

their appropriateness, or fitness-for-purpose in commutability evaluation protocol described. 

Besides fixed commutability criterion for assessment of RMs and identification of precision of 

MPs as an important factor influencing commutability outcome, the recommendations use the 

separate experimental design for different RMs, i.e., calibrators and control samples. The 

authors recommend that commutability criteria be chosen according to the intended use of RM; 

being expressed as a fraction of uncertainty needed for calibrators to be used in traceability 

hierarchy producing allowable bias in clinical samples or expressed as a fraction of bias 

component of the APS in EQA control samples evaluation. 

   Experimental design for assessing commutability of control samples includes measuring 

clinical samples and control samples using all MPs included in commutability assessment. The 

difference in bias between an RM and average bias of clinical samples is determined, the 

uncertainty of that difference calculated (and multiplied by suitable coverage factor, usually 

1.96 for 95% level of significance), and compared to previously established “allowable bias” 

or commutability criterion range. Thus, an important part of commutability assessment is not 

only the average difference in bias observed for RM and clinical samples, but also the 

uncertainty of that bias, which has to fit in the commutability criterion for the control sample 

to be considered commutable. The uncertainty in bias has two components: uncertainty of the 

estimated bias for clinical samples and uncertainty of the estimated bias for RM, resulting in 

total uncertainty, or error bars (Figure 7) around the average difference of RM and clinical 

samples. In order to be able to estimate these uncertainties, evaluate precision profiles and 

sample-specific effects for MPs under study, assuring constant scatter across the concentration 

interval, at least 30 clinical samples should be measured in triplicate measurements. The 

uncertainty of estimated bias from clinical samples is calculated using pooled standard 

deviations from replicate measurements, after checking that the bias change from consecutive 

measurements is relatively small. If the constant width of the scatter cannot be observed, the 

transformation of the data should be used to assure approximately constant bias along the 

concentration range. The uncertainty of difference in bias for RM consists of pooled standard 

deviations of replicate measurements (at least three) and position effects (at least five). Because 

the random effects may have a significant influence on commutability decision, the IFCC-

WGC suggests that methods should be evaluated and pre-qualified for commutability 

assessment experiment, where only methods with adequate precision should be used.   
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   Figure 7 presents the example of commutability assessment recommended by IFCC-WGC 

on two combinations of MPs using fixed criteria for commutability assessment. Due to the fact 

that the difference in bias was not constant over the concentration range, the data were 

transformed to ln(concentration) to give a constant scatter.  

 

 

 

The results for methods y and x (Figure 7A) show small random error (satisfactory precision) 

and sample-specific influences whereas the results for the method z and x (Figure 7B) are more 

Figure 7.An example of commutability assessment based on the difference in bias between results for 
clinical samples (black diamonds) and 5 RMs (red squares) of MPs y and x (A) and z and x (B). The 
ordinates of the two graphs show the biases for logarithmic (ln) transformation of concentration 
compared to the mean concentration of samples (on the abscissa) on two measurements procedures. 
(Reprinted with permission from reference 106.)  
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scattered, suggesting less precision for method z and thus wider uncertainty limits of observed 

bias. RM1, RM3 and RM5 are commutable and RM2 and RM4 are noncommutable for the 

method combinations y and x. Due to the larger random effects and thus larger uncertainty of 

observed bias, only RM3 is commutable for method combinations x and z. Commutability of 

RM1, RM2, and RM5 remains inconclusive because the error bars of those materials span 

outside the fixed commutability criterion. 

   IFCC-WGC recommends the assessment of commutability of calibrators by means of their 

ability to serve as a tool for successful harmonisation of clinical samples’ measurement results 

using different MPs. Although random and sample-specific effects between MPs can cause 

different results for clinical samples, the cause of the difference can also be the bias between 

MPs. The causes for bias are all connected to calibration procedure, and possible sources are 

an inappropriate model for the calibration curve, incorrect values of the calibrators, and a 

difference in behavior between calibrator and clinical samples in MPs (different response for 

the same concentration), or noncommutability of the calibrator for those MPs. The bias caused 

by calibration with noncommutable calibrator can be reduced with the use of same, 

commutable calibrator for all MP used for measuring clinical samples. As the IFCC-WGC 

recommends, after initial evaluation of between-measurements differences for clinical 

samples, the recalibration with the calibrator under evaluation for commutability is performed, 

and the resultant differences between means for the methods are compared to previously 

established commutability criterion. If the observed differences are significant after the 

recalibration in a way to fit-in to allowed bias between methods, the calibrator is considered 

commutable. If such reduction in bias cannot be observed, the commutability cannot be 

confirmed, and other sources of calibration bias must be investigated prior to concluding on its 

commutability, such as high imprecision of the method, a poor fitting mathematical model for 

the calibration curve, individual sample-specific interferences and others. Figure 8 shows the 

recalibration effects of evaluated calibrator between 7 MPs. The between-methods differences 

for clinical samples are significantly reduced after recalibration of all MPs except for the MP6. 

Since the differences for the clinical samples measured using MP 1-5 and MP7 after 

recalibration falls into commutability criterion of ≤ 6%, the calibrator is considered 

commutable for those MPs. The commutability of calibrator MP6 cannot be confirmed and the 

manufacturer should be notified of such a conclusion. 

   The analysis of commutability according to fixed, previously established criteria according 

to the intended use of RM, seem to provide an objective assessment of commutability in various 

MPs. Using such criteria, commutability of the control samples should be assessed using a 
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commutability criterion that would be only a fraction of APS in the EQA scheme, although this 

fraction remains undefined. Furthermore, the strict prerequisites for adequate precision of 

methods to be evaluated potentially leave out many MPs used by laboratories. In addition, the 

random effects observed for clinical samples may still be very different for MPs under 

evaluation and yield larger uncertainties of the observed bias causing more materials to appear 

inconclusive or noncommutable.  

 

 

 

Figure 8. Difference in percent from the target value (trimmed mean) for 40 clinical specimens from 7 
MPs prior to recalibration (top graph) and after recalibration (bottom graph) with evaluated calibrator.  
The color of each dot is representative for the corresponding measurement procedure. Sample ID – 
Sample identification, MP 1-7 – measurement procedure 1-7. (Reprinted with permission from 
reference 107.) 
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   Since the recommendations from the IFCC-WGC were just recently published, there are still 

no published data on the application (or use) of fixed criteria in the assessment of 

commutability of control samples used in EQA. It remains to be seen whether demanding 

economic and logistic experiment design will yield the expected benefit for both participant 

laboratories and EQA providers in evaluating the control materials to be used for 

interlaboratory comparison and trueness assessment. 
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2. AIM OF RESEARCH  

Aims of this research are: 

 Assessment of commutability of EQA control samples for most common biochemical 

tests measured in medical biochemical laboratories using statistical models for 

comparison and evaluation of the significance of observed differences between 

measurements obtained on serum samples and lyophilised control samples, both 

analysed in an EQA setting.  

 Establishment of the new commutability evaluation approach, i.e. false flagging 

method: 

o Establishment of commutability limits as a maximum allowable rate of falsely 

flagging laboratories and MPs based on the results obtained on serum and 

control samples used in the EQA program; 

o Evaluation of commutability limits for control samples using APS criteria and 

intended use of control samples for assessment of laboratory and MP’s 

performance; 

o Validation of commutability limits on EQA results of CROQALM for most 

common biochemical tests (ALT, AP, AMY, AST, calcium, chloride, total 

cholesterol, CK, creatinine, GGT, glucose, HDL cholesterol, iron, LDH, 

phosphate, potassium, proteins, sodium, bilirubin, triglycerides, urate and urea). 

 Evaluation of commutability according to regression analysis recommended by widely 

used CLSI document EP14 for glucose, cholesterol, triglycerides, HDL cholesterol, 

urea, creatinine, sodium, potassium, chloride, AST, ALT and GGT on some of the most 

used instruments in CROQALM. 

 Comparison of the regression analysis (CLSI document EP14) with the proposed false 

flagging method in commutability evaluation of EQA control samples. 

 Assessment of advantages and disadvantages of the newly proposed false flagging 

method for commutability testing of control samples in the EQA program. 
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3. MATERIALS AND METHODS 

3.1 Materials  

   Materials used in commutability evaluation include native, off-the-clot serum samples from 

voluntary donors, native serum samples from voluntary donors spiked with glucose, urea, 

sodium, potassium, chloride, bilirubin, copper and residual patient serum samples collected 

after routine analysis in the medical biochemical laboratory. 

3.1.1 Native serum samples   

   Blood was collected at the Croatian Institute for Transfusion Medicine, Zagreb, Croatia,  

from voluntary donors. In order to be eligible for blood donation and this study, all blood 

donors had to meet the mandatory criteria stated in the Law on Blood and Blood Components 

(108), and no other additional criteria were required. All voluntary donors agreed and signed 

the informed consent prior to donation. A volume of 450 ml of blood was collected under sterile 

conditions in plastic bags without anticoagulant added and later used as starting material for 

EQA native serum samples. After 2-3 hours of spontaneous clotting, the blood was centrifuged, 

and off-the-clot serum collected in a second plastic bag. Centrifugation and serum collecting 

step was repeated to eliminate visible fibrin and residual cells from the material. The serum is 

tested and found negative for HCV RNA, HIV 1/2 HBV DNA, HIV Ag, anti-HIV 1/2, anti 

HCV, HBsAg and anti TP. The yield of the serum was about 170-190 mL, depending on the 

dose and clotting time. Native serum from two donors was mixed in a sterile plastic bag for 

one hour. The serum is further aliquoted in 205 sterile plastic tubes and stored at +4oC prior to 

shipment.  
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3.1.2 Spiked serum samples 

   To achieve a high level of particular measurands, appropriate amounts of native serum in the 

second and third EQA surveys were spiked with the following solutions:  

 Glucose solution (1 M), prepared by dissolving 18.02 g of D-(+)-glucose anhydrous 

(Claro-Prom, Zagreb, Croatia) in sterile deionised water (100 mL stock solution).  

 Urea solution (1 M), prepared by dissolving 6.0 g of urea (Merck KGaA, Darmstadt, 

Germany) in sterile deionised water (100 mL stock solution). 

 Solution of NaCl (1 M), prepared by dissolving 5.84 g NaCl (Merck KGaA, Darmstadt, 

Germany) in sterile deionised water (100 mL stock solution). 

 Bilirubin solution (6.3 mM), prepared by dissolving 0.37 g bilirubin (Merck KGaA, 

Darmstadt, Germany) in the mixture of 2.0 mL 0,1M Na2CO3 (Merck KGaA, 

Darmstadt, Germany) and 1.5 mL 0,1 M NaOH (Merck KGaA, Darmstadt, Germany) 

and then (subsequently, then) reconstituted in sterile deionised water (100 mL stock 

solution). The stock solution was stored in dark, protected from light.  

 Conjugated bilirubin solution (2.85 mM, 5 mL), prepared by dissolving 12.0 mg of 

bilirubin conjugate, ditaurate, disodium salt (Merck KGaA, Darmstadt, Germany) in 

5.0 mL of sterile deionised water. The stock solution was stored in dark, protected from 

light.  

 Magnesium standard (41.1 mM) (Perkin Elmer, Waltham, MA, USA). 

 Cu standard (15.74 mM) (Perkin Elmer, Waltham, MA, USA). 

 KCl, infusion concentrate (1M) (Croatian Institute for Transfusion Medicine, Zagreb, 

Croatia)  

 

Spiking solution for the second EQA survey.   The solution is prepared from stock solutions by 

mixing 2.0 mL 1 M glucose, 2.0 mL 1M urea, 4.0 mL 1M NaCl, 8 mL 6.3 mM bilirubin, 2.0 

mL Mg, and 0.2 mL Cu solutions (total volume 18.2 mL). 

EQA samples for the second survey were prepared by adding 18.2 mL of spiking solution to 

200.0 mL of previously prepared native serum. Spiked serum was further mixed for 2 hours, 

aliquoted in 205 plastic sterile tubes and stored at +4oC prior to shipment. 
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Spiking solution for the third EQA survey.   The solution is prepared by mixing 1.2 mL 1 M 

glucose, 1.2 mL 1M urea, 1.5 mL 1M NaCl, 2 mL 2.85 mM conjugated bilirubin, 1.2 mL Mg, 

and 0.1 mL KCl solutions (total volume 7.2 mL). 

Serum samples for the third EQA survey were prepared from single donor blood. After 

preparation, native serum was split into two volumes: 105.0 mL (V1) and 95.0 mL (V2). V1 

was ready to use (native serum sample) after aliquoting in 190 sterile plastic tubes. V2 was 

spiked with spiking solution for the third survey, and then mixed for two hours, aliquoted in190 

plastic tubes and stored at +4oC prior to shipment (spiked serum samples).  

3.1.3 Residual patient serum samples 

   Residual patient serum samples were collected after routine analysis in the Department of 

Laboratory Diagnostics, General Hospital Pula, Croatia. The samples were collected from 

patients which signed the informed consent on the use of the leftover material after routine 

analysis. The blood was drawn from the antecubital vein in plastic serum tubes without 

anticoagulant used. The samples were selected in a manner to meet concentration ranges 

needed to be evaluated in the CLSI protocol for commutability evaluation.  

3.1.4 Lyophilised commercial control samples 

   Three lyophilised, human-based control samples from two manufacturers were used. The 

controls were named C1/2016, C2/2016 and C3/2016, according to the use in appropriate EQA 

surveys (1-3): 

C1/2016 (EQA survey 1): SeronormTM  Human, LOT 1412548 (SERO, Billingstad, Norway); 

C2/2016 (EQA survey 2): SeronormTM  Human High, LOT 1403083 (SERO, Billingstad, 

Norway); 

C3/2016 (EQA survey 3): Human Assayed Control – Level 1, LOT HSN026 (Fortress 

Diagnostics, Antrim, UK). 
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Control materials SeronormTM Human from SERO (C1/2016 and C2/2016) are claimed to be 

“excellent choice for laboratories seeking a commutable material for both precision and 

accuracy monitoring”, whereas control material Human Assayed Control from Fortress 

diagnostics has no claims on commutability. 

Lyophilised control samples were distributed in the original vials. The material was dissolved 

in 5.0 mL of sterile deionised water (with occasional gentle mixing by inverting the vial several 

times) by participating laboratories, following written instructions. After 30 minutes, the 

samples were ready for analysis. 

 

3.2 Procedure for commutability evaluation of control samples 

using regression analysis 

   Commutability evaluation of lyophilised commercial control samples was performed on 

three occasions (December 2016, May 2017 and October 2017), according to the protocol 

recommended by CLSI guideline EP14-A3 (95). The evaluation was performed on five 

instruments: Roche Cobas 6000 c501 (Roche Diagnostics, Mannheim, Germany), Roche 

Cobas Integra 400 plus (Roche Diagnostics, Mannheim, Germany), Abbott Architect c4000 

(Abbot Laboratories, Chicago, IL, USA), Beckman Coulter AU 680 (Beckman Coulter, Brea, 

CA, USA) and Siemens Dimension Xpand (Siemens Healthineers, Newark, DE, USA ). 

Routine methods were used for analysis of 12 analytes: glucose (Hexokinase method), total 

cholesterol (Cholesterol oxidase/peroxidase – phenol/4-aminophenazone method), 

triglycerides (Glycerol phosphate oxidase/peroxidase - phenol/4-aminophenazone  method), 

HDL cholesterol (Homogeneous enzymatic method), urea (Urease/Glutamate dehydrogenase, 

method), creatinine (Compensated Jaffe method), sodium (Indirect ISE method), potassium 

(Indirect ISE method), chloride (Indirect ISE method), alanine aminotransferase (IFCC 

method), aspartate aminotransferase (IFCC method), and gamma glutamyltransferase (IFCC 

method). The instruments chosen for assessment are the ones that have the largest number of 

participants in CROQALM scheme and are mostly homogeneous systems where both 

instruments and reagents come from the same manufacturer.  



34 
 

   The 20 - 22 residual serum samples for each analyte group (glucose and lipids group; urea, 

creatinine and electrolytes group; enzymes group) were sent wrapped in cooled packages 

together with control samples to four laboratories participating in CLSI study of commutability. 

All samples were transported and analysed within 24 hours of collection. For each sample and 

analyte, the analysis was performed in triplicate measurements and the average of those is used 

for further calculations.  

   The CLSI protocol was performed on three occasions to be able to assure collecting fresh 

patient samples that would span the broad analytical range covering low, normal and high 

levels of each analyte. Besides concentration levels, the choice of the residual patient samples 

was mostly dependent on the residual volume left after routine analysis in the laboratory and 

absence of any known or visible interferences (for example haemolysis, icteria and lipemia). 

Due to the lack of reference MP for comparison, statistical analysis of results for each MP 

(based on instrument and analytical method used) was initially performed using Deming 

regression analysis, as suggested in the CLSI EP14-A3 guideline (95). The regression line was 

defined with patient samples, and a 95% prediction interval for the new observations was 

calculated according to the same recommendations.  

Considering the number of results from patient samples that were outside of proposed 95% 

prediction interval serving as a commutability criterion, the regression analysis was done 

according to the previous edition of same CLSI guideline (EP-14-A2), using simple linear 

regression analysis. The control samples whose results exceeded the limits of the 95% 

prediction interval around the regression line calculated for the patient samples were 

considered as noncommutable. 

3.3  Study design of commutability evaluation of control samples 

within EQA 

   The serum samples and control samples were analysed in three scheduled CROQALM 

surveys in March, June and September 2016. The samples were shipped to participant 

laboratories at ambient temperature together with written instructions on analysis details. The 

laboratories were instructed to analyse the samples as soon as possible after receipt, both 

lyophilised control and serum samples in the same run on the instrument, using the routine MPs 



35 
 

used in the laboratory. The outline of the EQA sample analysis in each survey is shown in 

Figure 9. 

 

 

 

 

   The number of participating laboratories in each survey varied from 180 in survey 1, 182 in 

survey 2, and 184 in survey 3, depending on the laboratories’ voluntary participation in the 

EQA study surveys. The majority of laboratories received the samples one day after shipment 

(surveys 1-3: 170/180, 170/182, 169/184, respectively) and analysed the samples promptly 

upon receipt. After analysis, the laboratories entered the results through the web interface of 

inlab2*QALM software for quality evaluation in laboratory medicine (IN2 Group Ltd., Zagreb, 

Croatia). The laboratories chose the method, instrument and reagent that they used for 

analysing the samples.  

   The participants were instructed to measure all the analytes from the biochemistry module of 

CROQALM which includes 32 parameters, if those are in the scope of the laboratory’s routine 

operation. In order to form homogeneous peer groups based on MPs used for analysis, the 

results for the same method and instrument used for each analyte were grouped together. The 

number of data received for analytes that were too few to include at least two MPs to be 

compared across three EQA surveys, were not included in the study. The results for 22 analytes 

were included in further statistical analysis: alanine aminotransferase (ALT), alkaline 

phosphatase (AP), alpha amylase (AMY), aspartate aminotransferase (AST), total calcium 

(calcium), chloride, total cholesterol (cholesterol), creatine kinase (CK), creatinine, gamma 

Figure 9. The course of sample analysis within CROQALM 

• Native serum sample
• Lyophilised control sample C1/2016
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glutamyltransferase (GGT), glucose, HDL cholesterol (HDL), iron, lactate dehydrogenase 

(LDH), inorganic phosphate (phosphate), potassium, sodium, total bilirubin (bilirubin), total 

protein (proteins), triglyceride, urate and urea. 

   The results of each MP were tested for outliers using the Grubbs (109) test at a significance 

level of 95%. Only MPs with 6 and more participants after outlier exclusion were included in 

final MPs groups for statistical analysis.  

   Table 3 shows all MPs included in the commutability evaluation of control samples within 

EQA. Overall, 143 MPs groups were formed based on a different combination of analytical 

methods and instruments used for measurements of controls and serum samples. Depending on 

the analyte, 3 to 7 different instruments were used for measurement, and considering the 

methods applied to each instrument, the number of MPs varied from 3 to 9 for each analyte.  
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Analyte  
 

Method Instrument MP 

Alanine 
aminotransferase  
(ALT) 

IFCC  
(37 oC, TRIS buffer, pH 7,15, L-
Alanine, Oxoglutarate, NADH, 
Lactate dehydrogenase, Pyridoxal 
phosphate) 
 
Photometry UV (37 oC, TRIS 
buffer, pH 7,15, L-Alanine, 
Oxoglutarate, NADH, Lactate 
dehydrogenase)   
 

Abbott Architect c  
Beckman Coulter AU  
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension  

IFCC- BC AU 
IFCC-SD 
Photometry UV-BC AU 
Photometry UV-AA 
Photometry UV-RCI 
Photometry UV-RCc 
Photometry UV-RH 
 

Alkaline 
phosphatase  
(AP) 

IFCC  
 (37 oC, 2-Amino-2-methyl-1-
propanol, pH 7,2, 4-Nitrophenyl 
phosphate, Zn2+, Mg2+, HEDTA)  

Abbott Architect c Beckman 
Coulter AU   Horiba Pentra 
Roche Cobas c 
Roche Cobas Integra Roche 
Hitachi  
Siemens Dimension  
 

IFCC- AA 
IFCC- BC AU 
IFCC- HP 
IFCC- RCc 
IFCC- RCI 
IFCC- RH 
IFCC- SD 

Alpha-amylase 
(AMY)  

IFCC  
(37 oC, HEPES, pH 7,0, 4,6-
Ethylidene(G1)-4-nytrophenyl 
(G7)-2-maltoheptaoside, Sodium 
chloride, Calcium chloride, Alpha 
–glucosidase) 
  
 Photometry, CNP-G3 
 

Abbott Architect c 
Beckman Coulter AU  
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
 

IFCC- AA 
IFCC- BC AU 
IFCC- RCc 
IFCC- RCI 
IFCC- RH 
CNP-G3- SD 

Aspartate 
aminotransferase 
(AST)  

IFCC   
(37 oC, TRIS buffer, pH 7,65, L-
aspartate, oxoglutarate, NADH, 
malate dehydrogenase, Pyridoxal 
phosphate) 
 
Photometry UV  
(37 oC, TRIS buffer, pH 7,65, L-
aspartate, oxoglutarate, NADH, 
malate dehydrogenase) 
 

Abbott Architect c    
Beckman Coulter AU    
Roche Cobas c 
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    
 

IFCC- BC AU 
IFCC- RH 
IFCC- SD 
Photometry UV-BC AU 
Photometry UV-AA 
Photometry UV-RCI 
Photometry UV-RCc 
Photometry UV-RH 
 

Total calcium 
(Calcium) 
 

Photometry, Arsenaso III 
 
Photometry, NM-BAPTA 
 
Photometry, 
cresolphthalein 
 

Abbott Architect c    
Beckman Coulter AU    
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    
 

Arsenaso III- AA 
Arsenaso III- BC AU 
NM-BAPTA- RCI 
cresolphthalein- BC AU 
cresolphthalein- RCI 
cresolphthalein- SD 
 

Chloride 
 
 

 Indirect ISE Abbott Architect c    
Beckman Coulter AU    
Siemens Dimension    
 

Indirect ISE- AA 
Indirect ISE- BC AU 
Indirect ISE- SD 
 

Table 3. MPs included in commutability study based on analytical method and instrument used for each analyte. 
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Analyte  
 

Method Instrument MP 

Total cholesterol 
(Cholesterol) 
 
 

CHOD-PAP Abbott Architect c   
Beckman Coulter AU    
Horiba Pentra  
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    
 

CHOD-PAP- AA 
CHOD-PAP- BC AU 
CHOD-PAP- HP 
CHOD-PAP- RCc 
CHOD-PAP- RCI 
CHOD-PAP- RH 
CHOD-PAP- SD 
 

Creatine kinase 
(CK) 
 

IFCC  
(37 oC, Imidazole, pH 6,5, 
Creatine phosphate, ADP, EDTA, 
Mg2+, N-aceyl-L-cysteine, AMP, 
P1P5-diAP, NADP, Hexokinase, 
Glucose-6-phosphate 
dehydrogenase  
 

Abbott Architect c    
Beckman Coulter AU   
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
 

IFCC-AA 
IFCC- BC AU 
IFCC- RCc 
IFCC-RCI 
IFCC-RH 

Creatinine 
 
 

Compensated Jaffe 
 (IDMS and NIST SRM 967 
traceable) 
 
Enzymatic  
(IDMS and NIST SRM 967 
traceable) 
 
Non-compensated Jaffe 

Abbott Architect c    
Beckman Coulter AU    
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension   

Compensated Jaffe- AA 
Compensated Jaffe- BC AU 
Compensated Jaffe- RCc 
Compensated Jaffe- RCI 
Compensated Jaffe- RH 
Compensated Jaffe- SD 
Enzymatic- BC AU 
Non-compensated Jaffe- BC 
AU 
Non-compensated Jaffe- RH 
 

Gamma 
glutamyltransferase 
(GGT) 
 

IFCC  
 (37 oC, Glycylglycine, pH 7,7, L-
y-Glutamyl-3-carboxy-4-
nitroanilide) 

Abbott Architect c    
Beckman Coulter AU   
Horiba Pentra  
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    

IFCC- AA 
IFCC- BC AU 
IFCC- HP 
IFCC-RCc 
IFCC- RCI 
IFCC- RH 
IFCC- SD 

Glucose 
 
 

GOD-PAP 
 
Hexokinase 

Abbott Architect c   
Beckman Coulter AU    
Horiba Pentra  
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension  
 

GOD-PAP- BC AU 
GOD-PAP- HP 
GOD-PAP- RH 
Hexokinase- AA 
Hexokinase- BC AU 
Hexokinase- RCc 
Hexokinase- RCI 
Hexokinase- SD 
 

HDL cholesterol 
(HDL) 

Homogeneous enzymatic Abbott Architect c    
Beckman Coulter AU    
Horiba Pentra  
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    
 

Homogeneous- AA 
Homogeneous- BC AU 
Homogeneous- HP 
Homogeneous- RCc 
Homogeneous- RCI 
Homogeneous- RH 
Homogeneous- SD 
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Analyte  
 

Method Instrument MP 

Iron 
 

Photometry, Ferene 
 
Photometry, Ferrozine 
 
Photometry, TPTZ 
 

Abbott Architect c    
Beckman Coulter AU    
Horiba Pentra  
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    
 

Ferene AA 
Ferene- HP 
Ferene- RH 
Ferene- SD 
Ferrozine- RCc 
Ferrozine- RCI 
Ferrozine- RH 
TPTZ- BC AU 
 

Lactate 
dehydrogenase 
(LDH) 

IFCC   
(37 oC , N-Methyl-D-glucamine, 
L-(+)-Lactate, NAD+ 

Abbott Architect c    
Beckman Coulter AU    
Roche Cobas c    
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    
 

IFCC- AA 
IFCC- BC AU 
IFCC- RCc 
IFCC- RCI 
IFCC- RH 
IFCC- SD 

Inorganic phosphate 
(Phosphate) 
 

Photometry, Ammonium 
molybdate 

Abbott Architect c    
Beckman Coulter AU    
Roche Cobas c  
Roche Cobas Integra  

Ammonium- molybdate- AA 
Ammonium- molybdate- BC 
AU 
Ammonium-molybdate- RCc 
Ammonium- molybdate- RCI 
 

Potassium 
 

Flame emission photometry 
(FES) 
  
Indirect ISE 

Abbott Architect c    
Beckman Coulter AU    
Ciba Corning  
Roche Cobas c  
Roche Cobas Integra  
Siemens Dimension  
 

FES- CC 
Indirect ISE- AA 
Indirect ISE- BC AU 
Indirect ISE- RCc 
Indirect ISE- RCI 
Indirect ISE- SD 
 

Sodium 
 

Flame emission photometry 
(FES) 
 
Indirect ISE 

Abbott Architect c  
Beckman Coulter AU    
Ciba Corning  
Roche Cobas c  
Roche Cobas Integra  
Siemens Dimension  
 

FES-CC 
Indirect ISE- AA 
Indirect ISE- BC AU 
Indirect ISE- RCc 
Indirect ISE- RCI 
Indirect ISE- SD 
 

Total bilirubin 
(Bilirubin) 
 

Photometry, Diazo Abbott Architect c    
Beckman Coulter AU    
Horiba Pentra  
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    

Diazo- AA 
Diazo- BC AU 
Diazo- HP 
Diazo- RCc 
Diazo- RCI 
Diazo- RH 
Diazo- SD 

Total proteins 
(Proteins) 
 

Photometry, Biuret Abbott Architect c    
Beckman Coulter AU    
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    
 

Biuret- AA 
Biuret- BC AU 
Biuret- RCc 
Biuret- RCI 
Biuret- RH 
Biuret- SD 

Triglycerides 
 

GPO-PAP Abbott Architect c    
Beckman Coulter AU    
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension   
 

GPO-PAP- AA 
GPO-PAP- BC AU 
GPO-PAP- RCc 
GPO-PAP- RCI 
GPO-PAP- RH 
GPO-PAP- SD 
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Analyte  
 

Method Instrument MP 

Urate Uricase UV 
 
Uricase/POD 

Abbott Architect c   
Beckman Coulter AU    
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    
 

Uricase- BC AU 
Uricase- RH 
Uricase- SD 
Uricase, POD- AA 
Uricase, POD- BC AU 
Uricase, POD- RCc 
Uricase, POD- RCI 
Uricase, POD- RH 
 

Urea Urease, GLDH Abbott Architect c 
Beckman Coulter AU 
Horiba Pentra  
Roche Cobas c  
Roche Cobas Integra  
Roche Hitachi  
Siemens Dimension    
 

Urease, GLDH- AA 
Urease, GLDH- BC AU 
Urease, GLDH- HP 
Urease, GLDH- RCc 
Urease, GLDH- RCI 
Urease, GLDH- RH 
Urease, GLDH- SD 
 

AA – Abbott Architect c; BC AU - Beckman Coulter AU; CC – Ciba Corning; HP - Horiba Pentra; RCc – Roche Cobas c; 
RCI - Roche Cobas Integra; RH – Roche Hitachi; SD – Siemens Dimension; PP – Pyridoxal-5'-phosphate; CNP-G3 – 2-chloro-
4-nitrophenyl-α-D-maltotrioside, NM-BAPTA - 5-nitro-5'-methyl-(1,2-bis(o-aminophenoxy)ethan-N,N,N',N'-tetraacetic acid; 
ISE – Ion-selective Electrode; CHOD-PAP – Cholesterol oxidase/peroxidase – phenol/4-aminophenazone; P1P5-diAP - P1P5-
Di(adenosine-5'pentaphosphate; P GOD-PAP – Glucose oxidase/peroxidase- phenol/4-aminophenazone ; TPTZ – 2,4,6,-
Tripyridyl-s-triazine; GPO-PAP – Glycerol phosphate oxidase/peroxidase - phenol/4-aminophenazone; POD – Peroxidase; 
GLDH – Glutamate dehydrogenase 

 
 
The results received from the analysis of serum samples are each time compared to results 

received for lyophilized control samples on the same survey.  

   Since the spiked serum sample cannot be a priori considered commutable and appropriate 

for comparison with the control sample, the property of spiked serum sample, to be a substitute 

for a native serum with a high concentration of spiked analytes, was checked in the third survey. 

Using the same commutability criteria, the native serum from the third survey and the same 

spiked serum was evaluated for commutability. Only MPs showing commutability with native 

serum sample were further used in the second survey for evaluation. 

All statistical analysis was performed using S-plus 8.0 (TIBCO Software Inc. Palo Alto, CA, 

USA) for Linux. 

3.4 Analysis of statistically significant differences between native 

serum sample and lyophilized control samples 

   Analysis of statistically significant differences between native serum samples and lyophilized 

control samples was performed using analysis of variance (ANOVA). 
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Harmonisation assessment was performed by a one-way ANOVA with MP as a factor and 

using only the data of the serum sample and a correction for simultaneous hypothesis testing 

according to Tukey (109). Significant differences between MPs would indicate a lack of 

harmonisation. Assessing commutability of a control sample was performed by a two-way 

ANOVA with the laboratory as an extra random factor. Differences between the control and 

serum sample were compared between MPs. A correction for simultaneous hypothesis testing 

was applied according to Sidak (110). A significant difference between MPs of the differences 

between the two samples may indicate the lack of commutability of the control sample for 

those MPs. All statistically significant differences are calculated at the level of P<0.05. 

3.5 False flagging method 

   To perform commutability evaluation based on pairwise comparison of MPs on serum and 

control sample, the false flagging method was introduced. Laboratories’ results for each analyte 

are compared to the consensus target value of the MP group and APS of CROQALM (111) as 

presented in Table 4. The limits of CROQALM were chosen as the ones according to which 

the control samples would be evaluated since the same limits were used for individual results 

evaluation within the EQA scheme. APS of CROQALM are mostly based on biological 

variation data published by Ricos et al. (112), hosted and updated on Westgard webpage (60). 

For sodium and chloride, ‘state of the art’ level is used, according to current technological 

possibilities.  

 

Analyte Acceptable  
deviation (%)

GLUCOSE 7 
BILIRUBIN 14 
CREATININE 9 
UREA 8 
URATE 12 
SODIUM 3 
POTASSIUM 6 
TOTAL CALCIUM 4 
PHOSPHATE 10 

Table 4. CROQALM analytical performance specifications 
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Analyte Acceptable  
deviation (%)

CHLORIDE 4 
IRON 16 
TOTAL CHOLESTEROL 9 
HDL CHOLESTEROL 12 
TRIGLYCERIDES 13 
ALANINE AMINOTRANSFERASE 14 
ASPARTATE AMINOTRANSFERASE 17 
GAMMA GLUTAMYLTRANSFERASE 12 
ALKALINE PHOSPHATASE 12 
CREATINE KINASE 16 
LACTATE DEHYDROGENASE 12 
ALPHA AMYLASE 15 
TOTAL PROTEINS 6 

 

 

The results that exceed predefined limits are flagged and the flagging rate is calculated for each 

MP under evaluation. 

A result is flagged when 

|laboratory result െ consensus target value|

consensus target value
∗ 100 ൐ allowed deviation ሺ%ሻ 

An EQA result that is obtained under optimal laboratory conditions should have only a small 

chance of being flagged. This probability is called the flagging rate and is given by: 

𝑃 ቀ𝑋 ൏ 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒ሺ1 െ ௗ

ଵ଴଴
ሻ|𝑋 ൐ 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒ሺ1 ൅ ௗ

ଵ଴଴
ሻቁ=  

2 ∗ 𝑃 ቀ𝑋 ൐ 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒ሺ1 ൅ ௗ

ଵ଴଴
ሻቁ= 

2 ∗ 𝑃 ቀ
௑ି௖௢௡௦௘௡௦௨௦ ௧௔௥௚௘௧ ௩௔௟௨௘

௦ௗ
൐ ௖௢௡௦௘௡௦௨௦ ௧௔௥௚௘௧ ௩௔௟௨௘∗ௗ

௦ௗ∗ଵ଴଴
ቁ= 

2 ∗ 𝑃 ൬𝑍 ൐
𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑑

𝑠𝑑 ∗ 100
൰ 

 

where X stands for a reported EQA value, d stands for the value of the APS, sd stands for the 

standard deviation of the reported results and Z stands for a value of a standard normal 

distribution (with mean 0 and standard deviation 1), which is to be found in statistical textbooks 

or is given by appropriate statistical software.  

The formula may also be rewritten as: 

flagging rate=2 ∗ 𝑃 ቀ𝑍 ൐ ௗ

஼௏
ቁ  
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with CV the coefficient of variation of the reported results. In other words, the larger d is with 

respect to the CV for a given MP, the lower the flagging rate. 

 

   For assessing commutability for a sample for two methods, two cases are considered: the first 

case is when the results of the two MPs are joined into one peer group and the second case is 

when the results of the two MPs are evaluated in two separate peer groups. The differences in 

flagging rate are calculated between the case where the MPs are joined in one group and the 

case when they are in separate groups. This calculation is performed for the control sample on 

the one hand and for the serum sample on the other hand. The control sample is considered as 

commutable if the differences obtained for the control sample and for the serum sample are 

close to each other. Flagging rate differences that exceed the maximum allowable rate of 20% 

for any pairwise comparison of MPs is considered a false flagging rate and set as a 

commutability limit of control materials (Figure 10). By allowing the 5% change on each side 

of the curve, the total change for one curve, or MP, is 10%, and for two MPs evaluated in each 

set of analysis, this yields 20% change in flagging rate.  
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Figure 10. Scheme of a false flagging method for commutability evaluation. 
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The probability that the limit of 20% of the false flagging rate is exceeded can be calculated 

using the mean, standard deviation and number of data in each group. Considering the fact that 

the mean and the standard deviation of the certain data series are variable and slightly different 

each time the data is collected, it is important to calculate the chance that the upper limit of 

20% points false flagging rate would ever be exceeded, taking into account the current mean, 

standard deviation and the number of data. This probability is obtained using bootstrapping 

(113). Starting from the certain data series, a new series is made that consists of random 

selecting (sampling) data that are the part of initial data series, in which a certain value can 

occur more than once. The probability of changed flagging is calculated using 1000 

bootstrapped samples of the originally reported results.  

 

The commutability evaluation of lyophilised control samples for each pairwise comparison of 

MPs is performed using the following approach:  

1. Serum sample: For each pair of MPs calculate the consensus target value and standard 

deviation two times: once for each MP apart by using the consensus target value for each 

MP apart, and once for the two MPs together using a consensus target value calculated after 

joining the results of the two MPs into one group. Calculate in both cases the probability 

of flagging according to the consensus target value, the standard deviation, and defined 

APS. False flagging is defined as the difference in flagging rate between the case when the 

MPs are evaluated apart and when they are put into one group. 

2. Lyophilised commercial control sample: For each pair of MPs calculate the consensus 

target value and standard deviation two times: once for each MP apart by using the  

consensus target value for each MP apart, and once for the two MPs together using a 

consensus target value calculated after joining the results of the two MPs into one group. 

Calculate in both cases the probability of flagging according to the consensus target value 

the standard deviation, and defined APS. 

The false flagging rate between two MPs observed on lyophilised control samples should 

be similar to the false flagging rate observed on serum sample if the control material is 

commutable. The maximum allowed difference in the false flagging rate of control material 

compared to the serum sample was set to 20% points.  

3. Create 1000 bootstrapped samples (set of results) for each MP and EQA sample (serum 

and lyophilised commercial control sample) - sampling with replacement. Repeat steps 1 

and 2 for each bootstrapped sample. Calculate the false flagging rate for each bootstrapped 
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sample as the difference in flagging rate between lyophilised control samples and serum 

samples. 

4. Calculate the percentage commutability as the percentage of bootstrapped samples not 

exceeding the predefined limit of 20%point difference falsely flagged results between 

control and fresh sample. 

Lyophilised commercial control samples are defined as commutable for assessed MPs 

combination if percentage commutability is ≥ 95%. The control samples are defined as 

noncommutable if the percentage commutability is < 95%. The 95%-acceptance criteria were 

chosen as the usual 95%-significance confidence level used in statistical inference. 

   To quantify the initial harmonisation between two MPs, the same logic of falsely flagged 

results is applied. If the results from two MPs are harmonised, the false flagging rate does not 

change substantially if the methods are joined into one group and individual results evaluated 

according to unique target value compared to a separate evaluation per MP. The change in false 

flagging rate above the predefined limit can be observed for nonharmonised MPs, yielding a 

larger proportion of laboratories to be flagged when two groups are joined. The initial 

harmonisation between MPs is evaluated using the analysis results of a serum sample. The 

change in flagging rate when the results from two MPs are joined and evaluated within one 

peer group is considered as false flagging rate. The limit of 20% of the false flagging rate is 

used for defining harmonisation between methods. If the results from two MPs differ 

substantially such that joining groups results in more than 20% falsely flagged results, the MPs 

are considered nonharmonised. The flagging rate within the predefined limit of 20% is 

observed for harmonised MPs. The percentage harmonisation is calculated as the percentage 

of bootstrapped samples not exceeding the false flagging limit on native serum samples. MPs 

are defined as harmonised if percentage harmonisation is ≥ 95%. 

 

   Based on the percentage of MP combinations commutable for an analyte, the analyte-related 

commutability of lyophilised control materials are further classified as follows: (1) Full 

commutability, commutable for all MPs combinations used in measurements of corresponding 

analyte; (2) High commutability, noncommutable for < 20% MPs combinations used in 

measurement of stated analyte; (3) Moderate commutability, noncommutable for 20 - 60% MPs 

combinations used in measurement of stated analyte and (4) Noncommutability (NC), 

noncommutable for > 60 % MPs combinations used in the measurement of stated analyte. The 

criteria for this classification was subjectively chosen in order to allocate the control samples 

to different classes according to the need for future evaluations, where fully commutable and 
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noncommutable controls would not need any future assessment of commutability. In the 

attempt to be able to compare commutability results of evaluated MP pairs using regression 

analysis and proposed false flagging method for commutability evaluation, the classes high 

commutability and moderate commutability were introduced. 
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4. RESULTS  

4.1 Commutability evaluation of control samples using regression 

analysis 

   As the first step in commutability evaluation of control samples, regression analysis is 

performed. Twenty to twenty-two residual patient serum samples spanning the broad 

concentration range of evaluated analytes were measured in the same run on the instrument as 

three control samples, according to the procedure 3.2 in Material and methods section. The 

results for sodium, potassium and chloride for Cobas Integra were excluded from further 

analysis due to large unexplained differences observed for control samples. The lyophilised 

control sample from EQA survey 2 was excluded from the analysis of commutability for 

triglycerides because the results for that control sample largely exceeds the concentration range 

measured in patient samples.  

   Median concentrations of control samples measured in participating laboratories are listed in 

Table 5. The concentration ranges for two controls (C1/2016 and C3/2016) represent the 

normal or low pathological concentration ranges considering appropriate reference intervals 

for stated analytes, whereas the concentration ranges in the control C2/2016 correspond to the 

pathological concentration levels.  

   When the measurement results of patient samples were plotted on the appropriate graphs 

showing regression line and 95% prediction interval, we observed too many results were 

outside of the proposed interval. A number of patients outside the limits of prediction interval 

was 419/2280 (18.4%) for all pairwise combinations of MPs. This clearly showed that the 

width of the prediction interval suggested in CLSI guideline was too narrow, not consisted of 

neither nearly 95% of measured results from patients. The percentage of patient results outside 

of the prediction interval of the Deming regression line was as high as 52.9% for some pairwise 

combinations of MPs. The range of total patients outside the limits of prediction interval for 

each analyte and all evaluated MP pairs was 10.9 - 39.2%. Such observation led to the 

conclusion that the regression analysis used for evaluation of commutability of control samples 

has to be changed since it is the prediction interval itself that is used as a commutability 

criterion.  



49 
 

Analyte (Units)  

 

Method C1/2016 C2/2016 C3/2016

Alanine aminotransferase (U/L) IFCC 

Photometry UV 

41 140 30 

Aspartate aminotransferase (U/L) IFCC 

Photometry UV 

42 216 38 

Chloride (mmol/L) Indirect ISE 112 132 103 

Cholesterol (mmol/L) CHOD-PAP 4.1 6.0 6.5 

Creatinine (μmol/L) Compensated 

Jaffe 

78 248 185 

Gamma glutamyltransferase (U/L) IFCC 36 144 59 

Glucose (mmol/L) Hexokinase 4.1 10.2 4.4 

HDL cholesterol (mmol/L) Homogenous 

enzymatic 

1.1 1.6 1.8 

Potassium (mmol/L) Indirect ISE 3.5 5.8 3.9 

Sodium (mmol/L) Indirect ISE 138 166 145 

Triglycerides (mmol/L) GPO-PAP 1.1 4.6 2.1 

Urea (mmol/L) Urease, GLDH 4.9 13.2 5.6 

C1/2016, C2/2016, C3/2016 – commercial control samples evaluated in three EQA surveys, IFCC – International 
Federation of Clinical Chemistry and Laboratory Medicine, ISE – Ion Selective Electrode, CHOD-PAP – 
Cholesterol oxidase/peroxidase- phenol/4-aminophenazone, GPO-PAP - Glycerol phosphate oxidase/peroxidase 
- phenol/4-aminophenazone, GLDH – Glutamate dehydrogenase. 
 
 
The choice of regression analysis to be used for analysis was made after graphical inspection 

of the width of prediction intervals proposed for Passing and Bablok and simple linear 

regression analysis (Figure 11) and by calculating the number of patient results that would fit 

into the proposed interval. The percentage of results being outside the limits of 95% prediction 

interval was 1.3 using Passing and Bablok regression analysis and 2.9 using ordinary linear 

regression. For these reasons, the linear regression was further used in commutability 

evaluation of control samples.  

 

Table 5. Median concentrations of analytes in control samples assessed in CLSI commutability study 
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Figure 11. Commutability evaluation of control samples for HDL cholesterol using regression 
analysis: different kinds of 95% prediction intervals. The blue dots present the measurement results of 
control samples (C1-C3/2016) using homogenous enzymatic method with all evaluated instruments 
compared to Roche Cobas c (RCc): Beckman Coulter AU (BC AU), Roche Cobas Integra (RCI), 
Siemens Dimension (SD) and Abbott Architect (AA). The graphs show the Deming regression line 
(black solid line) and the 95% prediction intervals recommended in CLSI EP14-A3 (Deming regression 
- dashed lines), CLSI EP14-A2 (simple linear regression - dotted lines) and Passing and Bablok 
regression (dot-dashed lines).  
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   An illustrative example of commutability evaluation recommended by CSLI is presented on 

the example of HDL cholesterol in Figure 12. The results of measurement of HDL cholesterol 

in patient sera (black dots) on different MPs were plotted on the corresponding graphs for each 

MPs pair and the regression line, together with the 95% prediction interval. The width of the 

prediction interval depends on the uncertainty around the relationship between the 

measurements of the serum samples by two MPs. The blue dots representing the measurement 

results of control samples using the same MPs are plotted on the same graphs. The control 

samples that fall outside of the 95% prediction interval calculated in regression analysis are 

considered noncommutable. Commutability results for corresponding MPs combinations are 

presented in Table 6. All three control samples are noncommutable for homogeneous 

enzymatic method on instruments Roche Cobas c and Roche Cobas Integra, as well as a 

homogeneous enzymatic method on instruments Roche Cobas c and Abbott Architect. On the 

contrary, the controls are fully commutable for homogeneous enzymatic method on 

instruments Roche Cobas c and Siemens Dimension. 
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Table 6. Commutability results of regression analysis of control materials for HDL cholesterol using 
homogeneous enzymatic assays for all instruments compared to Roche Cobas c. 

Control 

sample 

 Roche Cobas 

Integra 

Abbott 

Architect 

Beckman  

Coulter AU 

Siemens 

Dimension 

C1/2016 

R
oc

h
e 

C
ob

as
 c

 NC NC C C 

C2/2016 NC NC NC C 

C3/2016 NC NC NC C 

NC – noncommutable, C – commutable

Figure 12. Commutability assessment of control samples for HDL cholesterol measurement using 
linear regression analysis. The graphs show the regression line (black solid line) and the 95% prediction 
interval around the regression line (black dashed lines) of measurement results of patient serum samples 
(black circles). The blue dots present the measurement results of control materials (C1-C3/2016) using 
homogenous enzymatic method with all assessed instruments compared to Roche Cobas c (RCc): 
Roche Cobas Integra (RCI), Beckman Coulter AU (BC AU), Siemens Dimension (SD) and Abbott
Architect (AA). 
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  The results of commutability assessment of EQA control samples (C1/2016, C2/2016 and 

C3/2016) for investigated analytes using routine MPs on five instruments are presented in 

Tables 7 - 9. All three control samples were found fully commutable for all combinations of 

MPs used for measurement of potassium, sodium and GGT. Considering the number of 

commutable decisions throughout all MPs accessed, the controls are also highly commutable 

for AST (only one noncommutable decision) and triglycerides in the controls of the normal 

range. 

   The control C1/2016 showed to be noncommutable for 5 MP combinations for HDL 

cholesterol, total cholesterol and for 6 MP combination for glucose (Table 7). Out of the total 

7 MPs combinations assessed for chloride, the control sample was noncommutable for 3 MPs 

combinations. Except for one MPs combination for ALT, C1/2016 showed to be commutable 

for all MP used for measuring potassium, sodium, creatinine, urea, GGT, AST and ALT. 

   The control C2/2016 showed similar patterns of noncommutability as C1/2016 for HDL-

cholesterol, total cholesterol and glucose, with noncommutability being found for even more 

MPs combinations. The commutability of the control sample was somewhat better for chloride, 

but markedly worse for creatinine, with 7 noncommutable MPs combinations of total 10. 

   Although being from the different manufacturer, the control 3/2106 also showed high 

noncommutability for HDL cholesterol, total cholesterol, glucose, chloride and creatinine, with 

the addition to being also noncommutable for 6 MPs combinations for ALT. 
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Instrument pair 

 

HDL 

 

Triglycerides Cholesterol Glucose Chloride Potassium Sodium Creatinine Urea GGT AST ALT

AA - BC NC C C NC C C C C C C C C 

AA - RCc NC C C C C C C C C C C C 

AA - RCI NC C NC C / / / C C C C C 

AA - SD NC C NC NC NC C C C C C C C 

BC - RCc C C C NC NC C C C C C C C 

BC - RCI C NC C NC / / / C C C C NC 

BC - SD C C NC C NC C C C C C C C 

RCc- RCI NC C C C / / / C C C C C 

RCc - SD C C NC NC C C C C C C C C 

RCI - SD C NC NC NC / / / C C C C C 

NC – noncommutable, C – commutable, AA - Abbott Architect c4000, BC - Beckman Coulter AU, RCc - Roche Cobas 6000 c501,  
RCI - Roche Cobas Integra 400, SD - Siemens Dimension Xpand 

Table 7. Summary of commutability conclusions according to regression analysis for EQA control sample C1/2016  
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Instrument pair 

 

HDL 

 

Cholesterol Glucose Chloride Potassium Sodium Creatinine Urea GGT AST ALT

AA - BC NC C C C C C NC C C C C 

AA - RCc NC NC NC C C C NC NC C C C 

AA - RCI NC C C / / / NC NC C C C 

AA - SD NC NC NC NC C C NC C C C C 

BC - RCc NC NC NC C C C NC C C C C 

BC - RCI NC C C / / / NC C C C C 

BC - SD NC NC NC C C C C C C C C 

RCc- RCI NC C C / / / C C C NC C 

RCc - SD C NC NC C C C NC C C C C 

RCI - SD NC NC NC / / / C C C C C 

NC – noncommutable, C – commutable, AA - Abbott Architect c4000, BC - Beckman Coulter AU, RCc - Roche Cobas 6000 c501,  
RCI - Roche Cobas Integra 400, SD – Siemens Dimension Xpand 

Table 8. Summary of commutability conclusions according to regression analysis for EQA control sample C2/2016 
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Instrument pair 

 

HDL 

 

Triglycerides Cholesterol Glucose Chloride Potassium Sodium Creatinine Urea GGT AST ALT

AA - BC C C NC C C C C NC C C C C 

AA - RCc NC C C NC NC C C NC C C C C 

AA - RCI NC C C C / / / NC C C C C 

AA - SD NC C NC NC NC C C C C C C NC 

BC - RCc NC C NC NC NC C C C C C C NC 

BC - RCI NC NC NC C / / / C C C C C 

BC - SD NC C C C NC C C NC C C C NC 

RCc- RCI NC C C C / / / C C C C NC 

RCc - SD C C NC NC NC C C NC C C C NC 

RCI - SD NC NC NC NC / / / NC C C C NC 

NC – noncommutable, C – commutable, AA - Abbott Architect c4000, BC - Beckman Coulter AU, RCc - Roche Cobas 6000 c501,  
RCI - Roche Cobas Integra 400, SD - Siemens Dimension Xpand

Table 9. Summary of commutability conclusions according to regression analysis for EQA control sample C3/2016 
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4.2 Commutability evaluation of control samples within EQA  

4.2.1 Statistical significance of differences between control and human 

samples 

   Three serum and control samples were analysed by 180 – 184 laboratories participating in 

the EQA surveys at the same time using appropriate MPs. The measurement results for each 

analyte on these two types of samples were recorded and MPs with at least 6 results were 

further assessed in commutability evaluation. The total of 143 MPs used in the measurement 

of 22 analytes from the biochemistry module in CROQALM were formed.  

   The difference between measurement results for each analyte with control and serum samples 

were calculated. It was expected that for commutable control samples, these differences would 

be similar, not significantly different. In order to evaluate these differences among various MPs 

used for measurement of an analyte, the ANOVA approach described in section 3.4 was used 

to evaluate observed differences between differences in the measurement of the analyte with 

control and serum samples. 

   Figures 13-15 represent the differences of medians obtained for control and serum samples 

in dependence on MP. It can be seen from the figures that parallel lines, corresponding to 

measurements with different MPs, are expected with commutable control samples. Significant 

differences among measurements of serum and control samples result in lines getting closer or 

further apart from each other. The differences can also be presented by means of vertical bars, 

where the height of the bars represents the difference between the results of serum and control 

sample. The graphs are also showing the degree of harmonisation between MPs, presented as 

differences between results from MPs on serum samples.  
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Figure 13 gives a strong indication of commutability of control sample C2/2016 for all MPs 

used for urea measurement. This observation is also confirmed by the ANOVA result of 

differences between C2/2016 and serum differences on each MP, as presented in Table 10. 

Figure 13. Graphical presentation of differences among measurements of control and serum samples 
for urea. Codes 1-7 represent assessed MPs: Urease, GLDH -AA (1); Urease, GLDH -BC AU (2); 
Urease, GLDH -HP (3); Urease, GLDH -RCc (4); Urease, GLDH -RCI (5); Urease, GLDH -RH (6); 
Urease, GLDH -SD (7). The upper graph shows the linear plot of medians of reported results for each
MP, whereas the differences of these medians are presented as bar plots on the graph below. 
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Diff. - difference between control and serum sample differences for each MPs pair, C – commutable, NC - 
noncommutable 
 

 

A larger difference between cholesterol measurements for control and serum sample can be 

observed in Figure 14 for CHOD-PAP-SD compared to other MPs. It can be seen that the 

difference for that instrument is substantially larger than for the other instruments used for 

cholesterol measurement. 

  

MPs for comparison Diff* 95% CI P-value Commutability 

Urease,GLDH –AA/Urease,GLDH -BC AU  0.06 (-0.21 - 0.32) 0.9953 C 

Urease,GLDH –AA/Urease,GLDH -HP  0.01 (-0.41 - 0.42) 0.9999 C 

Urease,GLDH –AA/Urease,GLDH -RCc  -0.03 (-0.36 - 0.29) 0.9999 C 

Urease,GLDH –AA/Urease,GLDH -RCI  0.04 (-0.29 - 0.36) 0.9999 C 

Urease,GLDH –AA/Urease,GLDH -RH  0.06 (-0.24 - 0.36) 0.9975 C 

Urease,GLDH –AA/Urease,GLDH -SD  -0.01 (-0.36 - 0.34) 0.9999 C 

Urease,GLDH -BC AU/Urease,GLDH -RCc  -0.09 (-0.33 - 0.15) 0.917 C 

Urease,GLDH -BC AU/Urease,GLDH -RCI  -0.02 (-0.25 - 0.21) 0.9999 C 

Urease,GLDH -BC AU/Urease,GLDH -RH  0 (-0.2 - 0.2) 0.9999 C 

Urease,GLDH -BC AU/Urease,GLDH -SD  -0.07 (-0.33 - 0.2) 0.9886 C 

Urease,GLDH –HP/Urease,GLDH -RCc  -0.04 (-0.44 - 0.36) 0.9999 C 

Urease,GLDH –HP/Urease,GLDH -RCI  0.03 (-0.36 - 0.43) 0.9999 C 

Urease,GLDH -RCc /Urease,GLDH -RCI  0.07 (-0.23 - 0.38) 0.9921 C 

Urease,GLDH –RCc/Urease,GLDH -RH  0.09 (-0.19 - 0.37) 0.9587 C 

Urease,GLDH –RCc/Urease,GLDH -SD  0.02 (-0.3 - 0.35) 0.9999 C 

Urease,GLDH –RCI/Urease,GLDH -RH  0.02 (-0.26 - 0.3) 0.9999 C 

Urease,GLDH –RCI/Urease,GLDH -SD  -0.05 (-0.37 - 0.27) 0.9995 C 

Urease,GLDH –RH/Urease,GLDH -SD  -0.07 (-0.37 - 0.23) 0.9939 C 

Table 10. The statistical analysis of differences between C2/2016 control and serum sample 
differences for each pairwise comparison of MPs used for measurement of urea. 
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The statistically significant difference of differences between control and serum sample was 

observed for all pairwise comparison of MPs including CHOD-PAP- SD, leading to the 

conclusion of noncommutability of this MP for the assessed control sample (Table 11). Table 

11 also reveals that the MP comparisons including CHOD-PAP-BC AU show 

noncommutability in 4/6 pairwise comparisons with this instrument. Overall, the control 

sample is noncommutable for 9/21 MP pairs evaluated.  
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Figure 14. Graphical presentation of differences among measurements of control and serum sample for 
cholesterol. Codes 1-7 represent assessed MPs: CHOD-PAP- AA (1), CHOD-PAP- BC AU (2), CHOD-PAP-
HP (3), CHOD-PAP - RCI (4), CHOD-PAP - RCc (5), CHOD-PAP -RH (6), CHOD-PAP - SD (7). The upper 
graph shows the linear plot of medians of reported results for each MP, whereas the differences of these 
medians are presented as bar plots on the graph below. 
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MPs for comparison 
 

Diff* 95% CI P-value Commutability 

CHOD-PAP - AA- CHOD-PAP - BC AU 0.12 (-0.01-0.25) 0.0734 C 

CHOD-PAP - AA- CHOD-PAP - HP -0.04 (-0.24-0.16) 0.9965 C 

CHOD-PAP - AA- CHOD-PAP - RCc -0.03 (-0.19-0.13) 0.9982 C 

CHOD-PAP - AA- CHOD-PAP - RCI -0.04 (-0.19-0.12) 0.9925 C 

CHOD-PAP - AA- CHOD-PAP - RH -0.05 (-0.19-0.1) 0.9659 C 

CHOD-PAP - AA- CHOD-PAP - SD 0.46 (0.29-0.63) 0.0001 NC 

CHOD-PAP - BC AU- CHOD-PAP - HP -0.16 (-0.33-0.01) 0.0626 C 

CHOD-PAP - BC AU- CHOD-PAP - RCc -0.15 (-0.27-(-0.03)) 0.0033 NC 

CHOD-PAP - BC AU- CHOD-PAP - RCI -0.15 (-0.26-(-0.05)) 0.0002 NC 

CHOD-PAP - BC AU- CHOD-PAP - RH -0.16 (-0.26-(-0.07)) 0.0001 NC 

CHOD-PAP - BC AU- CHOD-PAP - SD 0.34 (0.21-0.47) 0.0001 NC 

CHOD-PAP - HP- CHOD-PAP - RCc 0.01 (-0.18-0.21) 0.9999 C 

CHOD-PAP - HP- CHOD-PAP - RCI 0.01 (-0.18-0.19) 0.9999 C 

CHOD-PAP - HP- CHOD-PAP - RH 0 (-0.18-0.18) 0.9999 C 

CHOD-PAP - HP- CHOD-PAP - SD 0.5 (0.3-0.7) 0.0001 NC 

CHOD-PAP - RCc- CHOD-PAP - RCI -0.01 (-0.15-0.14) 0.9999 C 

CHOD-PAP - RCc- CHOD-PAP - RH -0.02 (-0.15-0.12) 0.9999 C 

CHOD-PAP - RCc- CHOD-PAP - SD 0.49 (0.32-0.65) 0.0001 NC 

CHOD-PAP - RCI- CHOD-PAP - RH -0.01 (-0.13-0.11) 0.9999 C 

CHOD-PAP - RCI- CHOD-PAP - SD 0.49 (0.34-0.65) 0.0001 NC 

CHOD-PAP - RH- CHOD-PAP - SD 0.5 (0.36-0.65) 0.0001 NC 

Diff. - difference between control and serum sample differences for each MP pair, C – commutable, NC - 
noncommutable 
 

 

The differences among measurements of control and serum sample for creatinine are presented 

in Figure 15. Besides indicating noncommutability of C1/2016 for some MPs combinations, 

graphical presentation of results strongly suggests the lack of harmonisation of MPs used for 

creatinine measurement considering the differences of results seen on the serum samples (blue 

line). As presented in Table 12, the control C1/2016 was found noncommutable for 6/36 MPs 

evaluated.  

 

Table 11. The statistical analysis of differences between C1/2016 control and serum sample 
differences for each pairwise comparison of MPs used for measurement of cholesterol. 
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Figure 15. Graphical presentation of differences among measurements of control and serum sample for
creatinine. Codes 1-7 represent assessed MPs: Compensated Jaffe- AA (1), Compensated Jaffe- BC AU (2),
Compensated Jaffe- RCc (3), Compensated Jaffe- RCI (4), Compensated Jaffe- RH (5), Compensated Jaffe- SD
(6), Enzymatic method-BC AU (7), Non-compensated Jaffe- BC AU (8), Non-compensated Jaffe- RH (9). The
upper graph shows the linear plot of medians of reported results for each MP, whereas the differences of these
medians are presented as bar plots on the graph below. 
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MPs for comparison 
 

Diff. 95% CI 
 

P-
value

Comm. 

Compensated Jaffe-AA- Compensated Jaffe-BC AU 2.4 (-2.4-7.2) 0.8152 C 
Compensated Jaffe-AA- Compensated Jaffe-RCc -5.3 (-11.01-0.41) 0.0821 C 
Compensated Jaffe-AA- Compensated Jaffe-RCI -0.58 (-6.11-4.94) 0.9999 C 
Compensated Jaffe-AA- Compensated Jaffe-RH -1.09 (-6.42-4.24) 0.9994 C 
Compensated Jaffe-AA- Compensated Jaffe-SD 3.22 (-2.6-9.05) 0.7167 C 
Compensated Jaffe-AA- Enzymatic method-BC AU 0.09 (-5.6-5.77) 0.9999 C 
Compensated Jaffe-AA- Non-compensated Jaffe-BC AU 1.66 (-3.45-6.76) 0.9835 C 
Compensated Jaffe-AA- Non-compensated Jaffe-RH -0.75 (-6.72-5.22) 0.9999 C 
Compensated Jaffe-BC AU- Compensated Jaffe-RCc -7.7 (-11.56-(-3.84)) 0.0001 NC 
Compensated Jaffe-BC AU- Compensated Jaffe-RCI -2.99 (-6.57-0.6) 0.1756 C 
Compensated Jaffe-BC AU- Compensated Jaffe-RH -3.49 (-6.77-(-0.22)) 0.0222 NC 
Compensated Jaffe-BC AU- Compensated Jaffe-SD 0.82 (-3.21-4.85) 0.9994 C 
Compensated Jaffe-BC AU- Enzymatic method-BC AU -2.31 (-6.14-1.51) 0.6074 C 
Compensated Jaffe-BC AU- Non-compensated Jaffe-BC AU -0.75 (-3.64-2.15) 0.9965 C 
Compensated Jaffe-BC AU- Non-compensated Jaffe-RH -3.15 (-7.39-1.09) 0.313 C 
Compensated Jaffe-RCc- Compensated Jaffe-RCI 4.72 (-0.02-9.45) 0.0444 NC 
Compensated Jaffe- RCc- Compensated Jaffe-RH 4.21 (-0.29-8.71) 0.077 C 
Compensated Jaffe-RCc- Compensated Jaffe-SD 8.52 (3.44-13.6) 0.0001 NC 
Compensated Jaffe-RCc- Enzymatic method-BC AU 5.39 (0.47-10.31) 0.0163 NC 
Compensated Jaffe-RCc- Non-compensated Jaffe-BC AU 6.96 (2.72-11.19) 0.0001 NC 
Compensated Jaffe-RCc- Non-compensated Jaffe-RH 4.55 (-0.69-9.79) 0.1347 C 
Compensated Jaffe-RCI- Compensated Jaffe-RH -0.51 (-4.77-3.76) 0.9999 C 
Compensated Jaffe-RCI- Compensated Jaffe-SD 3.81 (-1.07-8.68) 0.2495 C 
Compensated Jaffe-RCI- Enzymatic method-BC AU 0.67 (-4.03-5.38) 0.9999 C 
Compensated Jaffe- RCI- Non-compensated Jaffe-BC AU 2.24 (-1.74-6.22) 0.698 C 
Compensated Jaffe- RCI- Non-compensated Jaffe-RH -0.17 (-5.21-4.88) 0.9999 C 
Compensated Jaffe-RH- Compensated Jaffe-SD 4.31 (-0.34-8.96) 0.0829 C 
Compensated Jaffe-RH- Enzymatic method - BC AU 1.18 (-3.29-5.65) 0.9959 C 
Compensated Jaffe-RH- Non-compensated Jaffe-BC AU 2.75 (-0.96-6.45) 0.3182 C 
Compensated Jaffe-RH- Non-compensated Jaffe-RH 0.34 (-4.49-5.17) 0.9999 C 
Compensated Jaffe-SD- Enzymatic method-BC AU -3.13 (-8.19-1.92) 0.5728 C 
Compensated Jaffe-SD- Non-compensated Jaffe-BC AU -1.57 (-5.96-2.82) 0.9702 C 
Compensated Jaffe-SD- Non-compensated Jaffe-RH -3.97 (-9.34-1.4) 0.321 C 
Enzymatic method-BC AU- Non-compensated Jaffe-BC AU 1.57 (-2.63-5.77) 0.961 C 
Enzymatic method - BC AU- Non-compensated Jaffe-RH -0.84 (-6.06-4.38) 0.9999 C 
Non-compensated Jaffe-BC AU- Non-compensated Jaffe-RH -2.41 (-6.99-2.17) 0.7704 C 

Diff - difference between differences of control and serum sample for each MP pair, Comm – commutability, C 
– commutable, NC - noncommutable 
 

 

Table 12. The statistical analysis of differences between C1/2016 control and serum sample differences for 
each pairwise comparison of MPs used for measurement of creatinine. 
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The overall number of noncommutable MP pairs and percentages of noncommutable decisions 

per analyte is presented in Table 13.  

 

 Analyte 1st EQA survey 2nd EQA survey 3rd EQA survey 

MP 

pairs 

NC %NC MP 

pairs 

NC %NC MP 

pairs 

NC %NC 

ALT 21 7 33.3 15 5 33.3 21 11 52.4 

AP 21 6 28.6 15 4 26.7 21 10 47.6 

AMI 10 6 60.0 15 11 73.3 15 / / 

AST 28 / / 20 12 60.0 20 15 75.0 

Calcium 15 / / 10 / / 15 2 13.3 

Chloride 3 2 66.7 3 3 100 3 2 66.7 

Cholesterol 21 9 42.9 15 5 33.3 15 7 46.7 

CK 10 2 20.0 10 / / 15 3 20.0 

Creatinine 36 7 19.4 24 7 29.2 36 29 80.6 

GGT 15 7 46.7 13 2 15.4 15 10 66.7 

Glucose 28 1 3.6 15 4 26.7 21 5 23.8 

HDL 21 18 85.7 15 12 80.0 15 11 73.3 

Iron 28 2 7.1 21 3 14.3 28 7 25.0 

LDH 15 / / 15 / / 15 / / 

Phosphate 6 / / 6 3 50.0 6 / / 

Potassium 10 / / 10 3 30.0 15 4 26.7 

Sodium 15 / / 15 4 26.7 15 7 46.7 

Bilirubin 21 6 28.6 6 3 50.0 15 4 26.7 

Proteins 15 / / 15 2 13.3 15 / / 

Triglycerides 10 1 10.0 10 6 60.0 10 1 10.0 

Urate 45 10 22.2 32 3 9.4 36 8 22.2 

Urea 21 3 14.3 18 / / 21 4 19.0 

Total 415 87 21.0 315 89 28.3 388 140 36.1 

MP-measurement procedure, NC-noncommutable 

Table 13. The number of noncommutable decisions for evaluated MP pairs in each EQA survey 
based on the statistical significance of differences between measurements in control and serum 
samples 
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   All three controls show noncommutability for some pairwise combinations of MPs. The 

number of noncommutable decisions varies depending on the control sample, but even more, 

depending on the analyte being assessed. The controls are mostly fully or highly commutable 

for calcium, CK, proteins, and urea. Contrarily, full noncommutability of control samples is 

described for chloride and HDL. Some of the patterns of noncommutability are related to the 

control manufacturer, where for example C3/2016 is fully commutable for all MP combinations 

assessed for measurement of amylase as opposed to noncommutability observed for C1/2016 

and C2/2016, which come from the different manufacturer. Quite opposite, for creatinine, 

controls C1/2016 and C2/2016 are highly commutable, but C3/2016 is noncommutable for 

almost 81% of all MP combinations assessed. The commutability of controls for some analytes 

might depend on concentrations assessed, with opposite conclusions on overall commutability 

for normal and pathological concentrations levels. This is observed for triglycerides and GGT, 

and to a lower extent for some other analytes like urea and urate. For most analytes, the 

commutability does not seem to be connected to measured concentrations. Overall, controls 

C1/2016 and C2/2016 show somewhat better commutability with MP combinations used in 

this EQA than C3/2016. When mostly normal-concentration level controls are compared 

(C1/2016 and C3/2016) from different manufacturers, the control C1/2016 shows higher 

overall commutability, with 87 noncommutable pairwise combinations of MPs as opposed to 

140 noncommutable results in C3/2016.    

4.2.2 False flagging method in evaluating commutability 

   According to written instructions sent to each participant, the laboratories measured both 

control and serum samples in the same run on the instrument. The results obtained from each 

laboratory were grouped together and accordingly MP groups were formed as listed in Table 3. 

Based on the analysis of both serum and control samples for each MP, the rate of falsely flagged 

laboratories according to the consensus mean and predefined APS of CROQALM is assessed, 

according to the procedure described in Materials and methods section 3.2.  

   Harmonisation between MPs is calculated as the probability of changing the flagging status 

of laboratories above the threshold limit of 20% when the results on serum samples of two MPs 

groups are joined into one group. The value of 100% indicates perfect harmonisation, whereas 
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the value of 0% indicates a total lack of harmonisation. The value above 95% is considered as 

satisfactory proof of harmonisation.  

   Commutability is calculated as the difference between flagging rates of laboratories using 

results of measurement on control serum compared to the measurement results obtained on the 

serum sample. The limit of 20% is set as the maximum allowable false flagging rate of 

laboratories due to noncommutability (3.5 Materials and Methods). Percentage commutability 

is calculated as a number of bootstrapped results not exceeding the predefined limit of 20%. 

Control samples are defined as commutable for evaluated MP pair if percentage commutability 

is ≥ 95%. 

 

4.2.2.1 Commutability evaluation of control sample C1/2016 using the false flagging 

method 

   The results of the analysis of lyophilised control sample C1/2016 by applying the false 

flagging method on results obtained from participating laboratories in CROQALM EQA 

survey 1 are presented in Table 14. The mean values of each MP for serum samples and 

lyophilised control samples are presented in the same table, together with the results for 

harmonisation between evaluated MP pairs. The results are accompanied by a contingency 

table showing the number of harmonised and nonharmonised MPs resulting in 

(non)commutability (Table 15). 

 

 

EQA SURVEY 1  

MP 1 MP 2 Mean 
MP1 

(serum) 

Mean 
MP2 

(serum) 

Mean  
MP1 

(control) 

Mean 
MP2 

(control) 

% 
harmo-
nisation 

% 
commu-
tability 

ALT 

IFCC- BC AU IFCC- SD 34.42 39.09 45.3 47.91 15.3 54.9 

IFCC- BC AU Photometry 
UV- AA 

34.42 32.25 45.3 43.62 100 100 

IFCC- BC AU Photometry 
UV- BC AU 

34.42 32.94 45.3 45.3 100 100 

IFCC- BC AU Photometry 
UV- RCc 

34.42 30.86 45.3 43.5 96.8 96.8 

Table 14. The results of commutability evaluation of EQA control sample C1/2016 using the 
false flagging method  
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EQA SURVEY 1  

IFCC- BC AU Photometry 
UV- RCI 

34.42 30.07 45.3 42 99.8 99.8 

IFCC- BC AU Photometry 
UV- RH 

34.42 31.88 45.3 43.72 100 100 

IFCC- SD Photometry 
UV- AA 

39.09 32.25 47.91 43.62 11.8 71.1 

IFCC- SD Photometry 
UV- BC AU 

39.09 32.94 47.91 45.3 1.2 20.3 

IFCC- SD Photometry 
UV- RCc 

39.09 30.86 47.91 43.5 3 29.8 

IFCC- SD Photometry 
UV- RCI 

39.09 30.07 47.91 42 0.2 37.3 

IFCC- SD Photometry 
UV- RH 

39.09 31.88 47.91 43.72 1.3 40.2 

Photometry 
UV- AA 

Photometry 
UV- BC AU 

32.25 32.94 43.62 45.3 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCc 

32.25 30.86 43.62 43.5 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCI 

32.25 30.07 43.62 42 100 100 

Photometry 
UV- AA 

Photometry 
UV- RH 

32.25 31.88 43.62 43.72 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCc 

32.94 30.86 45.3 43.5 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCI 

32.94 30.07 45.3 42 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RH 

32.94 31.88 45.3 43.72 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RCI 

30.86 30.07 43.5 42 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RH 

30.86 31.88 43.5 43.72 100 100 

Photometry 
UV- RCI 

Photometry 
UV- RH 

30.07 31.88 42 43.72 100 100 

ALP 

IFCC- AA IFCC- BC AU 73 75.14 107.1 107.62 100 99.2 

IFCC- AA IFCC- HP 73 79.33 107.1 108.67 91.2 95.1 

IFCC- AA IFCC- RCc 73 71.69 107.1 97.77 100 82.1 

IFCC- AA IFCC- RCI 73 74.5 107.1 99.82 100 94.9 

IFCC- AA IFCC- RH 73 72.88 107.1 97.88 100 43.7 

IFCC- AA IFCC - SD 73 74.4 107.1 102.5 100 100 
IFCC- BC AU IFCC- HP 75.14 79.33 107.62 108.67 87.2 93.3 

IFCC- BC AU IFCC- RCc 75.14 71.69 107.62 97.77 100 54.3 

IFCC- BC AU IFCC- RCI 75.14 74.5 107.62 99.82 100 99.3 
IFCC- BC AU IFCC- RH 75.14 72.88 107.62 97.88 100 18.8 

IFCC- BC AU IFCC - SD 75.14 74.4 107.62 102.5 100 100 
IFCC- HP IFCC- RCc 79.33 71.69 108.67 97.77 77.6 67.8 

IFCC- HP IFCC- RCI 79.33 74.5 108.67 99.82 93.5 73.4 

IFCC- HP IFCC- RH 79.33 72.88 108.67 97.88 71.5 51.6 

IFCC- HP IFCC - SD 79.33 74.4 108.67 102.5 97.7 99 
IFCC- RCc IFCC- RCI 71.69 74.5 97.77 99.82 100 100 
IFCC- RCc IFCC- RH 71.69 72.88 97.77 97.88 100 100 
IFCC- RCc IFCC - SD 71.69 74.4 97.77 102.5 100 100 
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IFCC- RCI IFCC- RH 74.5 72.88 99.82 97.88 100 100 
IFCC- RCI IFCC - SD 74.5 74.4 99.82 102.5 100 100 
IFCC- RH IFCC - SD 72.88 74.4 97.88 102.5 100 100 

AMY 

IFCC- AA IFCC- BC AU 61.78 65.89 98.11 101.53 91.1 91.8 

IFCC- AA IFCC- RCc 61.78 64.85 98.11 98.23 99.8 99.9 
IFCC- AA IFCC- RCI 61.78 66.36 98.11 99.87 98.8 98.8 
IFCC- AA IFCC- RH 61.78 63 98.11 96.73 99.9 99.9 
IFCC- BC AU IFCC- RCc 65.89 64.85 101.53 98.23 100 100 
IFCC- BC AU IFCC- RCI 65.89 66.36 101.53 99.87 100 100 
IFCC- BC AU IFCC- RH 65.89 63 101.53 96.73 100 100 
IFCC- RCc IFCC- RCI 64.85 66.36 98.23 99.87 100 100 
IFCC- RCc IFCC- RH 64.85 63 98.23 96.73 100 100 
IFCC- RCI IFCC- RH 66.36 63 99.87 96.73 100 100 

AST 

IFCC- BC AU IFCC- RH 30.31 27.33 43.52 42.5 94.2 95.3 

IFCC- BC AU IFCC- SD 30.31 29.2 43.52 43.18 100 100 
IFCC- BC AU Photometry 

UV- AA 
30.31 26 43.52 40 99.8 99.8 

IFCC- BC AU Photometry 
UV- BC AU 

30.31 29.94 43.52 43.25 100 100 

IFCC- BC AU Photometry 
UV- RCc 

30.31 25.71 43.52 39.75 99.9 99.9 

IFCC- BC AU Photometry 
UV- RCI 

30.31 26.71 43.52 39.5 100 100 

IFCC- BC AU Photometry 
UV- RH 

30.31 26.94 43.52 40.17 100 100 

IFCC- RH IFCC- SD 27.33 29.2 42.5 43.18 100 100 
IFCC- RH Photometry 

UV- AA 
27.33 26 42.5 40 100 100 

IFCC- RH Photometry 
UV- BC AU 

27.33 29.94 42.5 43.25 96.1 97.1 

IFCC- RH Photometry 
UV- RCc 

27.33 25.71 42.5 39.75 100 100 

IFCC- RH Photometry 
UV- RCI 

27.33 26.71 42.5 39.5 100 100 

IFCC- RH Photometry 
UV- RH 

27.33 26.94 42.5 40.17 100 99.8 

IFCC- SD Photometry 
UV- AA 

29.2 26 43.18 40 100 100 

IFCC- SD Photometry 
UV- BC AU 

29.2 29.94 43.18 43.25 100 100 

IFCC- SD Photometry 
UV- RCc 

29.2 25.71 43.18 39.75 100 100 

IFCC- SD Photometry 
UV- RCI 

29.2 26.71 43.18 39.5 100 100 

IFCC- SD Photometry 
UV- RH 

29.2 26.94 43.18 40.17 100 100 

Photometry 
UV- AA 

Photometry 
UV- BC AU 

26 29.94 40 43.25 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCc 

26 25.71 40 39.75 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCI 

26 26.71 40 39.5 100 100 
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Photometry 
UV- AA 

Photometry 
UV- RH 

26 26.94 40 40.17 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCc 

29.94 25.71 43.25 39.75 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCI 

29.94 26.71 43.25 39.5 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RH 

29.94 26.94 43.25 40.17 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RCI 

25.71 26.71 39.75 39.5 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RH 

25.71 26.94 39.75 40.17 100 100 

Photometry 
UV- RCI 

Photometry 
UV- RH 

26.71 26.94 39.5 40.17 100 100 

CALCIUM 

Asenaso III- 
AA 

Asenaso III- 
BC AU 

2.31 2.31 2.35 2.35 100 99.9 

Asenaso III- 
AA 

NM-BAPTA- 
RCI 

2.31 2.26 2.35 2.35 100 100 

Asenaso III- 
AA 

cresolphthalein
- BC AU 

2.31 2.29 2.35 2.32 100 95.6 

Asenaso III- 
AA 

cresolphthalein
- RCI 

2.31 2.31 2.35 2.38 100 100 

Asenaso III- 
AA 

cresolphthalein
- SD 

2.31 2.23 2.35 2.29 98.4 99.4 

Asenaso III- 
BC AU 

NM-BAPTA- 
RCI 

2.31 2.26 2.35 2.35 89.5 92.2 

Asenaso III- 
BC AU 

cresolphthalein
- BC AU 

2.31 2.29 2.35 2.32 100 83.8 

Asenaso III- 
BC AU 

cresolphthalein
- RCI 

2.31 2.31 2.35 2.38 100 97.8 

Asenaso III- 
BC AU 

cresolphthalein
- SD 

2.31 2.23 2.35 2.29 28.7 56 

NM-BAPTA- 
RCI 

cresolphthalein
- BC AU 

2.26 2.29 2.35 2.32 100 99.4 

NM-BAPTA- 
RCI 

cresolphthalein
- RCI 

2.26 2.31 2.35 2.38 99.9 100 

NM-BAPTA- 
RCI 

cresolphthalein
- SD 

2.26 2.23 2.35 2.29 100 99.8 

cresolphthalein
- BC AU 

cresolphthalein
- RCI 

2.29 2.31 2.32 2.38 100 86 

cresolphthalein
- BC AU 

cresolphthalein
- SD 

2.29 2.23 2.32 2.29 97.7 99.1 

cresolphthalein
- RCI 

cresolphthalein
- SD 

2.31 2.23 2.38 2.29 92 96.6 

CHLORIDE 

Indirect ISE - 
AA 

Indirect ISE - 
BC AU 

103.5 103.35 114.8 114.61 97.9 99 

Indirect ISE - 
AA 

Indirect ISE - 
SD 

103.5 101 114.8 110 100 91.2 

Indirect ISE - 
BC AU 

Indirect ISE - 
SD 

103.35 101 114.61 110 100 12.8 

CHOLESTEROL 

CHOD-PAP - 
AA 

CHOD-PAP - 
BC AU 

6.13 6.39 4.14 4.28 100 100 
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CHOD-PAP - 
AA 

CHOD-PAP - 
HP 

6.13 5.98 4.14 4.03 100 100 

CHOD-PAP - 
AA 

CHOD-PAP - 
RCc 

6.13 6.02 4.14 4.06 100 100 

CHOD-PAP - 
AA 

CHOD-PAP - 
RCI 

6.13 6.17 4.14 4.21 100 100 

CHOD-PAP - 
AA 

CHOD-PAP - 
RH 

6.13 6.06 4.14 4.11 100 100 

CHOD-PAP - 
AA 

CHOD-PAP - 
SD 

6.13 6.17 4.14 3.72 100 15.8 

CHOD-PAP - 
BC AU 

CHOD-PAP - 
HP 

6.39 5.98 4.28 4.03 97.4 98.6 

CHOD-PAP - 
BC AU 

CHOD-PAP - 
RCc 

6.39 6.02 4.28 4.06 99.2 99.5 

CHOD-PAP - 
BC AU 

CHOD-PAP - 
RCI 

6.39 6.17 4.28 4.21 100 100 

CHOD-PAP - 
BC AU 

CHOD-PAP - 
RH 

6.39 6.06 4.28 4.11 100 100 

CHOD-PAP - 
BC AU 

CHOD-PAP - 
SD 

6.39 6.17 4.28 3.72 100 0.2 

CHOD-PAP - 
HP 

CHOD-PAP - 
RCc 

5.98 6.02 4.03 4.06 100 100 

CHOD-PAP - 
HP 

CHOD-PAP - 
RCI 

5.98 6.17 4.03 4.21 100 100 

CHOD-PAP - 
HP 

CHOD-PAP - 
RH 

5.98 6.06 4.03 4.11 100 100 

CHOD-PAP - 
HP 

CHOD-PAP - 
SD 

5.98 6.17 4.03 3.72 100 80.4 

CHOD-PAP - 
RCc 

CHOD-PAP - 
RCI 

6.02 6.17 4.06 4.21 100 100 

CHOD-PAP - 
RCc 

CHOD-PAP - 
RH 

6.02 6.06 4.06 4.11 100 100 

CHOD-PAP - 
RCc 

CHOD-PAP - 
SD 

6.02 6.17 4.06 3.72 100 26.8 

CHOD-PAP - 
RCI 

CHOD-PAP - 
RH 

6.17 6.06 4.21 4.11 100 100 

CHOD-PAP - 
RCI 

CHOD-PAP - 
SD 

6.17 6.17 4.21 3.72 100 2 

CHOD-PAP - 
RH 

CHOD-PAP - 
SD 

6.06 6.17 4.11 3.72 100 7.3 

CK 

IFCC- AA IFCC- BC AU 203.7 210.59 100.1 102.16 100 100 
IFCC- AA IFCC- RCc 203.7 213.33 100.1 102.17 100 100 
IFCC- AA IFCC- RCI 203.7 208 100.1 102.18 100 100 
IFCC- AA IFCC- RH 203.7 203.56 100.1 102.56 100 100 
IFCC- BC AU IFCC- RCc 210.59 213.33 102.16 102.17 100 100 
IFCC- BC AU IFCC- RCI 210.59 208 102.16 102.18 100 100 
IFCC- BC AU IFCC- RH 210.59 203.56 102.16 102.56 100 100 

IFCC- RCc IFCC- RCI 213.33 208 102.17 102.18 100 100 
IFCC- RCc IFCC- RH 213.33 203.56 102.17 102.56 100 100 
IFCC- RCI IFCC- RH 208 203.56 102.18 102.56 100 100 

CREATININE 

Compensated 
Jaffe  - AA 

Compensated 
Jaffe  - BC AU 

75.5 75.6 79.5 76.98 99.4 97.2 

Compensated 
Jaffe  - AA 

Compensated 
Jaffe  - RCc 

75.5 75.2 79.5 84.5 100 98 
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Compensated 
Jaffe  - AA 

Compensated 
Jaffe  - RCI 

75.5 78 79.5 82.58 99.4 99.5 

Compensated 
Jaffe  - AA 

Compensated 
Jaffe  - RH 

75.5 80.07 79.5 85.5 92.9 91.9 

Compensated 
Jaffe  - AA 

Compensated 
Jaffe  - SD 

75.5 77.56 79.5 78.33 100 100 

Compensated 
Jaffe  - AA 

Enzymatic 
method - BC 
AU 

75.5 74.82 79.5 79.1 100 100 

Compensated 
Jaffe  - AA 

Non-
compensated 
Jaffe - BC AU 

75.5 86.05 79.5 88.45 0.5 55.4 

Compensated 
Jaffe  - AA 

Non-
compensated 
Jaffe - RH 

75.5 79.25 79.5 84 99.1 99.2 

Compensated 
Jaffe  - BC AU 

Compensated 
Jaffe  - RCc 

75.6 75.2 76.98 84.5 100 22.8 

Compensated 
Jaffe  - BC AU 

Compensated 
Jaffe  - RCI 

75.6 78 76.98 82.58 97.8 72.6 

Compensated 
Jaffe  - BC AU 

Compensated 
Jaffe  - RH 

75.6 80.07 76.98 85.5 99.8 28.4 

Compensated 
Jaffe  - BC AU 

Compensated 
Jaffe  - SD 

75.6 77.56 76.98 78.33 99 99.1 

Compensated 
Jaffe  - BC AU 

Enzymatic 
method - BC 
AU 

75.6 74.82 76.98 79.1 100 100 

Compensated 
Jaffe  - BC AU 

Non-
compensated 
Jaffe - BC AU 

75.6 86.05 76.98 88.45 4.7 78.3 

Compensated 
Jaffe  - BC AU 

Non-
compensated 
Jaffe - RH 

75.6 79.25 76.98 84 82.5 45.6 

Compensated 
Jaffe  - RCc 

Compensated 
Jaffe  - RCI 

75.2 78 84.5 82.58 100 100 

Compensated 
Jaffe  - RCc 

Compensated 
Jaffe  - RH 

75.2 80.07 84.5 85.5 97.5 99.4 

Compensated 
Jaffe  - RCc 

Compensated 
Jaffe  - SD 

75.2 77.56 84.5 78.33 100 99.3 

Compensated 
Jaffe  - RCc 

Enzymatic 
method - BC 
AU 

75.2 74.82 84.5 79.1 100 99.4 

Compensated 
Jaffe  - RCc 

Non-
compensated 
Jaffe - BC AU 

75.2 86.05 84.5 88.45 0.1 5.2 

Compensated 
Jaffe  - RCc 

Non-
compensated 
Jaffe - RH 

75.2 79.25 84.5 84 97.3 99.4 

Compensated 
Jaffe  - RCI 

Compensated 
Jaffe  - RH 

78 80.07 82.58 85.5 99.2 99.4 

Compensated 
Jaffe  - RCI 

Compensated 
Jaffe  - SD 

78 77.56 82.58 78.33 100 100 

Compensated 
Jaffe  - RCI 

Enzymatic 
method - BC 
AU 

78 74.82 82.58 79.1 99.8 100 

Compensated 
Jaffe  - RCI 

Non-
compensated 
Jaffe - BC AU 

78 86.05 82.58 88.45 22.3 81.3 
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Compensated 
Jaffe  - RCI 

Non-
compensated 
Jaffe - RH 

78 79.25 82.58 84 99.8 98.9 

Compensated 
Jaffe  - RH 

Compensated 
Jaffe  - SD 

80.07 77.56 85.5 78.33 100 99 

Compensated 
Jaffe  - RH 

Enzymatic 
method - BC 
AU 

80.07 74.82 85.5 79.1 98.8 100 

Compensated 
Jaffe  - RH 

Non-
compensated 
Jaffe - BC AU 

80.07 86.05 85.5 88.45 100 100 

Compensated 
Jaffe  - RH 

Non-
compensated 
Jaffe - RH 

80.07 79.25 85.5 84 100 99.8 

Compensated 
Jaffe  - SD 

Enzymatic 
method - BC 
AU 

77.56 74.82 78.33 79.1 99.9 99.9 

Compensated 
Jaffe  - SD 

Non-
compensated 
Jaffe - BC AU 

77.56 86.05 78.33 88.45 11.3 82.4 

Compensated 
Jaffe  - SD 

Non-
compensated 
Jaffe - RH 

77.56 79.25 78.33 84 100 91.3 

Enzymatic 
method - BC 
AU 

Non-
compensated 
Jaffe - BC AU 

74.82 86.05 79.1 88.45 0.5 28.4 

Enzymatic 
method - BC 
AU 

Non-
compensated 
Jaffe - RH 

74.82 79.25 79.1 84 95.2 97.6 

Non-
compensated 
Jaffe - BC AU 

Non-
compensated 
Jaffe - RH 

86.05 79.25 88.45 84 38.4 90.3 

GGT 

IFCC- AA IFCC- BC AU 47.59 46.59 36.09 36.38 100 100 
IFCC- AA IFCC- HP 47.59 44.62 36.09 36.01 99.9 100 
IFCC- AA IFCC- RCc 47.59 47.21 36.09 35.99 100 100 
IFCC- AA IFCC- RCI 47.59 47.29 36.09 36.13 100 100 
IFCC- AA IFCC- RH 47.59 47.23 36.09 36.26 100 100 
IFCC- AA IFCC- SD 47.59 48.32 36.09 39.28 100 92.7 
IFCC- BC AU IFCC- HP 46.59 44.62 36.38 36.01 98.4 98.2 

IFCC- BC AU IFCC- RCc 46.59 47.21 36.38 35.99 100 100 
IFCC- BC AU IFCC- RCI 46.59 47.29 36.38 36.13 100 100 
IFCC- BC AU IFCC- RH 46.59 47.23 36.38 36.26 100 100 

IFCC- BC AU IFCC- SD 46.59 48.32 36.38 39.28 100 37.4 
IFCC- HP IFCC- RCc 44.62 47.21 36.01 35.99 99.9 100 

IFCC- HP IFCC- RCI 44.62 47.29 36.01 36.13 99.8 99.9 

IFCC- HP IFCC- RH 44.62 47.23 36.01 36.26 99.2 99.3 
IFCC- HP IFCC- SD 44.62 48.32 36.01 39.28 99.3 75.5 
IFCC- RCc IFCC- RCI 47.21 47.29 35.99 36.13 100 100 
IFCC- RCc IFCC- RH 47.21 47.23 35.99 36.26 100 100 
IFCC- RCc IFCC- SD 47.21 48.32 35.99 39.28 100 89.3 
IFCC- RCI IFCC- RH 47.29 47.23 36.13 36.26 100 100 
IFCC- RCI IFCC- SD 47.29 48.32 36.13 39.28 100 77.2 
IFCC- RH IFCC- SD 47.23 48.32 36.26 39.28 100 60.8 
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GLUCOSE 

GOD-PAP - 
BC AU 

GOD-PAP - 
HP 

5.31 5.25 4.43 4.43 100 100 

GOD-PAP - 
BC AU 

GOD-PAP - 
RH 

5.31 5.13 4.43 4.36 100 100 

GOD-PAP - 
BC AU 

Hexokinase - 
AA 

5.31 5.22 4.43 4.41 100 100 

GOD-PAP - 
BC AU 

Hexokinase - 
BC AU 

5.31 5.27 4.43 4.39 100 100 

GOD-PAP - 
BC AU 

Hexokinase - 
RCc 

5.31 5.19 4.43 4.34 100 100 

GOD-PAP - 
BC AU 

Hexokinase - 
RCI 

5.31 5.21 4.43 4.37 100 100 

GOD-PAP - 
BC AU 

Hexokinase - 
SD 

5.31 5.33 4.43 4.52 100 100 

GOD-PAP - 
HP 

GOD-PAP - 
RH 

5.25 5.13 4.43 4.36 99.1 99.4 

GOD-PAP - 
HP 

Hexokinase - 
AA 

5.25 5.22 4.43 4.41 100 100 

GOD-PAP - 
HP 

Hexokinase - 
BC AU 

5.25 5.27 4.43 4.39 100 100 

GOD-PAP - 
HP 

Hexokinase - 
RCc 

5.25 5.19 4.43 4.34 100 100 

GOD-PAP - 
HP 

Hexokinase - 
RCI 

5.25 5.21 4.43 4.37 100 100 

GOD-PAP - 
HP 

Hexokinase - 
SD 

5.25 5.33 4.43 4.52 100 99.7 

GOD-PAP - 
RH 

Hexokinase - 
AA 

5.13 5.22 4.36 4.41 100 100 

GOD-PAP - 
RH 

Hexokinase - 
BC AU 

5.13 5.27 4.36 4.39 99.7 99.9 

GOD-PAP - 
RH 

Hexokinase - 
RCc 

5.13 5.19 4.36 4.34 100 100 

GOD-PAP - 
RH 

Hexokinase - 
RCI 

5.13 5.21 4.36 4.37 100 100 

GOD-PAP - 
RH 

Hexokinase - 
SD 

5.13 5.33 4.36 4.52 92.5 99.2 

Hexokinase - 
AA 

Hexokinase - 
BC AU 

5.22 5.27 4.41 4.39 100 100 

Hexokinase - 
AA 

Hexokinase - 
RCc 

5.22 5.28 4.41 4.34 100 100 

Hexokinase - 
AA 

Hexokinase - 
RCI 

5.22 5.29 4.41 4.37 100 100 

Hexokinase - 
AA 

Hexokinase - 
SD 

5.22 5.30 4.41 4.52 100 100 

Hexokinase - 
BC AU 

Hexokinase - 
RCc 

5.27 5.31 4.39 4.34 100 100 

Hexokinase - 
BC AU 

Hexokinase - 
RCI 

5.27 5.32 4.39 4.37 100 100 

Hexokinase - 
BC AU 

Hexokinase - 
SD 

5.27 5.33 4.39 4.52 100 93.3 

Hexokinase - 
RCc 

Hexokinase - 
RCI 

5.19 5.34 4.34 4.37 100 100 

Hexokinase - 
RCc 

Hexokinase - 
SD 

5.19 5.35 4.34 4.52 100 99.9 

Hexokinase - 
RCI 

Hexokinase - 
SD 

5.21 5.36 4.37 4.52 100 100 
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HDL 

Homogenous - 
AA 

Homogenous - 
BC AU 

1.71 1.65 1.26 1.1 100 1.1 

Homogenous - 
AA 

Homogenous - 
HP 

1.71 1.65 1.26 1.33 100 75.2 

Homogenous - 
AA 

Homogenous - 
RCc 

1.71 1.78 1.26 1.05 100 8.9 

Homogenous - 
AA 

Homogenous - 
RCI 

1.71 1.71 1.26 1.02 100 0 

Homogenous - 
AA 

Homogenous - 
RH 

1.71 1.75 1.26 1.18 100 76.9 

Homogenous - 
AA 

Homogenous - 
SD 

1.71 1.78 1.26 1.07 99.4 27.1 

Homogenous - 
BC AU 

Homogenous - 
HP 

1.65 1.65 1.1 1.33 100 0.1 

Homogenous - 
BC AU 

Homogenous - 
RCc 

1.65 1.78 1.1 1.05 39.5 81.8 

Homogenous - 
BC AU 

Homogenous - 
RCI 

1.65 1.71 1.1 1.02 100 93.6 

Homogenous - 
BC AU 

Homogenous - 
RH 

1.65 1.75 1.1 1.18 93.2 99.2 

Homogenous - 
BC AU 

Homogenous - 
SD 

1.65 1.78 1.1 1.07 39.4 57.5 

Homogenous - 
HP 

Homogenous - 
RCc 

1.65 1.78 1.33 1.05 99.8 0.4 

Homogenous - 
HP 

Homogenous - 
RCI 

1.65 1.71 1.33 1.02 100 0 

Homogenous - 
HP 

Homogenous - 
RH 

1.65 1.75 1.33 1.18 100 16.3 

Homogenous - 
HP 

Homogenous - 
SD 

1.65 1.78 1.33 1.07 100 1.5 

Homogenous - 
RCc 

Homogenous - 
RCI 

1.78 1.71 1.05 1.02 98.6 99.2 

Homogenous - 
RCc 

Homogenous - 
RH 

1.78 1.75 1.05 1.18 99.6 47 

Homogenous - 
RCc 

Homogenous - 
SD 

1.78 1.78 1.05 1.07 99.8 99.3 

Homogenous - 
RCI 

Homogenous - 
RH 

1.71 1.75 1.02 1.18 100 75 

Homogenous - 
RCI 

Homogenous - 
SD 

1.71 1.78 1.02 1.07 98.5 98.9 

Homogenous - 
RH 

Homogenous - 
SD 

1.75 1.78 1.18 1.07 99.5 82.4 

IRON 

Ferene - AA Ferene - HP 20.43 20.5 17.71 16.86 100 100 
Ferene - AA Ferene - RH 20.43 21.08 17.71 17.92 100 100 
Ferene - AA Ferene - SD 20.43 20.2 17.71 17.2 100 100 
Ferene - AA Ferrozine - 

RCc 
20.43 21.25 17.71 17.92 100 100 

Ferene - AA Ferrozine - 
RCI 

20.43 21.47 17.71 18.6 100 100 

Ferene - AA Ferrozine - RH 20.43 21.36 17.71 18.09 100 100 
Ferene - AA TPTZ - BC 

AU 
20.43 20.96 17.71 17.43 100 100 

Ferene - HP Ferene - RH 20.5 21.08 16.86 17.92 100 100 
Ferene - HP Ferene - SD 20.5 20.2 16.86 17.2 100 100 
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Ferene - HP Ferrozine - 
RCc 

20.5 21.25 16.86 17.92 100 100 

Ferene - HP Ferrozine - 
RCI 

20.5 21.47 16.86 18.6 100 100 

Ferene - HP Ferrozine - RH 20.5 21.36 16.86 18.09 100 100 
Ferene - HP TPTZ - BC 

AU 
20.5 20.96 16.86 17.43 100 100 

Ferene - RH Ferene - SD 21.08 20.2 17.92 17.2 100 100 
Ferene - RH Ferrozine - 

RCc 
21.08 21.25 17.92 17.92 100 100 

Ferene - RH Ferrozine - 
RCI 

21.08 21.47 17.92 18.6 100 100 

Ferene - RH Ferrozine - RH 21.08 21.36 17.92 18.09 100 100 
Ferene - RH TPTZ - BC 

AU 
21.08 20.96 17.92 17.43 100 100 

Ferene - SD Ferrozine - 
RCc 

20.2 21.25 17.2 17.92 100 100 

Ferene - SD Ferrozine - 
RCI 

20.2 21.47 17.2 18.6 100 100 

Ferene - SD Ferrozine - RH 20.2 21.36 17.2 18.09 100 100 
Ferene - SD TPTZ - BC 

AU 
20.2 20.96 17.2 17.43 100 100 

Ferrozine - 
RCc 

Ferrozine - 
RCI 

21.25 21.47 17.92 18.6 100 100 

Ferrozine - 
RCc 

Ferrozine - RH 21.25 21.36 17.92 18.09 100 100 

Ferrozine - 
RCc 

TPTZ - BC 
AU 

21.25 20.96 17.92 17.43 100 100 

Ferrozine - RCI Ferrozine - RH 21.47 21.36 18.6 18.09 100 100 
Ferrozine - RCI TPTZ - BC 

AU 
21.47 20.96 18.6 17.43 100 100 

Ferrozine - RH TPTZ - BC 
AU 

21.36 20.96 18.09 17.43 100 100 

LDH 

IFCC- AA IFCC- BC AU 177.89 176.85 144.11 145.42 100 100 
IFCC- AA IFCC- RCc 177.89 170.71 144.11 139.57 100 100 
IFCC- AA IFCC- RCI 177.89 183.62 144.11 152.31 100 100 
IFCC- AA IFCC- RH 177.89 175.5 144.11 148 100 100 
IFCC- AA IFCC - SD 177.89 176.83 144.11 148.17 100 100 
IFCC- BC AU IFCC- RCc 176.85 170.71 145.42 139.57 100 100 
IFCC- BC AU IFCC- RCI 176.85 183.62 145.42 152.31 100 100 
IFCC- BC AU IFCC- RH 176.85 175.5 145.42 148 100 100 
IFCC- BC AU IFCC - SD 176.85 176.83 145.42 148.17 100 97.8 
IFCC- RCc IFCC- RCI 170.71 183.62 139.57 152.31 100 100 
IFCC- RCc IFCC- RH 170.71 175.5 139.57 148 100 100 
IFCC- RCc IFCC - SD 170.71 176.83 139.57 148.17 100 98.9 
IFCC- RCI IFCC- RH 183.62 175.5 152.31 148 100 100 
IFCC- RCI IFCC - SD 183.62 176.83 152.31 148.17 100 100 
IFCC- RH IFCC - SD 175.5 176.83 148 148.17 100 100 

PHOSPHATE 

Ammonium- 
molybdate - 
AA 

Ammonium- 
molybdate - 
BC AU 

0.99 0.98 1.05 1.03 100 99.7 
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Ammonium- 
molybdate - 
AA 

Ammonium- 
molybdate - 
RCc 

0.99 0.96 1.05 1.03 100 100 

Ammonium- 
molybdate - 
AA 

Ammonium- 
molybdate - 
RCI 

0.99 1 1.05 1.07 100 100 

Ammonium- 
molybdate - 
BC AU 

Ammonium- 
molybdate - 
RCc 

0.98 0.96 1.03 1.03 100 100 

Ammonium- 
molybdate - 
BC AU 

Ammonium- 
molybdate - 
RCI 

0.98 1 1.03 1.07 100 100 

Ammonium- 
molybdate - 
RCc 

Ammonium- 
molybdate - 
RCI 

0.96 1 1.03 1.07 100 100 

POTASSIUM 

FES- CC Indirect ISE- 
AA 

4.11 4.07 3.65 3.53 100 88 

FES- CC Indirect ISE- 
BC AU 

4.11 4.07 3.65 3.57 100 87.5 

FES- CC Indirect ISE- 
RCc 

4.11 4.19 3.65 3.65 100 100 

FES- CC Indirect ISE- 
RCI 

4.11 4.13 3.65 3.59 100 99.9 

FES- CC Indirect ISE- 
SD 

4.11 4.03 3.65 3.51 100 99.9 

Indirect ISE- 
AA 

Indirect ISE- 
BC AU 

4.07 4.07 3.53 3.57 100 98.9 

Indirect ISE- 
AA 

Indirect ISE- 
RCc 

4.07 4.19 3.53 3.65 100 99.2 

Indirect ISE- 
AA 

Indirect ISE- 
RCI 

4.07 4.13 3.53 3.59 100 100 

Indirect ISE- 
AA 

Indirect ISE- 
SD 

4.07 4.03 3.53 3.51 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
RCc 

4.07 4.19 3.57 3.65 99.7 99.7 

Indirect ISE- 
BC AU 

Indirect ISE- 
RCI 

4.07 4.13 3.57 3.59 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
SD 

4.07 4.03 3.57 3.51 100 100 

Indirect ISE- 
RCc 

Indirect ISE- 
RCI 

4.19 4.13 3.65 3.59 100 100 

Indirect ISE- 
RCc 

Indirect ISE- 
SD 

4.19 4.03 3.65 3.51 100 100 

Indirect ISE- 
RCI 

Indirect ISE- 
SD 

4.13 4.03 3.59 3.51 100 100 

SODIUM 

FES - CC Indirect ISE - 
AA 

140.36 139.78 138.95 138.44 100 100 

FES - CC Indirect ISE - 
BC AU 

140.36 138.88 138.95 137.9 100 100 

FES - CC Indirect ISE - 
RCc 

140.36 139.11 138.95 138.1 100 100 

FES - CC Indirect ISE - 
RCI 

140.36 140 138.95 139.7 100 100 

FES - CC Indirect ISE - 
SD 

140.36 139.3 138.95 139.3 100 100 
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Indirect ISE - 
AA 

Indirect ISE - 
BC AU 

139.78 138.88 138.44 137.9 100 100 

Indirect ISE - 
AA 

Indirect ISE - 
RCc 

139.78 139.11 138.44 138.1 100 100 

Indirect ISE - 
AA 

Indirect ISE - 
RCI 

139.78 140 138.44 139.7 100 100 

Indirect ISE - 
AA 

Indirect ISE - 
SD 

139.78 139.3 138.44 139.3 100 100 

Indirect ISE - 
BC AU 

Indirect ISE - 
RCc 

138.88 139.11 137.9 138.1 100 100 

Indirect ISE - 
BC AU 

Indirect ISE - 
RCI 

138.88 140 137.9 139.7 100 100 

Indirect ISE - 
BC AU 

Indirect ISE - 
SD 

138.88 139.3 137.9 139.3 100 100 

Indirect ISE - 
RCc 

Indirect ISE - 
RCI 

139.11 140 138.1 139.7 100 100 

Indirect ISE - 
RCc 

Indirect ISE - 
SD 

139.11 139.3 138.1 139.3 100 100 

Indirect ISE - 
RCI 

Indirect ISE - 
SD 

140 139.3 139.7 139.3 100 100 

BILIRUBIN 

Diazo - AA Diazo - BC 
AU 

7.12 7.58 18.38 19.18 100 100 

Diazo - AA Diazo - HP 7.12 6.86 18.38 18.29 100 100 
Diazo - AA Diazo - RCc 7.12 5.75 18.38 16.67 100 100 
Diazo - AA Diazo - RCI 7.12 6.06 18.38 16.44 100 100 
Diazo - AA Diazo - RH 7.12 6.95 18.38 17.82 100 100 
Diazo - AA Diazo - SD 7.12 5.92 18.38 16.83 100 100 
Diazo - BC AU Diazo - HP 7.58 6.86 19.18 18.29 100 100 
Diazo - BC AU Diazo - RCc 7.58 5.75 19.18 16.67 99 77.6 

Diazo - BC AU Diazo - RCI 7.58 6.06 19.18 16.44 100 85.1 

Diazo - BC AU Diazo - RH 7.58 6.95 19.18 17.82 100 100 
Diazo - BC AU Diazo - SD 7.58 5.92 19.18 16.83 100 69 

Diazo - HP Diazo - RCc 6.86 5.75 18.29 16.67 100 100 
Diazo - HP Diazo - RCI 6.86 6.06 18.29 16.44 100 100 
Diazo - HP Diazo - RH 6.86 6.95 18.29 17.82 100 100 
Diazo - HP Diazo - SD 6.86 5.92 18.29 16.83 100 100 
Diazo - RCc Diazo - RCI 5.75 6.06 16.67 16.44 100 100 
Diazo - RCc Diazo - RH 5.75 6.95 16.67 17.82 100 100 

Diazo - RCc Diazo - SD 5.75 5.92 16.67 16.83 100 100 
Diazo - RCI Diazo - RH 6.06 6.95 16.44 17.82 100 100 
Diazo - RCI Diazo - SD 6.06 5.92 16.44 16.83 100 100 
Diazo - RH Diazo - SD 6.95 5.92 17.82 16.83 100 100 

PROTEINS 

Biuret - AA Biuret - BC 
AU 

71.12 72.58 66.22 68.06 99.4 83.6 

Biuret - AA Biuret - RCc 71.12 72.69 66.22 67.67 100 99.5 
Biuret - AA Biuret - RCI 71.12 71.73 66.22 67.2 100 99.2 
Biuret - AA Biuret - RH 71.12 73.06 66.22 68.06 99.8 96.3 
Biuret - AA Biuret - SD 71.12 73.38 66.22 68.5 100 99.2 

Biuret - BC AU Biuret - RCc 72.58 72.69 68.06 67.67 100 100 
Biuret - BC AU Biuret - RCI 72.58 71.73 68.06 67.2 100 100 
Biuret - BC AU Biuret - RH 72.58 73.06 68.06 68.06 100 100 
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Biuret - BC AU Biuret - SD 72.58 73.38 68.06 68.5 100 100 
Biuret - RCc Biuret - RCI 72.69 71.73 67.67 67.2 100 100 
Biuret - RCc Biuret - RH 72.69 73.06 67.67 68.06 100 100 

Biuret - RCc Biuret - SD 72.69 73.38 67.67 68.5 100 100 
Biuret - RCI Biuret - RH 71.73 73.06 67.2 68.06 100 100 
Biuret - RCI Biuret - SD 71.73 73.38 67.2 68.5 100 100 
Biuret - RH Biuret - SD 73.06 73.38 68.06 68.5 100 100 

TRIGLYCERIDES 

GPO-PAP - 
AA 

GPO-PAP - 
BC AU 

1.08 1.11 1.1 1.1 100 100 

GPO-PAP - 
AA 

GPO-PAP - 
RCc 

1.08 1.04 1.1 1.08 100 100 

GPO-PAP - 
AA 

GPO-PAP - 
RH 

1.08 1.03 1.1 1.03 100 100 

GPO-PAP - 
AA 

GPO-PAP - 
SD 

1.08 1.02 1.1 1.03 100 100 

GPO-PAP - BC 
AU 

GPO-PAP - 
RCc 

1.11 1.04 1.1 1.08 100 100 

GPO-PAP - BC 
AU 

GPO-PAP - 
RH 

1.11 1.03 1.1 1.03 100 100 

GPO-PAP - BC 
AU 

GPO-PAP - 
SD 

1.11 1.02 1.1 1.03 100 100 

GPO-PAP - 
RCc 

GPO-PAP - 
RH 

1.04 1.03 1.08 1.03 100 100 

GPO-PAP - 
RCc 

GPO-PAP - 
SD 

1.04 1.02 1.08 1.03 100 100 

GPO-PAP - 
RH 

GPO-PAP - 
SD 

1.03 1.02 1.03 1.03 100 100 

URATE 

Uricase - BC 
AU 

Uricase,POD - 
AA 

318 316.14 325.65 313.86 100 100 

Uricase - BC 
AU 

Uricase,POD - 
BC AU 

318 320.43 325.65 327.42 100 100 

Uricase - BC 
AU 

Uricase,POD - 
RCc 

318 311 325.65 309.83 100 100 

Uricase - BC 
AU 

Uricase,POD - 
RCI 

318 322.22 325.65 317.67 100 100 

Uricase - BC 
AU 

Uricase,POD - 
RH 

318 319.38 325.65 324.42 100 100 

Uricase - BC 
AU 

Uricase - RCc 318 319.17 325.65 318.17 100 100 

Uricase - BC 
AU 

Uricase - RCI 318 318 325.65 317.57 100 100 

Uricase - BC 
AU 

Uricase - RH 318 319 325.65 322.33 100 100 

Uricase - BC 
AU 

Uricase - SD 318 308.6 325.65 315.9 100 100 

Uricase,POD - 
AA 

Uricase,POD - 
BC AU 

316.14 320.43 313.86 327.42 100 100 

Uricase,POD - 
AA 

Uricase,POD - 
RCc 

316.14 311 313.86 309.83 100 100 

Uricase,POD - 
AA 

Uricase,POD - 
RCI 

316.14 322.22 313.86 317.67 100 100 

Uricase,POD - 
AA 

Uricase,POD - 
RH 

316.14 319.38 313.86 324.42 100 100 
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Uricase,POD - 
AA 

Uricase - RCc 316.14 319.17 313.86 318.17 100 100 

Uricase,POD - 
AA 

Uricase - RCI 316.14 318 313.86 317.57 100 100 

Uricase,POD - 
AA 

Uricase - RH 316.14 319 313.86 322.33 100 100 

Uricase,POD - 
AA 

Uricase - SD 316.14 308.6 313.86 315.9 100 100 

Uricase,POD - 
BC AU 

Uricase,POD - 
RCc 

320.43 311 327.42 309.83 100 100 

Uricase,POD - 
BC AU 

Uricase,POD - 
RCI 

320.43 322.22 327.42 317.67 100 100 

Uricase,POD - 
BC AU 

Uricase,POD - 
RH 

320.43 319.38 327.42 324.42 100 100 

Uricase,POD - 
BC AU 

Uricase - RCc 320.43 319.17 327.42 318.17 100 100 

Uricase,POD - 
BC AU 

Uricase - RCI 320.43 318 327.42 317.57 100 100 

Uricase,POD - 
BC AU 

Uricase - RH 320.43 319 327.42 322.33 100 100 

Uricase,POD - 
BC AU 

Uricase - SD 320.43 308.6 327.42 315.9 100 100 

Uricase,POD - 
RCc 

Uricase,POD - 
RCI 

311 322.22 309.83 317.67 100 100 

Uricase,POD - 
RCc 

Uricase,POD - 
RH 

311 319.38 309.83 324.42 100 100 

Uricase,POD - 
RCc 

Uricase - RCc 311 319.17 309.83 318.17 100 100 

Uricase,POD - 
RCc 

Uricase - RCI 311 318 309.83 317.57 100 100 

Uricase,POD - 
RCc 

Uricase - RH 311 319 309.83 322.33 100 100 

Uricase,POD - 
RCc 

Uricase - SD 311 308.6 309.83 315.9 100 100 

Uricase,POD - 
RCI 

Uricase,POD - 
RH 

322.22 319.38 317.67 324.42 100 100 

Uricase,POD - 
RCI 

Uricase - RCc 322.22 319.17 317.67 318.17 100 100 

Uricase,POD - 
RCI 

Uricase - RCI 322.22 318 317.67 317.57 100 100 

Uricase,POD - 
RCI 

Uricase - RH 322.22 319 317.67 322.33 100 100 

Uricase,POD - 
RCI 

Uricase - SD 322.22 308.6 317.67 315.9 100 100 

Uricase,POD - 
RH 

Uricase - RCc 319.38 319.17 324.42 318.17 100 100 

Uricase,POD - 
RH 

Uricase - RCI 319.38 318 324.42 317.57 100 100 

Uricase,POD - 
RH 

Uricase - RH 319.38 319 324.42 322.33 100 100 

Uricase,POD - 
RH 

Uricase - SD 319.38 308.6 324.42 315.9 100 100 

Uricase - RCc Uricase - RCI 319.17 318 318.17 317.57 100 100 

Uricase - RCc Uricase - RH 319.17 319 318.17 322.33 100 100 

Uricase - RCc Uricase - SD 319.17 308.6 318.17 315.9 100 100 

Uricase - RCI Uricase - RH 318 319 317.57 322.33 100 100 

Uricase - RCI Uricase - SD 318 308.6 317.57 315.9 100 100 
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Uricase - RH Uricase - SD 319 308.6 322.33 315.9 100 100 

UREA 

Urease,GLDH 
- AA 

Urease,GLDH 
- BC AU 

6.41 6.5 4.85 4.97 99.3 97.7 

Urease,GLDH 
- AA 

Urease,GLDH 
- HP 

6.41 6.17 4.85 4.82 99.9 100 

Urease,GLDH 
- AA 

Urease,GLDH 
- RCc 

6.41 6.32 4.85 4.81 100 100 

Urease,GLDH 
- AA 

Urease,GLDH 
- RCI 

6.41 6.11 4.85 4.71 87.8 96.5 

Urease,GLDH 
- AA 

Urease,GLDH 
- RH 

6.41 6.55 4.85 4.94 99.6 99.8 

Urease,GLDH 
- AA 

Urease,GLDH 
- SD 

6.41 6.61 4.85 5.03 99.7 99.8 

Urease,GLDH 
- BC AU 

Urease,GLDH 
- HP 

6.5 6.17 4.97 4.82 100 100 

Urease,GLDH 
- BC AU 

Urease,GLDH 
- RCc 

6.5 6.32 4.97 4.81 100 100 

Urease,GLDH 
- BC AU 

Urease,GLDH 
- RCI 

6.5 6.11 4.97 4.71 68.8 89.7 

Urease,GLDH 
- BC AU 

Urease,GLDH 
- RH 

6.5 6.55 4.97 4.94 100 100 

Urease,GLDH 
- BC AU 

Urease,GLDH 
- SD 

6.5 6.61 4.97 5.03 100 100 

Urease,GLDH 
- HP 

Urease,GLDH 
- RCc 

6.17 6.32 4.82 4.81 100 100 

Urease,GLDH 
- HP 

Urease,GLDH 
- RCI 

6.17 6.11 4.82 4.71 100 100 

Urease,GLDH 
- HP 

Urease,GLDH 
- RH 

6.17 6.55 4.82 4.94 100 100 

Urease,GLDH 
- HP 

Urease,GLDH 
- SD 

6.17 6.61 4.82 5.03 100 100 

Urease,GLDH 
- RCc 

Urease,GLDH 
- RCI 

6.32 6.11 4.81 4.71 100 100 

Urease,GLDH 
- RCc 

Urease,GLDH 
- RH 

6.32 6.55 4.81 4.94 100 100 

Urease,GLDH 
- RCc 

Urease,GLDH 
- SD 

6.32 6.61 4.81 5.03 100 100 

Urease,GLDH 
- RCI 

Urease,GLDH 
- RH 

6.11 6.55 4.71 4.94 97.4 99.5 

Urease,GLDH 
- RCI 

Urease,GLDH 
- SD 

6.11 6.61 4.71 5.03 97.3 99.3 

Urease,GLDH 
- RH 

Urease,GLDH 
- SD 

6.55 6.61 4.94 5.03 100 100 

 

 

   Commutability of control C1/2016 was evaluated for 426 MP combinations. The 

concentration ranges for most analytes correspond to normal or low pathological level 

according to appropriate reference intervals. 
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The control was found fully commutable for 8 analytes: AST, CK, iron, LDH, phosphate, 

sodium, triglycerides and urate. High commutability was also observed for AMY, glucose, 

potassium, bilirubin, proteins, and urea.  

The control is almost fully noncommutable for HDL cholesterol, with results of 17/21 (81%) 

evaluated pairwise combinations of MPs showing less than 95% commutability. The number 

of MPs used for chloride determination was only three, out of which two combinations were 

found to be noncommutable with control sample C1/2016. Moderate commutability was 

observed for ALT, AP, calcium, cholesterol, creatinine and GGT. 

For four analytes (ALT, cholesterol, chloride and GGT), instrument SD and the appropriate 

method was most likely the source of noncommutability, since control sample was found to be 

noncommutable for almost all the MPs combinations involving SD. Analysing patterns of 

noncommutability in other pairwise MP combinations, one can identify further possible 

sources of noncommutability among instruments: Arsenaso III-BC AU for calcium, 

compensated and noncompensated Jaffe methods from BC AU for creatinine and diazo-BC 

AU for bilirubin measurement. For HDL and AP, it is hard to identify such MPs because the 

control sample was found noncommutable with many MP combinations. 

The MPs that show nonharmonisation on serum sample, very often show to be noncommutable 

in control sample (Table 15). Out of 31 nonharmonised MPs, 25 shows also noncommutability. 

If only harmonised MPs were assessed, the control C1/2016 would also be fully commutable 

for ALT. AMY and urea; the total of 11/22 analytes. Overall commutability would also 

improve for AP, calcium and creatinine.  

 

 

SURVEY 1/2016 

  C NC Total 

H 348 47 395 

NH 6 25 31 

Total 354 72 426 

                        H-harmonised, NH – nonharmonised, C – commutable, NC - noncommutable 

Table 15. Contingency table showing the number of commutable/noncommutable and 
harmonised/nonharmonised MP combinations in the EQA survey 1. 
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4.2.2.2 Commutability evaluation of control sample C2/2016 using the false flagging 

method 

   Prior to evaluation of commutability of control C2/2016 used in the second EQA survey, the 

spiked serum sample used for comparison with control sample was also assessed for 

commutability to check whether this kind of a sample might be used as a substitute for native 

serum. The commutability of spiked serum sample was assessed using the false flagging 

method in comparison of results from spiked and serum sample prepared in the course of the 

third EQA survey. The spiked serum sample was initially considered the control sample and 

the MPs were expected to have the same flagging rate on these samples as in native serum. 

After performing the analysis, a total of 48 MP pairs were excluded across 12 analytes. The 

exclusion was solely based on commutability results, irrespective of concentration levels of 

each. Out of those 48 excluded MP pairs, 19 showed also nonharmonisation when evaluated 

on native samples only. Particularly high rate of excluded MP pairs was observed for creatinine 

(16/36) and bilirubin (9/21). It must be noticed that creatinine was not even the analyte used 

for spiking. Two MPs were also excluded for chloride, the analyte used for spiking, which 

resulted in only one MPs combination to be further evaluated. The results of all excluded MPs 

in the second EQA survey are shown in Appendix. Table 16 presents the results of 

harmonisation and commutability for evaluated MP combinations in EQA survey 2 for 22 

assessed analytes. Percentage harmonisation and percentage commutability below 95 indicate 

nonharmonisation and noncommutability for named MP pair. 

 

 

EQA SURVEY 2 
MP 1 MP 2 Mean 

MP1 
(serum) 

Mean 
MP2 

(serum) 

Mean 
MP1 

(control) 

Mean 
MP2 

(control) 

% 
harmo-
nisation 

% 
commu-
tability 

ALT 

IFCC- BC AU Photometry 
UV- AA 

25.53 24 152.21 149.5 99.9 99.9 

IFCC- BC AU Photometry 
UV- BC AU 

25.53 24.35 152.21 151.94 100 100 

IFCC- BC AU Photometry 
UV- RCc 

25.53 23.25 152.21 146.89 100 100 

IFCC- BC AU Photometry 
UV- RCI 

25.53 23 152.21 141.07 100 100 

Table 16. The results of commutability evaluation of EQA control sample C2/2016 using the false 
flagging method. 
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IFCC- BC AU Photometry 

UV- RH 
25.53 23.42 152.21 146.1 100 100 

Photometry 
UV- AA 

Photometry 
UV- BC AU 

24 24.35 149.5 151.94 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCc 

24 23.25 149.5 146.89 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCI 

24 23 149.5 141.07 100 100 

Photometry 
UV- AA 

Photometry 
UV- RH 

24 23.42 149.5 146.1 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCc 

24.35 23.25 151.94 146.89 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCI 

24.35 23 151.94 141.07 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RH 

24.35 23.42 151.94 146.1 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RCI 

23.25 23 146.89 141.07 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RH 

23.25 23.42 146.89 146.1 100 100 

Photometry 
UV- RCI 

Photometry 
UV- RH 

23 23.42 141.07 146.1 100 100 

ALP 

IFCC- AA IFCC- BC AU 64.18 69.44 288.64 311.8 95.6 59.7 

IFCC- AA IFCC- RCc 64.18 64.85 288.64 267.38 100 91.1 

IFCC- AA IFCC- RCI 64.18 67.47 288.64 272.39 100 96.7 
IFCC- AA IFCC- RCMira 64.18 70.5 288.64 288 100 97.3 
IFCC- AA IFCC- RH 64.18 68.68 288.64 291.16 99.7 99.6 
IFCC- AA IFCC- SD 64.18 67.83 288.64 283.64 100 100 
IFCC- BC AU IFCC- RCc 69.44 64.85 311.8 267.38 100 0 

IFCC- BC AU IFCC- RCI 69.44 67.47 311.8 272.39 100 4.9 

IFCC- BC AU IFCC- RCMira 69.44 70.5 311.8 288 100 29.8 

IFCC- BC AU IFCC- RH 69.44 68.68 311.8 291.16 100 76.7 

IFCC- BC AU IFCC- SD 69.44 67.83 311.8 283.64 100 80.1 

IFCC- RCc IFCC- RCI 64.85 67.47 267.38 272.39 100 100 
IFCC- RCc IFCC- RCMira 64.85 70.5 267.38 288 100 59.3 

IFCC- RCc IFCC- RH 64.85 68.68 267.38 291.16 100 99.8 
IFCC- RCc IFCC- SD 64.85 67.83 267.38 283.64 100 100 
IFCC- RCI IFCC- RCMira 67.47 70.5 272.39 288 100 63.8 

IFCC- RCI IFCC- RH 67.47 68.68 272.39 291.16 100 100 
IFCC- RCI IFCC- SD 67.47 67.83 272.39 283.64 100 100 
IFCC- RCMira IFCC- RH 70.5 68.68 288 291.16 100 90 

IFCC- RCMira IFCC- SD 70.5 67.83 288 283.64 100 96 
IFCC- RH IFCC- SD 68.68 67.83 291.16 283.64 100 100 

AMY 

IFCC- AA IFCC- BC AU 51 52.83 355.3 344.3 100 100 
IFCC- AA IFCC- RCc 51 51.85 355.3 330.69 100 100 
IFCC- AA IFCC- RCI 51 53.08 355.3 331.73 100 100 
IFCC- AA IFCC- RH 51 49.68 355.3 324.65 100 100 
IFCC- AA CNP-G3- SD 51 47.71 355.3 357.29 100 100 
IFCC- BC AU IFCC- RCc 52.83 51.85 344.3 330.69 100 100 
IFCC- BC AU IFCC- RCI 52.83 53.08 344.3 331.73 100 100 
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IFCC- BC AU CNP-G3- SD 52.83 47.71 344.3 357.29 83.1 83.5 

IFCC- RCc IFCC- RCI 51.85 53.08 330.69 331.73 100 100 
IFCC- RCc IFCC- RH 51.85 49.68 330.69 324.65 100 100 
IFCC- RCc CNP-G3- SD 51.85 47.71 330.69 357.29 99.9 99.9 
IFCC- RCI IFCC- RH 53.08 49.68 331.73 324.65 100 100 
IFCC- RCI CNP-G3- SD 53.08 47.71 331.73 357.29 100 100 
IFCC- RH CNP-G3- SD 49.68 47.71 324.65 357.29 100 99.9 

AST 

IFCC- BC AU IFCC- SD 23.33 23.5 229.37 236.42 100 100 
IFCC- BC AU Photometry 

UV- AA 
23.33 19.9 229.37 208.7 75.5 76.5 

IFCC- BC AU Photometry 
UV- BC AU 

23.33 22.65 229.37 226.31 100 100 

IFCC- BC AU Photometry 
UV- RCc 

23.33 20.12 229.37 205.56 99.6 99.7 

IFCC- BC AU Photometry 
UV- RCI 

23.33 20.71 229.37 206.73 100 100 

IFCC- BC AU Photometry 
UV- RH 

23.33 20.74 229.37 205 100 100 

IFCC- SD Photometry 
UV- AA 

23.5 19.9 236.42 208.7 99.2 99.2 

IFCC- SD Photometry 
UV- BC AU 

23.5 22.65 236.42 226.31 100 100 

IFCC- SD Photometry 
UV- RCc 

23.5 20.12 236.42 205.56 100 100 

IFCC- SD Photometry 
UV- RCI 

23.5 20.71 236.42 206.73 100 100 

IFCC- SD Photometry 
UV- RH 

23.5 20.74 236.42 205 98.4 98.5 

Photometry 
UV- AA 

Photometry 
UV- BC AU 

19.9 22.65 208.7 226.31 94.5 94.5 

Photometry 
UV- AA 

Photometry 
UV- RCc 

19.9 20.12 208.7 205.56 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCI 

19.9 20.71 208.7 206.73 100 100 

Photometry 
UV- AA 

Photometry 
UV- RH 

19.9 20.74 208.7 205 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCc 

22.65 20.12 226.31 205.56 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCI 

22.65 20.71 226.31 206.73 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RH 

22.65 20.74 226.31 205 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RCI 

20.12 20.71 205.56 206.73 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RH 

20.12 20.74 205.56 205 100 100 

Photometry 
UV- RCI 

Photometry 
UV- RH 

20.71 20.74 206.73 205 100 100 

CALCIUM 

Asenaso III-
AA  

Asenaso III- 
BC AU  

2.18 2.25 3.08 3.17 99.3 74.4 

Asenaso III-
AA  

NM-BAPTA- 
RCI  

2.18 2.23 3.08 3.18 99.9 98.9 

Asenaso III-
AA  

cresolphthalein
- BC AU  

2.18 2.22 3.08 3.16 100 99.5 
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Asenaso III- 
BC AU  

NM-BAPTA- 
RC 

2.25 2.23 3.17 3.18 100 100 

NM-BAPTA- 
RC 

cresolphthalein
- BC AU 

2.23 2.22 3.18 3.16 100 100 

NM-BAPTA- 
RC 

cresolphthalein
- SD 

2.23 2.19 3.18 3.08 100 93.4 

cresolphthalein
- BC AU 

cresolphthalein
- SD 

2.22 2.19 3.16 3.08 100 96.5 

CHLORIDE 

Indirect ISE- 
AA 

Indirect ISE- 
SD 

122.08 122.71 135.42 130.14 98.8 80.9 

CHOLESTEROL 

CHOD-PAP- 
AA  

CHOD-PAP- 
BC AU  

5.27 5.44 6.05 6.23 100 100 

CHOD-PAP- 
AA 

CHOD-PAP- 
RCc 

5.27 5.17 6.05 5.94 100 100 

CHOD-PAP- 
AA 

CHOD-PAP- 
RCI 

5.27 5.28 6.05 6.06 100 100 

CHOD-PAP- 
AA 

CHOD-PAP- 
RH 

5.27 5.26 6.05 6.04 100 100 

CHOD-PAP- 
AA 

CHOD-PAP- 
SD 

5.27 5.24 6.05 5.42 100 10.5 

CHOD-PAP- 
BC AU  

CHOD-PAP- 
RCc 

5.44 5.17 6.23 5.94 100 100 

CHOD-PAP- 
BC AU  

CHOD-PAP- 
RCI 

5.44 5.28 6.23 6.06 100 100 

CHOD-PAP- 
BC AU  

CHOD-PAP- 
RH 

5.44 5.26 6.23 6.04 100 100 

CHOD-PAP- 
BC AU  

CHOD-PAP- 
SD 

5.44 5.24 6.23 5.42 100 0 

CHOD-PAP- 
RCc  

CHOD-PAP- 
RCI 

5.17 5.28 5.94 6.06 100 100 

CHOD-PAP- 
RCc 

CHOD-PAP- 
RH 

5.17 5.26 5.94 6.04 100 100 

CHOD-PAP- 
RCc 

CHOD-PAP- 
SD 

5.17 5.24 5.94 5.42 100 21.7 

CHOD-PAP- 
RCI  

CHOD-PAP- 
RH 

5.28 5.26 6.06 6.04 100 100 

CHOD-PAP- 
RCI 

CHOD-PAP- 
SD 

5.28 5.24 6.06 5.42 100 1 

CHOD-PAP- 
RH  

CHOD-PAP- 
SD 

5.26 5.24 6.04 5.42 100 1.9 

CK 

IFCC- AA  IFCC- BC AU  150.73 155.94 240.64 248.85 100 100 
IFCC- AA  IFCC- RCc 150.73 153.67 240.64 251.29 100 99.7 
IFCC- AA  IFCC- RCI   150.73 155.82 240.64 247.92 100 100 
IFCC- AA  IFCC- RH    150.73 151.3 240.64 242.7 100 100 
IFCC- AA  IFCC- SD     150.73 150.43 240.64 237.57 100 100 
IFCC- BC AU  IFCC- RCc 155.94 153.67 248.85 251.29 100 100 
IFCC- BC AU  IFCC- RCI   155.94 155.82 248.85 247.92 100 100 
IFCC- BC AU  IFCC- RH    155.94 151.3 248.85 242.7 100 100 
IFCC- BC AU  IFCC- SD     155.94 150.43 248.85 237.57 100 100 
IFCC- RCc IFCC- RCI   153.67 155.82 251.29 247.92 100 100 
IFCC- RCc IFCC- RH 153.67 151.3 251.29 242.7 100 100 

IFCC- RCc IFCC- SD 153.67 150.43 251.29 237.57 100 100 
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IFCC- RCI   IFCC- RH    155.82 151.3 247.92 242.7 100 100 
IFCC- RCI   IFCC- SD     155.82 150.43 247.92 237.57 100 100 
IFCC- RH    IFCC- SD     151.3 150.43 242.7 237.57 100 100 

CREATININE 

Compensated 
Jaffe- AA     

Compensated 
Jaffe- SD  

77.29 82.44 273.67 252.56 100 99.6 

Compensated 
Jaffe- AA     

Non-
compensated 
Jaffe- BC AU  

77.29 87.77 273.67 240.87 3.2 42.6 

Compensated 
Jaffe- BC AU 

Enzymatic 
method- BC 
AU 

76.24 77.58 237.4 249.55 100 100 

Compensated 
Jaffe- RCc 

Compensated 
Jaffe- RCI  

82.82 80 257.64 241 97.1 96.7 

Compensated 
Jaffe- RCc 

Compensated 
Jaffe- RH 

82.82 83.41 257.64 252.06 99.9 99.9 

Compensated 
Jaffe- RCc 

Compensated 
Jaffe- SD 

82.82 82.44 257.64 252.56 100 100 

Compensated 
Jaffe- RCc 

Enzymatic 
method- BC 
AU 

82.82 77.58 257.64 249.55 87 96.4 

Compensated 
Jaffe- RCI  

Compensated 
Jaffe- RH 

80 83.41 241 252.06 97 99.9 

Compensated 
Jaffe- RCI  

Compensated 
Jaffe- SD 

80 82.44 241 252.56 100 100 

Compensated 
Jaffe- RCI  

Enzymatic 
method- BC 
AU 

80 77.58 241 249.55 100 100 

Compensated 
Jaffe- RH 

Compensated 
Jaffe- SD 

83.41 82.44 252.06 252.56 100 100 

Compensated 
Jaffe- SD 

Enzymatic 
method- BC 
AU 

82.44 77.58 252.56 249.55 100 100 

GGT 

IFCC- AA IFCC- BC AU 27.17 26.26 144.75 144.78 100 100 
IFCC- AA IFCC- RCc  27.17 25.91 144.75 147 100 100 
IFCC- AA IFCC- RCI 27.17 25.83 144.75 150 100 100 
IFCC- AA IFCC- RH 27.17 26.92 144.75 147.36 100 100 
IFCC- AA IFCC- SD  27.17 28.38 144.75 147.92 100 100 
IFCC- BC AU IFCC- RCc 26.26 25.91 144.78 147 100 100 
IFCC- BC AU IFCC- RCI 26.26 25.83 144.78 150 100 100 
IFCC- BC AU IFCC- RH 26.26 26.92 144.78 147.36 100 100 
IFCC- BC AU IFCC- SD  26.26 28.38 144.78 147.92 90.7 90.8 

IFCC- RCc IFCC- RCI 25.91 25.83 147 150 100 100 
IFCC- RCc IFCC- RH  25.91 26.92 147 147.36 100 100 
IFCC- RCc IFCC- SD  25.91 28.38 147 147.92 100 100 
IFCC- RCI IFCC- RH 25.83 26.92 150 147.36 100 100 
IFCC- RCI IFCC- SD  25.83 28.38 150 147.92 98.9 98.9 
IFCC- RH IFCC- SD  26.92 28.38 147.36 147.92 100 100 

GLUCOSE 

GOD-PAP- BC 
AU  

GOD-PAP- 
RH 

10.13 9.9 10.42 10.31 100 100 

GOD-PAP- BC 
AU 

Hexokinase- 
AA  

10.13 9.94 10.42 10.41 100 100 
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GOD-PAP- BC 
AU 

Hexokinase- 
BC AU  

10.13 10.14 10.42 10.56 100 99.9 

GOD-PAP- BC 
AU 

Hexokinase- 
RCc  

10.13 9.94 10.42 10.42 100 100 

GOD-PAP- BC 
AU 

Hexokinase- 
RCI  

10.13 10.08 10.42 10.44 100 100 

GOD-PAP- BC 
AU 

Hexokinase- 
SD  

10.13 9.95 10.42 10.65 100 99.8 

GOD-PAP- 
RH  

Hexokinase- 
AA 

9.9 9.94 10.31 10.41 100 100 

GOD-PAP- 
RH 

Hexokinase- 
BC AU 

9.9 10.14 10.31 10.56 100 100 

GOD-PAP- 
RH 

Hexokinase- 
RCc 

9.9 9.94 10.31 10.42 100 100 

GOD-PAP- 
RH 

Hexokinase- 
RCI 

9.9 10.08 10.31 10.44 100 100 

GOD-PAP- 
RH 

Hexokinase- 
SD 

9.9 9.95 10.31 10.65 100 100 

Hexokinase- 
AA 

Hexokinase- 
BC AU 

9.94 10.14 10.41 10.56 100 100 

Hexokinase- 
AA 

Hexokinase- 
RCc 

9.94 9.94 10.41 10.42 100 100 

Hexokinase- 
AA 

Hexokinase- 
RCI 

9.94 10.08 10.41 10.44 100 100 

Hexokinase- 
AA 

Hexokinase- 
SD 

9.94 9.95 10.41 10.65 100 100 

Hexokinase- 
BC AU 

Hexokinase- 
RCc 

10.14 9.94 10.56 10.42 100 100 

Hexokinase- 
BC AU 

Hexokinase- 
RCI 

10.14 10.08 10.56 10.44 100 100 

Hexokinase- 
BC AU 

Hexokinase- 
SD 

10.14 9.95 10.56 10.65 99.1 99.6 

Hexokinase- 
RCc 

Hexokinase- 
RCI 

9.94 10.08 10.42 10.44 100 100 

Hexokinase- 
RCc 

Hexokinase- 
SD 

9.94 9.95 10.42 10.65 100 100 

Hexokinase- 
RCI 

Hexokinase- 
SD 

10.08 9.95 10.44 10.65 100 100 

HDL 

Homogenous- 
AA 

Homogenous- 
BC AU 

1.21 1.19 1.92 1.61 100 0.1 

Homogenous- 
AA 

Homogenous- 
RCc 

1.21 1.18 1.92 1.41 100 0 

Homogenous- 
AA 

Homogenous- 
RCI 

1.21 1.19 1.92 1.45 100 0 

Homogenous- 
AA 

Homogenous- 
RH 

1.21 1.28 1.92 1.81 99.9 84.1 

Homogenous- 
AA 

Homogenous- 
SD 

1.21 1.25 1.92 1.47 99.9 0 

Homogenous- 
BC AU 

Homogenous- 
RCc 

1.19 1.18 1.61 1.41 100 1 

Homogenous- 
BC AU 

Homogenous- 
RCI 

1.19 1.19 1.61 1.45 100 36.3 

Homogenous- 
BC AU 

Homogenous- 
RH 

1.19 1.28 1.61 1.81 58 59 

Homogenous- 
RCc 

Homogenous- 
RCI 

1.18 1.19 1.41 1.45 100 99.7 
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Homogenous- 
RCc 

Homogenous- 
RH 

1.18 1.28 1.41 1.81 97.9 0 

Homogenous- 
RCc 

Homogenous- 
SD 

1.18 1.25 1.41 1.47 97.5 98.6 

Homogenous- 
RCI 

Homogenous- 
RH 

1.19 1.28 1.45 1.81 98.9 4.9 

Homogenous- 
RCI 

Homogenous- 
SD 

1.19 1.25 1.45 1.47 97.5 99.4 

Homogenous- 
RH 

Homogenous- 
SD 

1.28 1.25 1.81 1.47 99.9 0.7 

IRON 

Ferene- AA Ferene- HP 11.7 12.67 31.72 31.57 99.5 99.5 
Ferene- AA Ferene- RH 11.7 12.49 31.72 33.17 100 100 
Ferene- AA Ferene- SD 11.7 12.83 31.72 30.81 88.5 88.5 
Ferene- AA Ferrozine- RCc 11.7 13.34 31.72 33.31 94.3 94.3 
Ferene- AA Ferrozine- RCI 11.7 13.13 31.72 33.35 95.1 95.1 
Ferene- AA Ferrozine- RH 11.7 12.92 31.72 32.67 100 100 
Ferene- AA TPTZ- BC AU 11.7 12.31 31.72 32.23 100 100 
Ferene- HP  Ferene- RH 12.67 12.5 31.5 32.58 100 100 
Ferene- HP  Ferene- SD 12.67 12.83 31.57 30.81 97.2 97.2 
Ferene- HP  Ferrozine- RCc 12.67 13.38 31.5 33 100 100 
Ferene- HP  Ferrozine- RCI 12.67 13.19 31.5 33.53 100 100 
Ferene- HP  Ferrozine- RH 12.67 13 31.5 32.67 100 100 
Ferene- HP  TPTZ- BC AU 12.67 12.25 31.5 32.25 100 100 
Ferene- RH Ferene- SD 12.49 12.83 33.17 30.81 98.5 98.6 
Ferene- RH Ferrozine- RCc 12.5 13.38 32.58 33 100 100 
Ferene- RH Ferrozine- RCI 12.5 13.19 32.58 33.53 100 100 
Ferene- RH Ferrozine- RH 12.5 13 32.58 32.67 100 100 
Ferene - RH TPTZ- BC AU 12.5 12.25 32.58 32.25 100 100 
Ferene- SD Ferrozine- RCc 12.83 13.34 30.81 33.31 100 100 
Ferene- SD Ferrozine- RCI 12.83 13.13 30.81 33.35 98.8 98.8 
Ferene- SD Ferrozine- RH 12.83 12.92 30.81 32.67 99.7 99.7 
Ferene- SD TPTZ- BC AU 12.83 12.31 30.81 32.23 76.4 76.5 
Ferrozine- RCc Ferrozine- RCI 13.38 13.19 33 33.53 100 100 
Ferrozine- RCc Ferrozine- RH 13.38 13 33 32.67 100 100 
Ferrozine- RCc TPTZ- BC AU 13.38 12.25 33 32.25 100 100 
Ferrozine- RCI Ferrozine- RH 13.19 13 33.53 32.67 100 100 
Ferrozine- RCI TPTZ- BC AU 13.19 12.25 33.53 32.25 100 100 
Ferrozine- RH TPTZ- BC AU 13 12.25 32.67 32.25 100 100 

LDH 

IFCC- AA IFCC- BC AU 144.6 147.61 312.64 316.75 100 100 
IFCC- AA IFCC- RCc 144.6 144.88 312.64 308.25 100 100 
IFCC- AA IFCC- RCI 144.6 149.46 312.64 317.29 100 100 
IFCC- AA IFCC- RH 144.6 141.38 312.64 308.62 100 100 
IFCC- AA IFCC- SD 144.6 143.17 312.64 312.5 100 100 
IFCC- BC AU IFCC- RCc 147.61 144.88 316.75 308.25 100 100 
IFCC- BC AU IFCC- RCI 147.61 149.46 316.75 317.29 100 100 
IFCC- BC AU IFCC- RH 147.61 141.38 316.75 308.62 100 100 
IFCC- RCc IFCC- RCI 144.88 149.46 308.25 317.29 100 100 
IFCC- RCc IFCC- RH 144.88 141.38 308.25 308.62 100 100 
IFCC- RCc IFCC- SD 144.88 143.17 308.25 312.5 100 100 
IFCC- RCI IFCC- RH 149.46 141.38 317.29 308.62 100 100 
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IFCC- RH IFCC- SD 141.38 143.17 308.62 312.5 100 100 

PHOSPHATE 

Ammonium-
molybdate- AA 

Ammonium-
molybdate- 
RCc 

0.96 0.94 2.86 2.82 100 100 

Ammonium-
molybdate- AA 

Ammonium-
molybdate- 
RCI 

0.96 0.99 2.86 2.99 100 100 

Ammonium-
molybdate- BC 
AU 

Ammonium-
molybdate- 
RCc 

0.96 0.94 2.9 2.82 100 100 

Ammonium-
molybdate- BC 
AU 

Ammonium-
molybdate- 
RCI 

0.96 0.99 2.9 2.99 100 100 

Ammonium-
molybdate- 
RCc 

Ammonium-
molybdate- 
RCI 

0.94 0.99 2.82 2.99 100 100 

POTASSIUM 

FES- CC Indirect ISE- 
AA  

4.12 4.06 5.78 5.82 100 100 

FES- CC Indirect ISE- 
BC AU 

4.12 4.07 5.78 5.76 100 100 

FES- CC Indirect ISE- 
RCc  

4.12 4.1 5.78 5.9 100 100 

FES- CC Indirect ISE- 
RCI 

4.12 4.09 5.78 5.85 100 100 

FES- CC Indirect ISE- 
SD  

4.12 4.04 5.78 5.82 100 100 

Indirect ISE- 
AA  

Indirect ISE- 
BC AU 

4.06 4.07 5.82 5.76 100 100 

Indirect ISE- 
AA  

Indirect ISE- 
RCc 

4.06 4.1 5.82 5.9 100 100 

Indirect ISE- 
AA  

Indirect ISE- 
RCI 

4.06 4.09 5.81 5.85 100 100 

Indirect ISE- 
AA  

Indirect ISE- 
SD 

4.06 4.04 5.82 5.82 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
RCc 

4.07 4.1 5.76 5.9 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
RCI 

4.07 4.09 5.76 5.85 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
SD 

4.07 4.04 5.76 5.82 100 100 

Indirect ISE- 
RCc 

Indirect ISE- 
RCI 

4.1 4.09 5.9 5.85 100 100 

Indirect ISE- 
RCc 

Indirect ISE- 
SD 

4.1 4.04 5.9 5.82 100 100 

Indirect ISE- 
RCI 

Indirect ISE- 
SD 

4.09 4.04 5.85 5.82 100 100 

SODIUM 

FES- CC Indirect ISE- 
AA 

153.68 153.85 163.64 165 100 100 

FES- CC Indirect ISE- 
BC AU 

153.68 153.56 163.64 164.01 100 100 

FES- CC Indirect ISE- 
RCc 

153.68 153.91 163.64 166.82 100 98.2 

FES- CC Indirect ISE- 
RCI 

153.68 154.18 163.64 166.45 100 100 
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FES- CC Indirect ISE- 

SD 
153.68 154.82 163.64 164.6 100 100 

Indirect ISE- 
AA 

Indirect ISE- 
BC AU 

153.85 153.56 165 164.01 100 100 

Indirect ISE- 
AA 

Indirect ISE- 
RCc 

153.85 153.91 165 166.82 100 100 

Indirect ISE- 
AA 

Indirect ISE- 
RCI 

153.85 154.18 165 166.45 100 100 

Indirect ISE- 
AA 

Indirect ISE- 
SD 

153.85 154.82 165 164.6 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
RCc 

153.56 153.91 164.01 166.82 100 89.7 

Indirect ISE- 
BC AU 

Indirect ISE- 
RCI 

153.56 154.18 164.01 166.45 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
SD 

153.56 154.82 164.01 164.6 100 100 

Indirect ISE- 
RCc 

Indirect ISE- 
RCI 

153.91 154.18 166.82 166.45 100 100 

Indirect ISE- 
RCc 

Indirect ISE- 
SD 

153.91 154.82 166.82 164.6 100 100 

Indirect ISE- 
RCI 

Indirect ISE- 
SD 

154.18 154.82 166.45 164.6 100 100 

BILIRUBIN 

Diazo- AA Diazo- RCc 31.7 27.38 88.6 80.31 24.6 63.9 

Diazo- AA Diazo- RCI 31.7 27.56 88.6 78.31 23.1 80.7 

Diazo- BC AU Diazo- HP 32.28 30.5 81.49 83.17 100 100 
Diazo- BC AU Diazo- RH 32.28 29.52 81.49 78.92 100 100 
Diazo- HP Diazo- RH 30.5 29.52 83.17 78.92 100 100 
Diazo- HP Diazo- SD 30.5 29.15 83.17 81.69 100 100 
Diazo- RCc Diazo- RCI 27.38 27.56 80.31 78.31 100 100 
Diazo- RCc Diazo- RH 27.38 29.52 80.31 78.92 96.7 98 
Diazo- RCc Diazo- SD 27.38 29.15 80.31 81.69 99.8 99.8 
Diazo- RCI Diazo- RH 27.56 29.52 78.31 78.92 100 100 
Diazo- RCI Diazo- SD 27.56 29.15 78.31 81.69 100 100 
Diazo- RH Diazo- SD 29.52 29.15 78.92 81.69 100 100 

PROTEINS 

Biuret- AA Biuret- RCc 64.9 66.64 93.7 93.14 100 100 
Biuret- AA Biuret- RCI 64.9 65.67 93.7 92.33 100 100 
Biuret- AA Biuret- RH 64.9 65.78 93.7 93 100 100 
Biuret- AA Biuret- SD 64.9 68.75 93.7 96.57 100 100 
Biuret- BC AU Biuret- RCc 66.45 66.64 94.08 93.14 100 100 
Biuret- BC AU Biuret- RCI 66.45 65.67 94.08 92.33 94.5 98.6 

Biuret- BC AU Biuret- RH 66.45 65.78 94.08 93 100 100 
Biuret- BC AU Biuret- SD 66.45 68.75 94.08 96.57 100 100 
Biuret- RCc Biuret- RCI 66.64 65.67 93.14 92.33 99.5 99.9 
Biuret- RCc Biuret- RH 66.64 65.78 93.14 93 100 100 
Biuret- RCc Biuret- SD 66.64 68.75 93.14 96.57 100 100 
Biuret- RCI Biuret- RH 65.67 65.78 92.33 93 99.8 99.9 
Biuret- RCI Biuret- SD 65.67 68.75 92.33 96.57 96.5 98.7 
Biuret- RH Biuret- SD 65.78 68.75 93 96.57 99.9 99.9 

TRIGLYCERIDES 

GPO-PAP- AA GPO-PAP- BC 
AU  

1.69 1.76 4.57 4.63 100 100 
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GPO-PAP- AA GPO-PAP- 

RCc 
1.69 1.64 4.57 4.22 100 100 

GPO-PAP- AA GPO-PAP- 
RCI 

1.69 1.64 4.57 4.45 100 100 

GPO-PAP- AA GPO-PAP- RH 1.69 1.66 4.57 4.37 100 100 
GPO-PAP- AA GPO-PAP- SD 1.69 1.7 4.57 4.51 100 100 
GPO-PAP- BC 
AU 

GPO-PAP- 
RCc 

1.76 1.65 4.63 4.23 100 100 

GPO-PAP- BC 
AU 

GPO-PAP- 
RCI 

1.76 1.68 4.63 4.45 100 100 

GPO-PAP- BC 
AU 

GPO-PAP- RH 1.76 1.65 4.63 4.37 100 100 

GPO-PAP- BC 
AU 

GPO-PAP- SD 1.76 1.7 4.63 4.52 100 100 

GPO-PAP- 
RCc 

GPO-PAP- 
RCI 

1.65 1.68 4.23 4.45 100 100 

GPO-PAP- 
RCc 

GPO-PAP- RH 1.65 1.65 4.23 4.37 100 100 

GPO-PAP- 
RCc 

GPO-PAP- SD  1.65 1.7 4.23 4.52 100 100 

GPO-PAP- 
RCI 

GPO-PAP- RH 1.68 1.65 4.45 4.37 100 100 

GPO-PAP- 
RCI 

GPO-PAP- SD 1.68 1.7 4.45 4.52 100 100 

GPO-PAP- RH GPO-PAP- SD 1.65 1.7 4.37 4.52 100 100 

URATE 

Uricase- BC 
AU 

Uricase,POD- 
AA 

341.96 339.14 688 690.71 100 99.8 

Uricase- BC 
AU 

Uricase,POD- 
BC AU 

341.96 342.27 688 693.59 100 100 

Uricase- BC 
AU 

Uricase,POD- 
RCc 

341.96 325 688 671.57 100 100 

Uricase- BC 
AU 

Uricase,POD- 
RCI 

341.96 338.3 688 689.2 100 100 

Uricase- BC 
AU 

Uricase,POD- 
RH 

341.96 345 688 696.38 100 100 

Uricase- BC 
AU 

Uricase- RH 341.96 342.08 688 697.08 100 100 

Uricase- BC 
AU 

Uricase- SD 341.96 315.5 688 679 100 100 

Uricase,POD- 
AA 

Uricase,POD- 
BC AU 

339.14 342.27 690.71 693.59 99.9 100 

Uricase,POD- 
AA 

Uricase,POD- 
RCc 

339.14 325 690.71 671.57 99.9 100 

Uricase,POD- 
AA 

Uricase,POD- 
RCI 

339.14 338.3 690.71 689.2 100 100 

Uricase,POD- 
AA 

Uricase,POD- 
RH 

339.14 345 690.71 696.38 100 100 

Uricase,POD- 
AA 

Uricase- RH 339.14 342.08 690.71 697.08 100 100 

Uricase,POD- 
BC AU 

Uricase,POD- 
RCc 

342.27 325 693.59 671.57 100 100 

Uricase,POD- 
BC AU 

Uricase,POD- 
RCI 

342.27 338.3 693.59 689.2 100 100 

Uricase,POD- 
BC AU 

Uricase,POD- 
RH 

342.27 345 693.59 696.38 100 100 

Uricase,POD- 
BC AU 

Uricase- RH 342.27 342.08 693.59 697.08 100 100 
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Uricase,POD- 
RCc 

Uricase,POD- 
RCI 

325 338.3 671.57 689.2 100 100 

Uricase,POD- 
RCc 

Uricase,POD- 
RH 

325 345 671.57 696.38 100 100 

Uricase,POD- 
RCc 

Uricase- RH 325 342.08 671.57 697.08 100 100 

Uricase,POD- 
RCc 

Uricase- SD 325 315.5 671.57 679 100 100 

Uricase,POD- 
RCI 

Uricase,POD- 
RH 

338.3 345 689.2 696.38 100 100 

Uricase,POD- 
RCI 

Uricase- RH 338.3 342.08 689.2 697.08 100 100 

Uricase,POD- 
RCI 

Uricase - SD 338.3 315.5 689.2 679 100 100 

Uricase,POD- 
RH 

Uricase- RH 345 342.08 696.38 697.08 100 100 

Uricase,POD- 
RH 

Uricase- SD 345 315.5 696.38 679 100 100 

Uricase- RH Uricase- SD 342.08 315.5 697.08 679 100 100 

UREA 

Urease,GLDH- 
AA 

Urease,GLDH- 
BC AU 

9.38 9.58 12.89 13.02 100 100 

Urease,GLDH- 
AA 

Urease,GLDH- 
HP 

9.38 9.27 12.89 12.78 100 100 

Urease,GLDH- 
AA 

Urease,GLDH- 
RCc 

9.38 9.38 12.89 12.94 100 100 

Urease,GLDH- 
AA 

Urease,GLDH- 
RCI 

9.38 9.38 12.89 12.86 100 100 

Urease,GLDH- 
AA 

Urease,GLDH- 
RH 

9.38 9.56 12.89 13.03 100 100 

Urease,GLDH- 
AA 

Urease,GLDH- 
SD 

9.38 9.54 12.89 13.12 100 100 

Urease,GLDH- 
BC AU 

Urease,GLDH- 
HP 

9.58 9.27 13.02 12.78 100 100 

Urease,GLDH- 
BC AU 

Urease,GLDH- 
RCc 

9.58 9.38 13.02 12.94 100 100 

Urease,GLDH- 
BC AU 

Urease,GLDH- 
RH 

9.58 9.56 13.02 13.03 100 100 

Urease,GLDH- 
HP 

Urease,GLDH- 
RCc 

9.27 9.38 12.78 12.94 100 100 

Urease,GLDH- 
HP 

Urease,GLDH- 
RCI 

9.27 9.38 12.78 12.86 100 100 

Urease,GLDH- 
HP 

Urease,GLDH- 
RH 

9.27 9.56 12.78 13.03 100 100 

Urease,GLDH- 
HP 

Urease,GLDH- 
SD 

9.27 9.54 12.78 13.12 100 100 

Urease,GLDH- 
RCc 

Urease,GLDH- 
RCI 

9.38 9.38 12.94 12.86 100 100 

Urease,GLDH- 
RCc 

Urease,GLDH- 
RH 

9.38 9.56 12.94 13.03 100 100 

Urease,GLDH- 
RCc 

Urease,GLDH- 
SD 

9.38 9.54 12.94 13.12 100 100 

Urease,GLDH- 
RH 

Urease,GLDH- 
SD 

9.56 9.54 13.03 13.12 100 100 
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   The concentration ranges assessed in the second EQA survey correspond mostly to high 

levels according to the reference intervals of each analyte. The concentration levels of serum 

samples to which the results of control samples were compared were in the normal ranges, 

except for analytes used for spiking: glucose, urea, sodium, chloride and bilirubin.  

   The control was evaluated for commutability with 331 MPs combinations. Full 

commutability was found for 11 analytes: ALT, CK, glucose, LDH, phosphate, potassium, 

proteins, triglycerides, urate and urea. Since the control also showed high commutability for 

AMY, AST, GGT, iron and sodium, one can conclude that patterns of commutability are the 

same for those analytes on lyophilised control samples from the same manufacturer at different 

concentration levels. The difference in analyte-related commutability of this control sample 

can be seen for GGT, having more commutable decisions at this high concentration level. 

Creatinine and bilirubin commutability conclusions for C2/2016 are somewhat different than 

in C1/2016, although many MP combinations were excluded from assessment in the second 

EQA survey to be able to compare the commutability of these controls for used MPs. Similar 

to C1/2016, this control also showed almost complete noncommutability for HDL cholesterol 

and rather low commutability for AP. One evaluated MP pair for chloride was also 

noncommutable. 

   Since SD was excluded from assessment for ALT, this instrument was not the cause for 

noncommutability of the MP combinations involving SD. In the case of cholesterol, all 

pairwise MP combinations with SD remained to be the probable source of noncommutability. 

As a difference from the EQA survey 1, the SD showed noncommutability in only one MP pair 

used for GGT measurement for the control sample C2/2016. 

   If commutability of C2/2016 is analysed in relation to the harmonisation of MPs, the overall 

commutability would be much better for AMY, AST, creatinine, GGT, iron and bilirubin, 

where full commutability of this control would be observed. The contingency table showing 

the relationship between harmonisation and commutability within this EQA survey is shown 

in Table 17. 
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SURVEY 2/2016 

  C NC Total 

H 288 29 317 

NH 2 12 14 

Total 290 41 331 

                             H-harmonised, NH – nonharmonised, C – commutable, NC - noncommutable 
 

4.2.2.3 Commutability evaluation of control sample C3/2016 using the false flagging 

method 

   The results of commutability evaluation of the EQA control sample C3/2016 is presented in 

Table 18. Mean values for each MP and sample evaluated in EQA survey 3 are presented in 

Table 18 together with the results for harmonisation and commutability of each pair of MPs. 

The MP pairs are considered harmonised/commutable when percentage 

harmonisation/commutability is ≥ 95%, as defined in Materials and methods section 3.5. 

 

 

EQA SURVEY 3 
MP 1 MP 2 Mean 

MP1 
(serum) 

Mean 
MP2 

(serum) 

Mean 
MP1 

(control) 

Mean 
MP2 

(control) 

% 
harmo-
nisation 

% 
commu-
tability 

ALT 

IFCC- BC AU IFCC- SD 7.27 13.25 32.76 33 0 0 

IFCC- BC AU Photometry 
UV- AA 

7.27 7.1 32.76 32.2 100 100 

IFCC- BC AU Photometry 
UV- BC AU 

7.27 6.63 32.76 32.82 100 100 

IFCC- BC AU Photometry 
UV- RCc 

7.27 6.62 32.76 31 100 100 

IFCC- BC AU Photometry 
UV- RCI 

7.27 6.4 32.76 29.53 100 100 

IFCC- BC AU Photometry 
UV- RH 

7.27 6.89 32.76 32.11 100 100 

Table 17. The contingency table showing the number of commutable/noncommutable and 
harmonised/nonharmonised MP combinations in the EQA survey 2. 

Table 18. The results of commutability evaluation of EQA control sample C3/2016 using the false 
flagging method 
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IFCC- SD Photometry 

UV- AA 
13.25 7.1 33 32.2 1.7 5 

IFCC- SD Photometry 
UV- BC AU 

13.25 6.63 33 32.82 0 0 

IFCC- SD Photometry 
UV- RCc 

13.25 6.62 33 31 1.4 9.4 

IFCC- SD Photometry 
UV- RCI 

13.25 6.4 33 29.53 0.1 5.2 

IFCC- SD Photometry 
UV- RH 

13.25 6.89 33 32.11 0.1 0.2 

Photometry 
UV- AA 

Photometry 
UV- BC AU 

7.1 6.63 32.2 32.82 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCc 

7.1 6.62 32.2 31 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCI 

7.1 6.4 32.2 29.53 100 100 

Photometry 
UV- AA 

Photometry 
UV- RH 

7.1 6.89 32.2 32.11 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCc 

6.63 6.62 32.82 31 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCI 

6.63 6.4 32.82 29.53 100 99.8 

Photometry 
UV- BC AU 

Photometry 
UV- RH 

6.63 6.89 32.82 32.11 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RCI 

6.62 6.4 31 29.53 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RH 

6.62 6.89 31 32.11 100 100 

Photometry 
UV- RCI 

Photometry 
UV- RH 

6.4 6.89 29.53 32.11 100 100 

ALP 

IFCC- AA IFCC- BC AU 50.11 50 101.7 113.73 100 9.5 

IFCC- AA IFCC- RCc 50.11 46.15 101.7 83.23 100 5.2 

IFCC- AA IFCC- RCI 50.11 48.47 101.7 88.44 100 11.4 

IFCC- AA IFCC- RCMira 50.11 50.67 101.7 96.83 100 79.6 

IFCC- AA IFCC- RH 50.11 48.48 101.7 96.73 100 68.3 

IFCC- AA IFCC- SD 50.11 48.67 101.7 93.42 100 63.3 

IFCC- BC AU IFCC- RCc 50 46.15 113.73 83.23 100 0 

IFCC- BC AU IFCC- RCI 50 48.47 113.73 88.44 100 0 

IFCC- BC AU IFCC- RCMira 50 50.67 113.73 96.83 99.7 4.5 

IFCC- BC AU IFCC- RH 50 48.48 113.73 96.73 100 0 

IFCC- BC AU IFCC- SD 50 48.67 113.73 93.42 100 0 

IFCC- RCc IFCC- RCI 46.15 48.47 83.23 88.44 100 100 
IFCC- RCc IFCC- RCMira 46.15 50.67 83.23 96.83 97.7 22.1 

IFCC- RCc IFCC- RH 46.15 48.48 83.23 96.73 100 55 

IFCC- RCc IFCC- SD 46.15 48.67 83.23 93.42 100 81.4 

IFCC- RCI IFCC- RCMira 48.47 50.67 88.44 96.83 100 49.4 

IFCC- RCI IFCC- RH 48.47 48.48 88.44 96.73 100 93.8 

IFCC- RCI IFCC- SD 48.47 48.67 88.44 93.42 100 99.9 
IFCC- RCMira IFCC- RH 50.67 48.48 96.83 96.73 99.4 92.9 

IFCC- RCMira IFCC- SD 50.67 48.67 96.83 93.42 99.9 93.8 

IFCC- RH IFCC- SD 48.48 48.67 96.73 93.42 100 98.1 
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AMY 

IFCC- AA IFCC- BC AU 52.78 55.58 75.89 77.17 100 100 
IFCC- AA IFCC- RCc 52.78 54.77 75.89 76.54 100 100 
IFCC- AA IFCC- RCI 52.78 56.38 75.89 77.94 100 100 
IFCC- AA IFCC- RH 52.78 52.35 75.89 73.95 100 100 
IFCC- AA CNP-G3- SD 52.78 52.29 75.89 74.17 100 100 
IFCC- BC AU IFCC- RCc 55.58 54.77 77.17 76.54 100 100 
IFCC- BC AU IFCC- RCI 55.58 56.38 77.17 77.94 100 100 
IFCC- BC AU IFCC- RH 55.58 52.35 77.17 73.95 100 100 
IFCC- BC AU CNP-G3- SD 55.58 52.29 77.17 74.17 100 100 
IFCC- RCc IFCC- RCI 54.77 56.38 76.54 77.94 100 100 
IFCC- RCc IFCC- RH 54.77 52.35 76.54 73.95 100 100 
IFCC- RCc CNP-G3- SD 54.77 52.29 76.54 74.17 100 100 
IFCC- RCI IFCC- RH 56.38 52.35 77.94 73.95 100 100 
IFCC- RCI CNP-G3- SD 56.38 52.29 77.94 74.17 100 100 
IFCC- RH CNP-G3- SD 52.35 52.29 73.95 74.17 100 100 

AST 

IFCC- BC AU IFCC- RH 12.43 11 44.7 43.67 100 100 
IFCC- BC AU IFCC- SD 12.43 12.58 44.7 45.33 100 100 
IFCC- BC AU Photometry 

UV- AA 
12.43 10.3 44.7 39.9 100 100 

IFCC- BC AU Photometry 
UV- BC AU 

12.43 11.96 44.7 44.69 100 100 

IFCC- BC AU Photometry 
UV- RCc 

12.43 10.78 44.7 39.56 100 100 

IFCC- BC AU Photometry 
UV- RCI 

12.43 10.6 44.7 39.07 100 100 

IFCC- BC AU Photometry 
UV- RH 

12.43 10.42 44.7 41.42 100 100 

IFCC- RH IFCC- SD 11 12.58 43.67 45.33 100 100 
IFCC- RH Photometry 

UV- AA 
11 10.3 43.67 39.9 100 100 

IFCC- RH Photometry 
UV- BC AU 

11 11.96 43.67 44.69 100 100 

IFCC- RH Photometry 
UV- RCc 

11 10.78 43.67 39.56 100 100 

IFCC- RH Photometry 
UV- RCI 

11 10.6 43.67 39.07 100 100 

IFCC- RH Photometry 
UV- RH 

11 10.42 43.67 41.42 100 100 

IFCC- SD Photometry 
UV- AA 

12.58 10.3 45.33 39.9 100 100 

IFCC- SD Photometry 
UV- BC AU 

12.58 11.96 45.33 44.69 100 100 

IFCC- SD Photometry 
UV- RCc 

12.58 10.78 45.33 39.56 100 100 

IFCC- SD Photometry 
UV- RCI 

12.58 10.6 45.33 39.07 100 100 

IFCC- SD Photometry 
UV- RH 

12.58 10.42 45.33 41.42 100 100 

Photometry 
UV- AA 

Photometry 
UV- BC AU 

10.3 11.96 39.9 44.69 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCc 

10.3 10.78 39.9 39.56 100 100 

Photometry 
UV- AA 

Photometry 
UV- RCI 

10.3 10.6 39.9 39.07 100 100 
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Photometry 
UV- AA 

Photometry 
UV- RH 

10.3 10.42 39.9 41.42 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCc 

11.96 10.78 44.69 39.56 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RCI 

11.96 10.6 44.69 39.07 100 100 

Photometry 
UV- BC AU 

Photometry 
UV- RH 

11.96 10.42 44.69 41.42 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RCI 

10.78 10.6 39.56 39.07 100 100 

Photometry 
UV- RCc 

Photometry 
UV- RH 

10.78 10.42 39.56 41.42 100 100 

Photometry 
UV- RCI 

Photometry 
UV- RH 

10.6 10.42 39.07 41.42 100 100 

CALCIUM 

Arsenaso III- 
AA 

Arsenaso III- 
BC AU 

2.42 2.41 2.39 2.37 93.1 83.6 

Arsenaso III- 
AA 

NM-BAPTA- 
RCI 

2.42 2.39 2.39 2.34 96.3 95 

Arsenaso III- 
AA 

cresolphthalein
- BC AU 

2.42 2.38 2.39 2.27 87 47.1 

Arsenaso III- 
AA 

cresolphthalein
- RCI 

2.42 2.42 2.39 2.33 99.2 85 

Arsenaso III- 
AA 

o-
cresolphthalein 
- SD 

2.42 2.33 2.39 2.25 52.1 63.5 

Arsenaso III- 
BC AU 

NM-BAPTA- 
RCI 

2.41 2.39 2.37 2.34 97.6 98.1 

Arsenaso III- 
BC AU 

cresolphthalein
- BC AU 

2.41 2.38 2.37 2.27 79.1 30.3 

Arsenaso III- 
BC AU 

cresolphthalein
- RCI 

2.41 2.42 2.37 2.33 99.9 94.2 

Arsenaso III- 
BC AU 

cresolphthalein 
- SD 

2.41 2.33 2.37 2.25 32.8 26 

NM-BAPTA- 
RCI 

cresolphthalein
- BC AU 

2.39 2.38 2.34 2.27 98.9 84.4 

NM-BAPTA- 
RCI 

cresolphthalein
- RCI 

2.39 2.42 2.34 2.33 99.4 99.7 

NM-BAPTA- 
RCI 

cresolphthalein 
- SD 

2.39 2.33 2.34 2.25 89.2 94.5 

cresolphthalein
- BC AU 

cresolphthalein
- RCI 

2.38 2.42 2.27 2.33 92.4 90.6 

cresolphthalein
- BC AU 

cresolphthalein 
- SD 

2.38 2.33 2.27 2.25 91.9 96.7 

cresolphthalein
- RCI 

cresolphthalein 
- SD 

2.42 2.33 2.33 2.25 63.9 93.4 

CHLORIDE 

Indirect ISE- 
AA 

Indirect ISE- 
BC AU 

105.27 105.06 102.7 102.71 100 100 

Indirect ISE- 
AA 

Indirect ISE- 
SD 

105.27 102.33 102.7 117.67 95.1 0 

Indirect ISE- 
BC AU 

Indirect ISE- 
SD 

105.06 102.33 102.71 117.67 80.4 0 

CHOLESTEROL 

CHOD-PAP- 
AA 

CHOD-PAP- 
BC AU 

7.54 7.79 6.6 6.73 100 100 
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CHOD-PAP- 
AA 

CHOD-PAP- 
RCc 

7.54 7.36 6.6 6.5 100 100 

CHOD-PAP- 
AA 

CHOD-PAP- 
RCI 

7.54 7.53 6.6 6.61 100 100 

CHOD-PAP- 
AA 

CHOD-PAP- 
RH  

7.54 7.38 6.6 6.55 100 100 

CHOD-PAP- 
AA 

CHOD-PAP- 
SD 

7.54 7.63 6.6 6.32 100 100 

CHOD-PAP- 
BC AU 

CHOD-PAP- 
RCc 

7.79 7.36 6.73 6.5 100 100 

CHOD-PAP- 
BC AU 

CHOD-PAP- 
RCI 

7.79 7.53 6.73 6.61 100 100 

CHOD-PAP- 
BC AU 

CHOD-PAP- 
RH  

7.79 7.38 6.73 6.55 98.9 98.9 

CHOD-PAP- 
BC AU 

CHOD-PAP- 
SD 

7.79 7.63 6.73 6.32 100 95.1 

CHOD-PAP- 
RCc 

CHOD-PAP- 
RCI 

7.36 7.53 6.5 6.61 100 100 

CHOD-PAP- 
RCc 

CHOD-PAP- 
RH  

7.36 7.38 6.5 6.55 100 100 

CHOD-PAP- 
RCc 

CHOD-PAP- 
SD 

7.36 7.63 6.5 6.32 100 100 

CHOD-PAP- 
RCI 

CHOD-PAP- 
RH  

7.53 7.38 6.61 6.55 100 100 

CHOD-PAP- 
RCI 

CHOD-PAP- 
SD 

7.53 7.63 6.61 6.32 100 100 

CHOD-PAP- 
RH  

CHOD-PAP- 
SD 

7.38 7.63 6.55 6.32 100 100 

CK 

IFCC- AA IFCC- BC AU 52.1 55.09 137.1 136.78 100 100 
IFCC- AA IFCC- RCc 52.1 54.17 137.1 133.33 100 100 
IFCC- AA IFCC - RCI 52.1 55.75 137.1 137.58 100 100 
IFCC- AA IFCC- RH 52.1 53.5 137.1 133.11 100 100 
IFCC- AA IFCC- SD 52.1 52.71 137.1 130.57 100 100 
IFCC- BC AU IFCC- RCc 55.09 54.17 136.78 133.33 100 100 
IFCC- BC AU IFCC - RCI 55.09 55.75 136.78 137.58 100 100 
IFCC- BC AU IFCC- RH 55.09 53.5 136.78 133.11 100 100 
IFCC- BC AU IFCC- SD 55.09 52.71 136.78 130.57 100 100 
IFCC- RCc IFCC - RCI 54.17 55.75 133.33 137.58 100 100 
IFCC- RCc IFCC- RH 54.17 53.5 133.33 133.11 100 100 
IFCC- RCc IFCC- SD 54.17 52.71 133.33 130.57 100 100 
IFCC - RCI IFCC- RH 55.75 53.5 137.58 133.11 100 100 
IFCC - RCI IFCC- SD 55.75 52.71 137.58 130.57 100 100 
IFCC- RH IFCC- SD 53.5 52.71 133.11 130.57 100 100 

CREATININE 

Compensated 
Jaffe- AA 

Compensated 
Jaffe- BC AU     

67.5 60.33 222.83 179.91 29.6 1.9 

Compensated 
Jaffe- AA 

Compensated 
Jaffe- RCc 

67.5 64.42 222.83 181.5 96.2 0.1 

Compensated 
Jaffe- AA 

Compensated 
Jaffe- RCI 

67.5 66.46 222.83 177.38 100 0 

Compensated 
Jaffe- AA 

Compensated 
Jaffe- RH 

67.5 63.36 222.83 197.92 95.4 14.9 

Compensated 
Jaffe- AA 

Compensated 
Jaffe- SD 

67.5 63.6 222.83 230 98 89.9 
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Compensated 
Jaffe- AA 

Enzymatic 
method- BC 
AU 

67.5 60 222.83 151.45 54.9 0 

Compensated 
Jaffe- AA 

Non-
Compensated 
Jaffe- BC AU      

67.5 72.55 222.83 187.27 91.7 0.2 

Compensated 
Jaffe- AA 

Non-
compensated 
Jaffe- RH 

67.5 67.12 222.83 199.67 100 21.5 

Compensated 
Jaffe- BC AU     

Compensated 
Jaffe- RCc 

60.33 64.42 179.91 181.5 83.4 89.6 

Compensated 
Jaffe- BC AU     

Compensated 
Jaffe- RCI 

60.33 66.46 179.91 177.38 49.4 55.2 

Compensated 
Jaffe- BC AU     

Compensated 
Jaffe- RH 

60.33 63.36 179.91 197.92 100 12.2 

Compensated 
Jaffe- BC AU     

Compensated 
Jaffe- SD 

60.33 63.6 179.91 230 99.9 0 

Compensated 
Jaffe- BC AU     

Enzymatic 
method- BC 
AU 

60.33 60 179.91 151.45 100 0 

Compensated 
Jaffe- BC AU     

Non-
Compensated 
Jaffe- BC AU      

60.33 72.55 179.91 187.27 0 0 

Compensated 
Jaffe- BC AU     

Non-
compensated 
Jaffe- RH 

60.33 67.12 179.91 199.67 41.9 42.2 

Compensated 
Jaffe- RCc 

Compensated 
Jaffe- RC 

64.42 66.46 181.5 177.38 100 100 

Compensated 
Jaffe- RCc 

Compensated 
Jaffe- RH 

64.42 63.36 181.5 197.92 100 78.8 

Compensated 
Jaffe- RCc 

Compensated 
Jaffe- SD 

64.42 63.6 181.5 230 100 0 

Compensated 
Jaffe- RCc 

Enzymatic 
method- BC 
AU 

64.42 60 181.5 151.45 99.7 0.8 

Compensated 
Jaffe- RCc 

Non-
Compensated 
Jaffe- BC AU      

64.42 72.55 181.5 187.27 21 54.5 

Compensated 
Jaffe- RCc 

Non-
compensated 
Jaffe- RH 

64.42 67.12 181.5 199.67 100 33.1 

Compensated 
Jaffe- RCI 

Compensated 
Jaffe- RH 

66.46 63.36 177.38 197.92 100 52.4 

Compensated 
Jaffe- RCI 

Compensated 
Jaffe- SD 

66.46 63.6 177.38 230 100 0 

Compensated 
Jaffe- RCI 

Enzymatic 
method- BC 
AU 

66.46 60 177.38 151.45 99.1 29.1 

Compensated 
Jaffe- RCI 

Non-
Compensated 
Jaffe- BC AU      

66.46 72.55 177.38 187.27 77 89 

Compensated 
Jaffe- RCI 

Non-
compensated 
Jaffe- RH 

66.46 67.12 177.38 199.67 100 9.1 

Compensated 
Jaffe- RH 

Compensated 
Jaffe- SD 

63.36 63.6 197.92 230 100 0 

Compensated 
Jaffe- RH 

Enzymatic 
method- BC 
AU 

63.36 60 197.92 151.45 100 0 
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Compensated 
Jaffe- RH 

Non-
Compensated 
Jaffe- BC AU      

63.36 72.55 197.92 187.27 34.7 72.7 

Compensated 
Jaffe- RH 

Non-
compensated 
Jaffe- RH 

63.36 67.12 197.92 199.67 100 97.8 

Compensated 
Jaffe- SD 

Enzymatic 
method - BC 
AU 

63.6 60 230 151.45 100 0 

Compensated 
Jaffe- SD 

Non-
Compensated 
Jaffe- BC AU      

63.6 72.55 230 187.27 37 0 

Compensated 
Jaffe- SD 

Non-
compensated 
Jaffe- RH 

63.6 67.12 230 199.67 100 6.3 

Enzymatic 
method- BC 
AU 

Non-
Compensated 
Jaffe- BC AU      

60 72.55 151.45 187.27 0 2.6 

Enzymatic 
method- BC 
AU 

Non-
compensated 
Jaffe- RH 

60 67.12 151.45 199.67 95.5 0 

Non-
Compensated 
Jaffe- BC AU      

Non-
compensated 
Jaffe- RH 

72.55 67.12 187.27 199.67 95.7 65.9 

GGT 

IFCC- AA IFCC- BC AU 13.64 13.65 60.82 59.64 100 100 
IFCC- AA IFCC- RCc 13.64 13.08 60.82 59.17 100 100 
IFCC- AA IFCC- RCI 13.64 12.33 60.82 60.89 100 100 
IFCC- AA IFCC- RH 13.64 14.54 60.82 58.54 100 100 
IFCC- AA IFCC- SD 13.64 16.42 60.82 60.69 100 100 
IFCC- BC AU IFCC- RCc 13.65 13.08 59.64 59.17 100 100 
IFCC- BC AU IFCC- RCI 13.65 12.33 59.64 60.89 100 100 
IFCC- BC AU IFCC- RH 13.65 14.54 59.64 58.54 100 100 
IFCC- BC AU IFCC- SD 13.65 16.42 59.64 60.69 87.4 87.4 

IFCC- RCc IFCC- RCI 13.08 12.33 59.17 60.89 100 100 
IFCC- RCc IFCC- RH 13.08 14.54 59.17 58.54 100 100 
IFCC- RCc IFCC- SD 13.08 16.42 59.17 60.69 100 100 
IFCC- RCI IFCC- RH 12.33 14.54 60.89 58.54 100 100 
IFCC- RCI IFCC- SD 12.33 16.42 60.89 60.69 90.7 90.7 

IFCC- RH IFCC- SD 14.54 16.42 58.54 60.69 100 100 

GLUCOSE 

GOD-PAP- BC 
AU  

GOD-PAP- RH 3.83 3.76 4.53 4.49 99.5 99.9 

GOD-PAP- BC 
AU 

Hexokinase- 
AA  

3.83 3.75 4.53 4.58 100 100 

GOD-PAP- BC 
AU 

Hexokinase- 
BC AU  

3.83 3.77 4.53 4.47 100 100 

GOD-PAP- BC 
AU 

Hexokinase- 
RCc  

3.83 3.75 4.53 4.47 100 100 

GOD-PAP- BC 
AU 

Hexokinase- 
RCI  

3.83 3.76 4.53 4.47 100 100 

GOD-PAP- BC 
AU 

Hexokinase- 
SD  

3.83 3.8 4.53 4.81 100 98.4 

GOD-PAP- RH  Hexokinase- 
AA 

3.76 3.75 4.49 4.58 100 99.8 
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GOD-PAP- RH Hexokinase- 

BC AU 
3.76 3.77 4.49 4.47 98.2 99.4 

GOD-PAP- RH Hexokinase- 
RCc 

3.76 3.75 4.49 4.47 100 100 

GOD-PAP- RH Hexokinase- 
RCI 

3.76 3.76 4.49 4.47 99.8 99.9 

GOD-PAP- RH Hexokinase- 
SD 

3.76 3.8 4.49 4.81 99.8 69.7 

Hexokinase- 
AA 

Hexokinase- 
BC AU 

3.75 3.77 4.58 4.47 100 99 

Hexokinase- 
AA 

Hexokinase- 
RCc 

3.75 3.75 4.58 4.47 100 100 

Hexokinase- 
AA 

Hexokinase- 
RCI 

3.75 3.76 4.58 4.47 100 100 

Hexokinase- 
AA 

Hexokinase- 
SD 

3.75 3.8 4.58 4.81 100 99.3 

Hexokinase- 
BC AU 

Hexokinase- 
RCc 

3.77 3.75 4.47 4.47 100 100 

Hexokinase- 
BC AU 

Hexokinase- 
RCI 

3.77 3.76 4.47 4.47 100 100 

Hexokinase- 
BC AU 

Hexokinase- 
SD 

3.77 3.8 4.47 4.81 100 8.9 

Hexokinase- 
RCc 

Hexokinase- 
RCI 

3.75 3.76 4.47 4.47 100 100 

Hexokinase- 
RCc 

Hexokinase- 
SD 

3.75 3.8 4.47 4.81 100 88.6 

Hexokinase- 
RCI 

Hexokinase- 
SD 

3.76 3.8 4.47 4.81 100 65.9 

HDL 

Homogenous- 
AA 

Homogenous- 
BC AU 

1.61 1.61 1.74 1.77 100 100 

Homogenous- 
AA 

Homogenous- 
RCc 

1.61 1.64 1.74 1.63 100 100 

Homogenous- 
AA 

Homogenous- 
RCI 

1.61 1.71 1.74 1.7 100 100 

Homogenous- 
AA 

Homogenous- 
RH 

1.61 1.73 1.74 1.55 100 78.9 

Homogenous- 
AA 

Homogenous- 
SD 

1.61 1.7 1.74 1.65 99.3 99.6 

Homogenous- 
BC AU 

Homogenous- 
RCc 

1.61 1.64 1.77 1.63 100 84 

Homogenous- 
BC AU 

Homogenous- 
RCI 

1.61 1.71 1.77 1.7 100 100 

Homogenous- 
BC AU 

Homogenous- 
RH 

1.61 1.73 1.77 1.55 70.4 38.5 

Homogenous- 
BC AU 

Homogenous- 
SD 

1.61 1.7 1.77 1.65 66.7 84.3 

Homogenous- 
RCc 

Homogenous- 
RCI 

1.64 1.71 1.63 1.7 100 100 

Homogenous- 
RCc 

Homogenous- 
RH 

1.64 1.73 1.63 1.55 99.9 100 

Homogenous- 
RCc 

Homogenous- 
SD 

1.64 1.7 1.63 1.65 99.7 100 

Homogenous- 
RCI 

Homogenous- 
RH 

1.71 1.73 1.7 1.55 100 94.4 

Homogenous- 
RCI 

Homogenous- 
SD 

1.71 1.7 1.7 1.65 100 99.6 
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Homogenous- 
RH 

Homogenous- 
SD 

1.73 1.7 1.55 1.65 99.2 86.2 

IRON 

Ferene- AA Ferene - HP 19 18.83 39.67 40.5 100 100 
Ferene- AA Ferene- RH 19 19.64 39.67 41.36 100 100 
Ferene- AA Ferene- SD 19 18.82 39.67 40.27 100 100 
Ferene- AA Ferrozine- RCc 19 19.69 39.67 40.77 100 100 
Ferene- AA Ferrozine- RCI 19 20.44 39.67 41.2 100 100 
Ferene- AA Ferrozine- RH 19 20.11 39.67 41.56 100 100 
Ferene- AA TPTZ- BC AU 19 19.11 39.67 41.98 100 100 
Ferene- HP  Ferene- RH 18.83 19.64 40.5 41.36 100 100 
Ferene- HP  Ferene- SD 18.83 18.82 40.5 40.27 100 100 
Ferene- HP  Ferrozine- RCc 18.83 19.69 40.5 40.77 100 100 
Ferene- HP  Ferrozine- RCI 18.83 20.44 40.5 41.2 100 100 
Ferene- HP  Ferrozine- RH 18.83 20.11 40.5 41.56 100 100 
Ferene- HP  TPTZ- BC AU 18.83 19.11 40.5 41.98 100 100 
Ferene- RH Ferene- SD 19.64 18.82 41.36 40.27 100 100 
Ferene- RH Ferrozine- RCc 19.64 19.69 41.36 40.77 100 100 
Ferene- RH Ferrozine- RCI 19.64 20.44 41.36 41.2 100 100 
Ferene- RH Ferrozine- RH 19.64 20.11 41.36 41.56 100 100 
Ferene- RH TPTZ- BC AU 19.64 19.11 41.36 41.98 100 100 
Ferene- SD Ferrozine- RCc 18.82 19.69 40.27 40.77 100 100 
Ferene- SD Ferrozine- RCI 18.82 20.44 40.27 41.2 100 100 
Ferene- SD Ferrozine- RH 18.82 20.11 40.27 41.56 100 100 
Ferene- SD TPTZ- BC AU 18.82 19.11 40.27 41.98 100 100 
Ferrozine- RCc Ferrozine- RCI 19.69 20.44 40.77 41.2 100 100 
Ferrozine- RCc Ferrozine- RH 19.69 20.11 40.77 41.56 100 100 
Ferrozine- RCc TPTZ- BC AU 19.69 19.11 40.77 41.98 100 100 
Ferrozine- RCI Ferrozine - RH 20.44 20.11 41.2 41.56 100 100 
Ferrozine- RCI TPTZ- BC AU 20.44 19.11 41.2 41.98 100 100 
Ferrozine- RH TPTZ- BC AU 20.11 19.11 41.56 41.98 100 100 

LDH 

IFCC- AA IFCC- BC AU 131.2 133.61 173.56 171.75 100 100 
IFCC- AA IFCC- RCc 131.2 122 173.56 164.86 100 100 
IFCC- AA IFCC- RCI 131.2 135.57 173.56 176.86 100 100 
IFCC- AA IFCC- RH 131.2 126.5 173.56 166.25 100 100 
IFCC- BC AU IFCC- RCc 133.61 122 171.75 164.86 99.1 99.7 
IFCC- BC AU IFCC- RCI 133.61 135.57 171.75 176.86 100 100 
IFCC- BC AU IFCC- RH 133.61 126.5 171.75 166.25 99.9 99.9 
IFCC- RCc IFCC- RCI 122 135.57 164.86 176.86 100 99.9 
IFCC- RCc IFCC- RH 122 126.5 164.86 166.25 100 100 
IFCC- RCI IFCC- RH 135.57 126.5 176.86 166.25 100 100 

PHOSPHATE 

Ammonium-
molybdate- AA 

Ammonium-
molybdate- BC 
AU 

0.8 0.79 1.2 1.17 100 100 

Ammonium-
molybdate- AA 

Ammonium-
molybdate- 
RCc 

0.8 0.79 1.2 1.17 100 100 

Ammonium-
molybdate- AA 

Ammonium-
molybdate- 
RCI 

0.8 0.81 1.2 1.2 100 100 
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Ammonium-
molybdate- BC 
AU 

Ammonium-
molybdate- 
RCc 

0.79 0.79 1.17 1.17 100 100 

Ammonium-
molybdate- BC 
AU 

Ammonium-
molybdate- 
RCI 

0.79 0.81 1.17 1.2 99.8 99.8 

Ammonium-
molybdate- 
RCc 

Ammonium-
molybdate- 
RCI 

0.79 0.81 1.17 1.2 100 100 

POTASSIUM 

FES-CC Indirect ISE-
AA 

4.15 4.16 3.92 3.96 100 100 

FES-CC Indirect ISE- 
BC AU 

4.15 4.12 3.92 3.91 100 100 

FES-CC Indirect ISE- 
RCc 

4.15 4.21 3.92 4 100 100 

FES-CC Indirect ISE - 
RCI 

4.15 4.18 3.92 3.86 100 100 

FES-CC Indirect ISE- 
SD 

4.15 4.12 3.92 3.85 100 100 

Indirect ISE-
AA 

Indirect ISE- 
BC AU 

4.16 4.12 3.96 3.91 100 100 

Indirect ISE-
AA 

Indirect ISE- 
RCc 

4.16 4.21 3.96 4 100 100 

Indirect ISE-
AA 

Indirect ISE - 
RCI 

4.16 4.18 3.96 3.86 100 100 

Indirect ISE-
AA 

Indirect ISE- 
SD 

4.16 4.12 3.96 3.85 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
RCc 

4.12 4.21 3.91 4 100 100 

Indirect ISE- 
BC AU 

Indirect ISE - 
RCI 

4.12 4.18 3.91 3.86 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
SD 

4.12 4.12 3.91 3.85 100 100 

Indirect ISE- 
RCc 

Indirect ISE - 
RCI 

4.21 4.18 4 3.86 100 100 

Indirect ISE- 
RCc 

Indirect ISE- 
SD 

4.21 4.12 4 3.85 100 100 

Indirect ISE - 
RCI 

Indirect ISE- 
SD 

4.18 4.12 3.86 3.85 100 100 

SODIUM 

FES- CC Indirect ISE- 
AA 

141.13 140.83 145.55 146.82 100 100 

FES- CC Indirect ISE- 
BC AU 

141.13 140.12 145.55 144.78 100 100 

FES- CC Indirect ISE - 
RCc 

141.13 140.73 145.55 146.09 100 99.9 

FES- CC Indirect ISE - 
RCI 

141.13 141.3 145.55 143.45 100 100 

FES- CC Indirect ISE- 
SD 

141.13 140.7 145.55 143.64 100 100 

Indirect ISE- 
AA 

Indirect ISE- 
BC AU 

140.83 140.12 146.82 144.78 100 100 

Indirect ISE- 
AA 

Indirect ISE - 
RCc 

140.83 140.73 146.82 146.09 100 100 

Indirect ISE- 
AA 

Indirect ISE - 
RCI 

140.83 141.3 146.82 143.45 100 100 
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Indirect ISE- 
AA 

Indirect ISE- 
SD 

140.83 140.7 146.82 143.64 100 100 

Indirect ISE- 
BC AU 

Indirect ISE - 
RCc 

140.12 140.73 144.78 146.09 100 92.1 

Indirect ISE- 
BC AU 

Indirect ISE - 
RCI 

140.12 141.3 144.78 143.45 100 100 

Indirect ISE- 
BC AU 

Indirect ISE- 
SD 

140.12 140.7 144.78 143.64 100 100 

Indirect ISE - 
RCc 

Indirect ISE - 
RCI 

140.73 141.3 146.09 143.45 100 95.9 

Indirect ISE - 
RCc 

Indirect ISE- 
SD 

140.73 140.7 146.09 143.64 100 95.7 

Indirect ISE - 
RCI 

Indirect ISE- 
SD 

141.3 140.7 143.45 143.64 100 100 

BILIRUBIN 

Diazo- AA Diazo- BC AU 6.6 7.36 19.3 20.47 100 77.9 

Diazo- AA Diazo- HP 6.6 6.5 19.3 19 100 100 
Diazo- AA Diazo- RCc 6.6 5.17 19.3 17.25 100 90.2 

Diazo- AA Diazo- RCI 6.6 5.29 19.3 17.24 100 79.7 

Diazo- AA Diazo- RH 6.6 6.45 19.3 18.68 100 100 
Diazo- AA Diazo- SD 6.6 6.08 19.3 18.15 100 99.7 
Diazo- BC AU Diazo- HP 7.36 6.5 20.47 19 100 100 
Diazo- BC AU Diazo- RCc 7.36 5.17 20.47 17.25 100 5.1 

Diazo- BC AU Diazo- RCI 7.36 5.29 20.47 17.24 92.6 46.3 

Diazo- BC AU Diazo- RH 7.36 6.45 20.47 18.68 100 100 
Diazo- BC AU Diazo- SD 7.36 6.08 20.47 18.15 100 97.7 
Diazo- HP Diazo- RCc 6.5 5.17 19 17.25 100 100 
Diazo- HP Diazo- RCI 6.5 5.29 19 17.24 100 100 
Diazo- HP Diazo- RH 6.5 6.45 19 18.68 100 100 
Diazo- HP Diazo- SD 6.5 6.08 19 18.15 100 100 
Diazo- RCc Diazo- RCI 5.17 5.29 17.25 17.24 100 100 
Diazo- RCc Diazo- RH 5.17 6.45 17.25 18.68 100 100 
Diazo- RCc Diazo- SD 5.17 6.08 17.25 18.15 100 100 
Diazo- RCI Diazo- RH 5.29 6.45 17.24 18.68 100 100 
Diazo- RCI Diazo- SD 5.29 6.08 17.24 18.15 100 100 
Diazo- RH Diazo- SD 6.45 6.08 18.68 18.15 100 100 

PROTEINS 

Biuret- AA Biuret- BC AU 66.2 68.16 59.75 63.04 99.3 66.6 

Biuret- AA Biuret- RCc 66.2 68 59.75 62.38 100 100 
Biuret- AA Biuret- RCI 66.2 67 59.75 61.07 100 100 
Biuret- AA Biuret- RH 66.2 67.61 59.75 63.12 100 97.3 
Biuret- AA Biuret- SD 66.2 69.56 59.75 64.25 100 100 
Biuret- BC AU Biuret- RCc 68.16 68 63.04 62.38 100 100 
Biuret- BC AU Biuret- RCI 68.16 67 63.04 61.07 100 99.5 
Biuret- BC AU Biuret- RH 68.16 67.61 63.04 63.12 100 100 
Biuret- BC AU Biuret- SD 68.16 69.56 63.04 64.25 100 100 
Biuret- RCc Biuret- RCI 68 67 62.38 61.07 100 100 
Biuret- RCc Biuret- RH 68 67.61 62.38 63.12 100 100 
Biuret- RCc Biuret- SD 68 69.56 62.38 64.25 100 100 
Biuret- RCI Biuret- RH 67 67.61 61.07 63.12 100 100 
Biuret- RCI Biuret- SD 67 69.56 61.07 64.25 100 100 
Biuret- RH Biuret- SD 67.61 69.56 63.12 64.25 100 100 
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TRIGLYCERIDES 

GPO-PAP - 
AA 

GPO-PAP- BC 
AU 

0.77 0.77 2.08 2.09 100 100 

GPO-PAP - 
AA 

GPO-PAP- BC 
AU 

0.77 0.75 2.08 2.04 100 100 

GPO-PAP - 
AA 

GPO-PAP- 
RCI 

0.77 0.77 2.08 2.06 100 100 

GPO-PAP - 
AA 

GPO-PAP- RH 0.77 0.77 2.08 2.02 100 100 

GPO-PAP - 
AA 

GPO-PAP - SD 0.77 0.69 2.08 2.01 100 100 

GPO-PAP- BC 
AU 

GPO-PAP- 
RCc 

0.77 0.75 2.09 2.04 100 100 

GPO-PAP- BC 
AU 

GPO-PAP- 
RCI 

0.77 0.77 2.09 2.06 100 100 

GPO-PAP- BC 
AU 

GPO-PAP- RH 0.77 0.77 2.09 2.02 100 100 

GPO-PAP- BC 
AU 

GPO-PAP - SD 0.77 0.69 2.09 2.01 100 100 

GPO-PAP- 
RCc 

GPO-PAP- 
RCI 

0.75 0.77 2.04 2.06 100 100 

GPO-PAP- 
RCc 

GPO-PAP- RH 0.75 0.77 2.04 2.02 100 100 

GPO-PAP- 
RCc 

GPO-PAP - SD 0.75 0.69 2.04 2.01 100 100 

GPO-PAP- 
RCI 

GPO-PAP- RH 0.77 0.77 2.06 2.02 100 100 

GPO-PAP- 
RCI 

GPO-PAP - SD 0.77 0.69 2.06 2.01 100 100 

GPO-PAP- RH GPO-PAP - SD 0.77 0.69 2.02 2.01 100 100 

URATE 

Uricase- BC 
AU 

Uricase,POD- 
AA 

173.76 176.83 292.77 292 100 100 

Uricase- BC 
AU 

Uricase,POD- 
BC AU 

173.76 173.22 292.77 292.28 100 100 

Uricase- BC 
AU 

Uricase,POD- 
RCc 

173.76 173.14 292.77 283.62 100 100 

Uricase- BC 
AU 

Uricase,POD- 
RCI 

173.76 174 292.77 287.56 100 100 

Uricase- BC 
AU 

Uricase,POD- 
RH 

173.76 178.23 292.77 297.77 100 100 

Uricase- BC 
AU 

Uricase- RCI 173.76 173.5 292.77 284.86 100 100 

Uricase- BC 
AU 

Uricase- RH 173.76 175.38 292.77 293.33 100 100 

Uricase- BC 
AU 

Uricase- SD 173.76 157.3 292.77 282.73 94.2 94.2 

Uricase,POD- 
AA 

Uricase,POD- 
BC AU 

176.83 173.22 292 292.28 100 100 

Uricase,POD- 
AA 

Uricase,POD- 
RCc 

176.83 173.14 292 283.62 100 99.9 

Uricase,POD- 
AA 

Uricase,POD- 
RCI 

176.83 174 292 287.56 100 100 

Uricase,POD- 
AA 

Uricase,POD- 
RH 

176.83 178.23 292 297.77 100 99.8 

Uricase,POD- 
AA 

Uricase- RCI 176.83 173.5 292 284.86 100 100 
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Uricase,POD- 
AA 

Uricase- RH 176.83 175.38 292 293.33 100 100 

Uricase,POD- 
AA 

Uricase- SD 176.83 157.3 292 282.73 59.3 77.2 

Uricase,POD- 
BC AU 

Uricase,POD- 
RCc 

173.22 173.14 292.28 283.62 100 100 

Uricase,POD- 
BC AU 

Uricase,POD- 
RCI 

173.22 174 292.28 287.56 100 100 

Uricase,POD- 
BC AU 

Uricase,POD- 
RH 

173.22 178.23 292.28 297.77 100 100 

Uricase,POD- 
BC AU 

Uricase- RCI 173.22 173.5 292.28 284.86 100 100 

Uricase,POD- 
BC AU 

Uricase- RH 173.22 175.38 292.28 293.33 99.7 99.7 

Uricase,POD- 
BC AU 

Uricase- SD 173.22 157.3 292.28 282.73 77.6 77.6 

Uricase,POD- 
RCc 

Uricase,POD- 
RCI 

173.14 174 283.62 287.56 100 100 

Uricase,POD- 
RCc 

Uricase,POD- 
RH 

173.14 178.23 283.62 297.77 100 100 

Uricase,POD- 
RCc 

Uricase- RCI 173.14 173.5 283.62 284.86 100 100 

Uricase,POD- 
RCc 

Uricase- RH 173.14 175.38 283.62 293.33 100 100 

Uricase,POD- 
RCc 

Uricase- SD 173.14 157.3 283.62 282.73 100 100 

Uricase,POD- 
RCI 

Uricase,POD- 
RH 

174 178.23 287.56 297.77 100 100 

Uricase,POD- 
RCI 

Uricase- RCI 174 173.5 287.56 284.86 100 100 

Uricase,POD- 
RCI 

Uricase- RH 174 175.38 287.56 293.33 100 100 

Uricase,POD- 
RCI 

Uricase- SD 174 157.3 287.56 282.73 100 100 

Uricase,POD- 
RH 

Uricase- RCI 178.23 173.5 297.77 284.86 100 100 

Uricase,POD- 
RH 

Uricase - RH 178.23 175.38 297.77 293.33 100 100 

Uricase,POD- 
RH 

Uricase- SD 178.23 157.3 297.77 282.73 94.8 96.8 

Uricase- RCI Uricase - RH 173.5 175.38 284.86 293.33 100 100 
Uricase- RCI Uricase- SD 173.5 157.3 284.86 282.73 100 100 
Uricase- RH Uricase- SD 175.38 157.3 293.33 282.73 84.6 85.3 

UREA 

Urease,GLDH- 
AA 

Urease,GLDH- 
BC AU 

4.4 4.48 5.63 5.6 100 100 

Urease,GLDH- 
AA 

Urease,GLDH- 
HP 

4.4 4.42 5.63 5.55 100 100 

Urease,GLDH- 
AA 

Urease,GLDH- 
RCc 

4.4 4.39 5.63 5.55 100 100 

Urease,GLDH- 
AA 

Urease,GLDH- 
RCI 

4.4 4.22 5.63 5.39 100 99.8 

Urease,GLDH- 
AA 

Urease,GLDH- 
RH 

4.4 4.57 5.63 5.65 99.9 100 

Urease,GLDH- 
AA 

Urease,GLDH- 
SD 

4.4 4.6 5.63 5.53 98.7 99.3 

Urease,GLDH- 
BC AU 

Urease,GLDH- 
HP 

4.48 4.42 5.6 5.55 100 100 
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EQA SURVEY 3 
Urease,GLDH- 
BC AU 

Urease,GLDH- 
RCc 

4.48 4.39 5.6 5.55 100 100 

Urease,GLDH- 
BC AU 

Urease,GLDH- 
RCI 

4.48 4.22 5.6 5.39 72.6 90 

Urease,GLDH- 
BC AU 

Urease,GLDH- 
RH 

4.48 4.57 5.6 5.65 100 100 

Urease,GLDH- 
BC AU 

Urease,GLDH- 
SD 

4.48 4.6 5.6 5.53 87.7 90.4 

Urease,GLDH- 
HP 

Urease,GLDH- 
RCc 

4.42 4.39 5.55 5.55 100 100 

Urease,GLDH- 
HP 

Urease,GLDH- 
RCI 

4.42 4.22 5.55 5.39 99.9 100 

Urease,GLDH- 
HP 

Urease,GLDH- 
RH 

4.42 4.57 5.55 5.65 100 100 

Urease,GLDH- 
HP 

Urease,GLDH- 
SD 

4.42 4.6 5.55 5.53 99.3 99.5 

Urease,GLDH- 
RCc 

Urease,GLDH- 
RCI 

4.39 4.22 5.55 5.39 100 100 

Urease,GLDH- 
RCc 

Urease,GLDH- 
RH 

4.39 4.57 5.55 5.65 100 100 

Urease,GLDH- 
RCc 

Urease,GLDH- 
SD 

4.39 4.6 5.55 5.53 97.3 98 

Urease,GLDH- 
RCI 

Urease,GLDH- 
RH 

4.22 4.57 5.39 5.65 82 97.5 

Urease,GLDH- 
RCI 

Urease,GLDH- 
SD 

4.22 4.6 5.39 5.53 43.5 55.2 

Urease,GLDH- 
RH 

Urease,GLDH- 
SD 

4.57 4.6 5.65 5.53 99.6 99.9 

 

 

   The control sample in the third EQA survey was from another manufacturer than the control 

sample used in the two previous surveys. The sample corresponds to normal concentration 

levels respecting the appropriate reference intervals for evaluated analytes, except for 

creatinine, triglycerides and cholesterol. The concentration ranges of native serum samples 

(which were used for the comparison) to which the control was compared were also normal, 

except for cholesterol, where the assessment of similar high concentrations was possible. The 

commutability of C3/2016 was evaluated for 402 pairwise combinations of MPs.  

   The control was found to be commutable for all MPs used for measurement of 9 analytes: 

AMY, AST, cholesterol, CK, iron, LDH, phosphate, potassium and triglyceride. It is also 

highly commutable (less than 20% MP pairs found to be noncommutable) for GGT, glucose, 

sodium, proteins, urate and urea. 

Commutability of this control is better for HDL. Comparing with previous surveys, where the 

control was found to be noncommutable with 17/21 and 11/14 MP pairs in EQA survey 1 and 

EQA survey 2, respectively, C3/2016 was found noncommutable with a substantially lower 

number of pairwise combination of MPs; 6/15 (40%). On the other hand, the analyte-related 
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commutability was much worse for calcium, creatinine and AP, with noncommutable MP pairs 

being as high as 10/15, 34/36, and 18/21 for calcium, creatinine and AP, respectively. The 

noncommutability of control sample for chloride remains the same as in previous surveys 

where all MP combinations with SD are noncommutable. SD again is the probable cause of 

noncommutability issues with ALT, as well as glucose and urate.  

   When assessing only harmonised MPs for commutability, C3/2016 would also be fully 

commutable for ALT, chloride, GGT, urea and urate. The number of (non)commutable and 

(non)harmonised MPs in this survey is presented in contingency Table 19. 

 

SURVEY 3/2016 

  C NC Total 

H 303 57 360 

NH 3 39 42 

Total 306 96 402 

                          H-harmonised, NH – nonharmonised, C – commutable, NC - noncommutable 

4.3 Comparison of commutability results for lyophilised control 

samples  

   Table 20 shows the comparison of commutability results of evaluated MP pairs using 

regression analysis according to the CLSI EP14A2 protocol (83) and the proposed false 

flagging method for commutability evaluation. The analytes evaluated are some of the most 

common tests requested in medical biochemical laboratories and are representatives of the 

various analyte groups: carbohydrates, enzymes, electrolytes, nonprotein nitrogen metabolites 

and lipids. The evaluation is performed on pairwise combinations of most often used MPs in 

CROQALM EQA.  

 

Table 19. Contingency table showing the number of commutable/noncommutable and 
harmonised/nonharmonised MP combinations in the EQA survey 3. 
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MP1 MP2 

C1/2016 C2/2016 C3/2016 

FF CLSI FF CLSI FF CLSI 

ALT 

Photometry UV - AA Photometry UV - BC AU C C C C C C 

Photometry UV - AA Photometry UV - RCc C C C C C C 

Photometry UV - AA Photometry UV - RCI C C C C C C 

Photometry UV - AA IFCC, PP - SD NC C excl C NC NC 

Photometry UV - BC AU Photometry UV - RCc C C C C C NC 

Photometry UV - BC AU Photometry UV - RCI C NC C C C C 

Photometry UV - BC AU IFCC, PP - SD NC C excl C NC NC 

Photometry UV - RCc Photometry UV - RCI C NC C C C NC 

Photometry UV - RCc IFCC, PP - SD NC C excl C NC NC 

Photometry UV - RCI IFCC, PP - SD NC C excl C NC NC 

AST 

Photometry UV - AA Photometry UV - BC AU C C C C C C 

Photometry UV - AA Photometry UV - RCc C C C C C C 

Photometry UV - AA Photometry UV - RCI C C C C C C 

Photometry UV - AA IFCC, PP - SD C C C C C C 

Photometry UV - BC AU Photometry UV - RCc C C C C C C 

Photometry UV - BC AU Photometry UV - RCI C C C C C C 

Photometry UV - BC AU IFCC, PP - SD C C C C C C 

Photometry UV - RCc Photometry UV - RCI C C C NC C C 

Photometry UV - RCc IFCC, PP - SD C C C C C C 

Photometry UV - RCI IFCC, PP - SD C C C C C C 

CHLORIDE 

Indirect ISE - AA Indirect ISE - BC AU C C NC C C C 

Indirect ISE - AA Indirect ISE - SD NC NC excl C NC NC 

Indirect ISE - BC AU Indirect ISE - SD NC NC excl C NC NC 

CHOLESTEROL 

CHOD-PAP - AA CHOD-PAP - BC AU C C C C C NC 

CHOD-PAP - AA CHOD-PAP - RCc C C C NC C C 

CHOD-PAP - AA CHOD-PAP - RCI C NC C C C C 

CHOD-PAP - AA CHOD-PAP - SD NC NC NC NC C NC 

CHOD-PAP - BC AU CHOD-PAP - RCc C C C NC C NC 

CHOD-PAP - BC AU CHOD-PAP - RCI C C C C C NC 

CHOD-PAP - BC AU CHOD-PAP - SD NC NC NC NC C C 

CHOD-PAP - RCc CHOD-PAP - RCI C C C C C C 

CHOD-PAP - RCc CHOD-PAP - SD NC NC NC NC C NC 

CHOD-PAP - RCI CHOD-PAP - SD NC NC NC NC C NC 

CREATININE 

Compensated Jaffe  - AA Compensated Jaffe  - BC AU C C excl NC NC NC 

Compensated Jaffe  - AA Compensated Jaffe  - RCc C C excl NC NC NC 

Compensated Jaffe  - AA Compensated Jaffe  - RCI C C excl NC NC NC 

Table 20. Comparison of commutability conclusions using false flagging (FF) method and 
regression analysis (CLSI) for commutability evaluation 
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MP1 MP2 

C1/2016 C2/2016 C3/2016 

FF CLSI FF CLSI FF CLSI 

Compensated Jaffe  - AA Compensated Jaffe  - SD C C C NC NC C 

Compensated Jaffe  - BC AU Compensated Jaffe  - RCc NC C excl NC NC C 

Compensated Jaffe  - BC AU Compensated Jaffe  - RCI NC C excl NC NC C 

Compensated Jaffe  - BC AU Compensated Jaffe  - SD C C excl C NC NC 

Compensated Jaffe  - RCc Compensated Jaffe  - RCI C C C C C C 

Compensated Jaffe  - RCc Compensated Jaffe  - SD C C C NC NC NC 

Compensated Jaffe  - RCI Compensated Jaffe  - SD C C C C NC NC 

GGT 

IFCC - AA IFCC - BC AU C C C C C C 

IFCC - AA IFCC - RCc C C C C C C 

IFCC - AA IFCC - RCI C C C C C C 

IFCC - AA IFCC - SD NC C C C C C 

IFCC - BC AU IFCC - RCc C C C C C C 

IFCC - BC AU IFCC - RCI C C C C C C 

IFCC - BC AU IFCC - SD NC C NC C NC C 

IFCC - RCc IFCC - RCI C C C C C C 

IFCC - RCc IFCC - SD NC C C C C C 

IFCC - RCI IFCC - SD NC C C C NC C 

GLUCOSE 

Hexokinase - AA Hexokinase - BC AU C NC C C C C 

Hexokinase - AA Hexokinase - RCc C C C NC C NC 

Hexokinase - AA Hexokinase - RCI C C C C C C 

Hexokinase - AA Hexokinase - SD C NC C NC C NC 

Hexokinase - BC AU Hexokinase - RCc C NC C NC C NC 

Hexokinase - BC AU Hexokinase - RCI C NC C C C C 

Hexokinase - BC AU Hexokinase - SD NC C C NC NC C 

Hexokinase - RCc Hexokinase - RCI C C C C C C 

Hexokinase - RCc Hexokinase - SD C NC C NC NC NC 

Hexokinase - RCI Hexokinase - SD C NC C NC NC NC 

HDL CHOLESTEROL 

Homogenous-AA Homogenous-BC AU NC NC NC NC C C 

Homogenous-AA Homogenous-RCc NC NC NC NC C NC 

Homogenous-AA Homogenous-RCI NC NC NC NC C NC 

Homogenous-AA Homogenous-SD NC NC NC NC C NC 

Homogenous-BC AU Homogenous-RCc NC C NC NC NC NC 

Homogenous-BC AU Homogenous-RCI NC C NC NC C NC 

Homogenous-BC AU Homogenous-SD NC C / NC NC NC 

Homogenous-RCc Homogenous-RCI C NC C NC C NC 

Homogenous-RCc Homogenous-SD C C C C C C 

Homogenous-RCI Homogenous-SD C C C NC C NC 

POTASSIUM 

Indirect ISE - AA Indirect ISE - BC AU C C C C C C 

Indirect ISE - AA Indirect ISE - RCc C C C C C C 

Indirect ISE - AA Indirect ISE - RCI C / C / C / 
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MP1 MP2 

C1/2016 C2/2016 C3/2016 

FF CLSI FF CLSI FF CLSI 

Indirect ISE - AA Indirect ISE - SD C C C C C C 

Indirect ISE - BC AU Indirect ISE - RCc C C C C C C 

Indirect ISE - BC AU Indirect ISE - RCI C / C / C / 

Indirect ISE - BC AU Indirect ISE - SD C C C C C C 

Indirect ISE - RCc Indirect ISE - RCI C / C / C / 

Indirect ISE - RCc Indirect ISE - SD C C C C C C 

Indirect ISE - RCI Indirect ISE - SD C / C / C / 

SODIUM 

Indirect ISE - AA Indirect ISE - BC AU C C C C C C 

Indirect ISE - AA Indirect ISE - RCc C C C C C C 

Indirect ISE - AA Indirect ISE - RCI C / C / C / 

Indirect ISE - AA Indirect ISE - SD C C C C C C 

Indirect ISE - BC AU Indirect ISE - RCc C C NC C NC C 

Indirect ISE - BC AU Indirect ISE - RCI C / C / C / 

Indirect ISE - BC AU Indirect ISE - SD C C C C C C 

Indirect ISE - RCc Indirect ISE - RCI C / C / C / 

Indirect ISE - RCc Indirect ISE - SD C C C C C C 

Indirect ISE - RCI Indirect ISE - SD C / C / C / 

TRIGLYCERIDES 

GPO-PAP - AA GPO-PAP - BC AU C C C / C C 

GPO-PAP - AA GPO-PAP - RCc C C C / C C 

GPO-PAP - AA GPO-PAP - RCI C C C / C C 

GPO-PAP - AA GPO-PAP - SD C C C / C C 

GPO-PAP - BC AU GPO-PAP - RCc C C C / C C 

GPO-PAP - BC AU GPO-PAP - RCI C NC C / C NC 

GPO-PAP - BC AU GPO-PAP - SD C C C / C C 

GPO-PAP - RCc GPO-PAP - RCI C C C / C C 

GPO-PAP - RCc GPO-PAP - SD C C C / C C 

GPO-PAP - RCI GPO-PAP - SD C NC C / C NC 

UREA 

Urease,GLDH - AA Urease,GLDH - BC AU C C C C C C 

Urease,GLDH - AA Urease,GLDH - RCc C C C NC C C 

Urease,GLDH - AA Urease,GLDH - RCI C C C NC C C 

Urease,GLDH - AA Urease,GLDH - SD C C C C C C 

Urease,GLDH - BC AU Urease,GLDH - RCc C C C C C C 

Urease,GLDH - BC AU Urease,GLDH - RCI NC C excl C NC C 

Urease,GLDH - BC AU Urease,GLDH - SD C C excl C NC C 

Urease,GLDH - RCc Urease,GLDH - RCI C C C C C C 

Urease,GLDH - RCc Urease,GLDH - SD C C C C C C 

Urease,GLDH - RCI Urease,GLDH - SD C C excl C NC C 
C- commutable, NC – noncommutable, excl – excluded form analysis 
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Both methods for commutability evaluation are showing similar results of full to high 

commutability of all three EQA control samples for AST, potassium, sodium, triglycerides and 

urea. High commutability is also confirmed by two methods for ALT in C2/2016, creatinine in 

C1/2016 and GGT in C2/2016 and C3/2016.  

C1/2016 showed moderate commutability to noncommutability for chloride, cholesterol and 

HDL by both methods. ALT also showed moderate commutability, although the results were 

different in regression analysis and false flagging method when specific MP pairs are analysed. 

Both methods also agree on moderate to full noncommutability of C2/2016 for cholesterol and  

C3/2016 for ALT, chloride and creatinine. The high number of MPs excluded from analysis 

by false flagging method for chloride and creatinine in EQA survey 2 limits the confirmation 

of noncommutability of C2/2016 by both methods. 

The disagreement on commutability results coming from the regression analysis in CLSI 

recommended protocol and our method is observed for GGT in C1/2016, HDL and cholesterol 

in C3/2016 and glucose in all three control samples. 
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5. DISCUSSION 

   In the era of harmonisation and standardisation in laboratory medicine, it is very important 

to recognise and follow all necessary requirements to produce patient result traceable to highest 

order RMs in order to achieve global comparability and apply universally recommended 

clinical guidelines. This is why the ‘temple of standardisation’ is illustratively presented as the 

temple standing on the ‘pillars’ of reference measurement system together with the EQA 

programs offering an assessment of both laboratory and MPs performance, within defined 

measurement uncertainty. EQA programs that are offering such evaluation, are nowadays 

gaining more attention since they provide the information on the quality of performance, 

comparability to the other laboratories and traceability of their results to the reference value.  

   Commutability is a property of control material related to MPs used to measure a respective 

analyte. As described in VIM and ISO definitions (37,79), the materials have to show ‘the 

closeness of agreement” or ‘the equivalence of mathematical relationship’ between the results 

of different MPs as results obtained on patient samples for the same analyte. Because the 

measurements always include some level of uncertainty, one cannot expect the same results for 

these two kinds of samples but rather equivalent, or similar results regarding the intended use 

of control material. Thus, assessment of commutability always includes at least two MPs in the 

evaluation, and the material is further classified accordingly for these MPs. When one of the 

MPs is the reference MP and insensitive to commutability issues, the conclusion on 

commutability can be drawn for the one MP by measurements of both control and patient 

samples with reference and evaluated MP. 

   Our first approach in evaluating commutability of EQA control samples was aimed to 

analysis of the differences of mean MP differences between results of serum and control 

samples obtained at the same time and under the same analytical conditions. The aim was to 

investigate different behaviour of MPs on the serum and control samples defined by statistical 

significance of these differences. The approach was an extension of the work described by 

Cobbaert et al. (23) where ‘spy’ serum sample was introduced in the Dutch foundation for 

Quality Assurance in Clinical Diagnostics (SKML – Stichting Kwaliteteitsbewaking Medische 

Laboratoriumdiagnostiek)  for ‘sensing’ commutability, or as an indication of drifting 

commutability that has been established. They described this analysis as a pragmatic approach 

towards commutability assessment, questioning the feasibility of full commutability 

assessment expected to be scheduled periodically in any EQA scheme. In their approach, the 
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results from native serum sample and control are compared among MPs, expecting the ratio to 

be 100% for all evaluated MPs. To investigate whether the difference of 100% is statistically 

significant, a t-test was performed. In a similar way, we evaluated the statistical significance 

of differences between mean differences among each pairwise combination of MPs using 

ANOVA analysis (examples in Tables 10, 11 and 12) since many MPs are used for 

measurement of an analyte, with P<0.05 being the limit of significance. We assessed the 

statistical significance without any connection to clinical limits or APS in the EQA program, 

and on many occasions, we observed that apparently the same differences between mean 

differences among results from control and serum samples could lead to opposite 

commutability decisions (Table 12). When trying to compare these differences to the limits of 

total error according to biological variation data, we found out that it was hard to decide which 

proportion of APS should be chosen as commutability criterion. In spite of limitations observed 

in ANOVA analysis, we feel that it was a valuable approach in the description and evaluation 

of statistical differences observed for used MPs. Both graphical presentation of data and 

calculated differences of means between the pairwise comparison of MPs are very informative, 

giving clear indications for commutability issues (examples in Figures 13, 14 and 15). 

   Since it has to be proven that the control samples behave as patient samples when measured 

by two MPs, the regression analysis in the commutability assessment chosen by Eckfeld at all. 

(94) was the logic approach considering evaluated concentration range of an analyte. The 

regression analysis is often used in the laboratory when two MPs are compared, and the 

relationship between measurements on selected MPs defined. This approach can be valuable 

when assessing the commutability of calibrators, assessing both bias and commutability of 

materials intended to be used for calibrating field MPs. In an EQA setting, when control 

materials have to be validated for commutability with many MPs used by participants the 

comparison of the measurements with reference MP is logistically and economically very 

demanding. A very strict protocol has to be followed to collect patient serum samples with 

concentrations of evaluated analyte that spans various concentration levels of control materials. 

The assessment is further complicated by the fact that the evaluation protocol includes specific 

reagent lots used at the time of evaluation and the conclusions on commutability might be quite 

different for various lots, very often changed in the course of laboratory work. In addition to 

that, the volume of samples required for analysis using reference MP is usually very high, 

compared to the volumes needed for analysis with routine MP. For example, as opposed to less 

than 100 µl needed for creatinine analysis by routine MP, the usual volume needed for analysis 

of creatinine by ID-GC/MS (Isotope Dilution-Gas Chromatography/Mass Spectrometry) 
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reference MP is 0.2 to 3 ml, depending on the concentration of the analyte. The volumes are 

even higher for electrolytes, 32 ml on average. In addition to high volumes needed for 

analysis, the logistics of transporting the samples to the reference laboratory might be 

demanding, especially if there is no such laboratory in the country. The price is another 

demanding aspect of analysis in a reference laboratory. Starting from the price of about 200 € 

for analysis of one enzyme in each sample, the price is usually not less than 1000 € for 

hormones like cortisol (personal communication). Adding all together, the price for at least 20 

patient samples and one control sample can be substantially high, especially if many MPs have 

to be validated for various parameters in the commutability assessment, as usually is the case 

in an EQA program. 

   In our attempt to follow the CLSI EP14-A3 (95) recommended evaluation of commutability 

using Deming regression analysis, we found out that the statistically determined limits for 

commutability presented as 95% prediction interval around the regression line is very often not 

an objective criterion for such evaluation. As presented in Figure 11, the width of 95% 

prediction interval depends on the initial relationship of measurement results but even more on 

the type of regression analysis chosen for assessment of commutability. The prediction interval 

around Deming regression line is very restrictive, many times even for the patient results. The 

percentage of patient results exceeding the limits was 30.1% for HDL, and the number is even 

much higher for some other analytes or individual pairs of MPs. Thus, the control samples 

exceeding these limits may belong to the scatter of patient results and because of that show the 

intraassay characteristics similar to the characteristics of patient samples, yet not in the 

commutability limits and accordingly, noncommutable. On the other hand, the 95% prediction 

limits derived from Passing and Bablok regression analysis are too permissive to be set as a 

commutability criterion. In this respect, we evaluated the commutability according to linear 

regression analysis, where the percentage of patient results indeed reflected the closest 

approximation of 95% prediction interval around the regression line, wherein total 2.9% patient 

results were outside of the limits. The limitation to this approach is that we did not have the 

error-free MP as a comparative method, although to some extent the error factor is reduced by 

triplicate measurement of all samples.  

   Statistical limits are very commonly used in the assessment of commutability of control 

materials. These limits provide numerical, objective criteria whether the scatter of the control 

samples around the regression line of two MPs shows statistically significant difference than 

the scatter of the patient samples with the same MPs. In other words, statistical limits provide 
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the answer to whether the control samples belong to the same population as clinical samples. 

Thus, the closeness of agreement or mathematical equivalence is assessed. Yet, the limits are 

different for each MPs combination, resulting in multiple criteria for commutability 

assessment. In fact, it is the initial relationship between two MPs that defines the limits, where 

imprecision and single sample effects can lead to very wide acceptance intervals around the 

regression line. The limits are not the same for all MPs participating in the EQA assessment 

and have no relation to actual APS of the provider or clinical needs. Creating such different 

criteria might result in an unequal judgment of quality achieved by the laboratory, or alignment 

of MP to the true value of the analyte.  

   Ricos et al. (102) were the first to evaluate commutability of control material using fixed 

limits based on the allowed bias from the biological variation data. After the regression 

analysis, the residuals of control samples were expressed as percentage bias from predicted 

values as defined by patient samples. Although the evaluation of control materials is still based 

on the distance of residuals from the regression line, they used one criterion for all MPs under 

evaluation.  

   Very recently, the IFCC-WG on commutability (105-107) recognised the problem of 

unequal, statistically defined commutability criteria. The group suggested the use of unique 

commutability criterion for all MPs combinations under evaluation. The experimental design 

was created to assess the difference in bias between patient samples and control samples 

measured by two MPs under evaluation (106). The ‘difference in bias’ approach allows taking 

the uncertainty of the measurement into consideration at the appropriate concentration range, 

and both bias and uncertainty of that value are compared to a previously established 

commutability criterion. The authors recognise that ‘closeness of agreement’ of control 

samples with clinical samples is a relative term, advising the use of commutability limits for 

control samples as a fraction of total allowed deviation, or APS. Because the quality control 

samples are analysed in singleton in an EQA survey, both bias and imprecision have to be 

expected for evaluated MPs, and the acceptance criterion should be chosen accordingly. Such 

commutability criterion encompasses both the properties of MPs under evaluation and the 

intended use of RM as the trueness control. 

   The experimental design proposed by IFCC-WG is still logistically and economically 

demanding, with even more patient samples and more replicates needed for commutability 

assessment. Besides carefully choosing patient samples with the concentrations of analyte close 

to the concentrations of evaluated controls, the MPs evaluated must have satisfactory precision 

profiles. In fact, the protocol is rather restrictive to MPs with adequate precisions in order not 
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to jeopardise commutability conclusion due to large uncertainty intervals and thus inconclusive 

conclusions. It can be seen in Figure 7 that depending on the MPs combinations assessed (MP 

y vs. MP x and MP z vs. MP x), and the different precision profiles regarding individual MPs 

in the presented example, the conclusions on commutability of RMs are different. RM1, RM2 

and RM5 showing commutability in the comparison of MPs y and x, are characterised as 

‘inconclusive’ with the MPs z and x due to the large uncertainty intervals of calculated 

difference in bias between those MPs. Defining satisfactory precision requires statistical power 

analysis and depends on the observed closeness of agreement between patient and control 

samples in the experiment. All these requirements make the commutability assessment of 

control samples used in an EQA program very hard to perform for even limited number of 

MPs. For example, commutability assessment for one analyte and five MPs used in the 

laboratories requires at least 30 patient samples to be measured in triplicate, at the same time 

on all MPs. In total, at least 450 measurements should be performed on patient samples, or 

even more if the results show the unequal precision profiles leading to large uncertainty 

intervals and inconclusive commutability decisions. The required volumes, logistics and prices 

for such experiment are obviously very hard to follow. The recommended IFCC protocol may 

give the final answer on commutability of control materials, but it still waits for the 

confirmation in practice. Besides complexity, the protocol lacks clear guidance for EQA 

providers on the needed ‘fraction of total APS’ to be used as a commutability criterion. It is to 

be expected that in the absence of clear definitions, various EQA programs will choose 

different fractions of allowed deviations as the commutability limits potentially resulting in 

different conclusions on commutability of evaluated control materials for the same MPs. 

Nevertheless, the IFCC-WG protocol made a large contribution in the reasoning that the 

‘closeness of agreement’ and ‘mathematical equivalence’ have to be observed related to the 

intended use of processed materials. If the processed material is a calibrator, then the intended 

use for the calibrator is justifying MPs to meet metrological hierarchy leading to the traceability 

of results to the higher order RMs. If the calibrator succeeds to harmonise the results from two 

MPs within defined limits, then it can be considered commutable, and fit for the intended use. 

As for control samples, the intended use is met if the controls can be used for assessment of 

laboratory and MP performance. Using such control material, all laboratories and MPs under 

evaluation should have substantially equal chance to meet the predefined limits. In addition, 

the performance of individual laboratory and MP on control samples should be equal to the 

performance seen on patient samples.  
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   Considering requirements, the evaluation of commutability of control materials should be 

performed in a way that appreciates APS recommended for an analyte. APS should, in turn, 

reflect the clinical needs or quality standards needed to assure reliable and traceable results for 

clinical samples. When APS for an analyte are wide with respect to the state-of-the-art 

variability, then the commutability criterion is also going to be more permissive than the 

commutability criterion for analytes with very strict APS. If closeness of agreement is assessed, 

then one has to require that control samples provide the same answer regarding flagging of a 

laboratory in an EQA survey as for human samples. This is why our approach was extended to 

the evaluation of difference in flagging of laboratories within the EQA scheme as the basis for 

the commutability evaluation of control materials used in the same scheme. In this way, we 

were able to clearly analyse the ‘closeness of agreement’ between serum and control samples 

related to the APS of a scheme. Assuming clinical relevance of the established APS, the 

commutability limits are then defined by clinical relevance of the information gained from two 

kinds of samples. 

   In every EQA survey it can be suspected that certain laboratories are going to be flagged, not 

being able to satisfy the predefined APS. If the same proportion of laboratories is flagged when 

serum sample is used as control sample compared to the flagging rate with lyophilised control 

samples, then one has to assume the same behaviour of those samples in its intended use. If 

serum and lyophilised control samples are analysed in the same run on the instrument, then one 

would expect that approximately the same proportion of laboratories be flagged on serum and 

control samples. There is no reason for a number of laboratories to pass the predefined limits 

on serum samples, and not pass those limits when lyophilised control samples are used in an 

EQA survey if the concentrations assessed are approximately at the same level. If this is 

observed, one must question the properties of lyophilised control samples to act as a substitute 

for appropriate clinical samples. In other words, one must suspect the commutability of the 

processed material. As presented in our analysis from results of the EQA survey 1/2016 (Table 

14), the majority of laboratories using CHOD-PAP method on Siemens Dimension instrument 

for cholesterol measurement passed the predefined limits when serum sample was used for 

comparison between MPs. On the contrary, most laboratories had not passed this limit when 

lyophilised control sample was used for comparison. What would be the cause of this 

difference? As it can be seen from Table 14, the results from CHOD-PAP-SD are comparable, 

or harmonised, to all other evaluated MPs when measurements are performed on serum 

samples. Yet, the results from CHOD-PAP-SD are substantially different from other MPs when 

measurements are performed on lyophilised controls, causing a relevant number of laboratories 
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to be flagged. Thus, one must conclude that the root cause for this observation is not the 

supposedly poor quality of results from these laboratories, but the potential noncommutability 

of control material, not giving them the equal chance to meet the predefined APS. The control 

samples have to be able to demonstrate the agreement between laboratories and to point out 

‘the bad performers’, but it has to be proven that the control sample is really fit for this purpose, 

reflecting the behaviour of both laboratories and MPs on clinical samples. Thus, the flagging 

rate observed in serum should be the same as the flagging rate of laboratories on lyophilised 

control samples when assessing approximately the same concentration levels. Even if two MPs 

show different results on serum samples (nonharmonised MPs), one should observe the same 

pattern of flagging on lyophilised control samples. The difference observed in serum samples 

should also be present on lyophilised control samples. 

   The logic of the difference between the false flagging rate for control and fresh serum samples 

was the basis of our approach in evaluating the commutability of lyophilised control samples. 

The closeness of agreement between serum and processed material is evaluated by means of 

assessment of laboratory and MPs performance within EQA survey. The method was named 

false flagging method since it classifies commutability of processed materials according to the 

observed difference in the flagging rate of laboratories with those materials and serum samples. 

This logic is similar to the recommendations from IFCC-WG on commutability, stating that 

the criterion for commutability should be ‘a fraction of bias component of acceptance limits 

for evaluating an EQA or trueness control result’ (105). Thus, the limits for commutability are 

fixed and connected to the APS in the EQA scheme, allowing the results of EQA control 

samples to be different from clinical samples only a fraction of total allowance.  

   Applied into the false flagging method, we set the allowed difference in changing flagging 

rate to 20% points. The limit is arbitrary and prone to changes depending on the scheme design, 

number of participants and clinical relevance of the analyte. Our decision was based on the 

fact, that when evaluating the performance of two sets of results in the corresponding frequency 

curves, the change in the flagging of results can be expected beyond the APS evaluation limit. 

   Because the MP groups in CROQALM are relatively small, with many groups not exceeding 

10 participants when both analytical method and instrument are chosen as the basis for group 

differentiation, the probabilities of change in flagging rate are expected to be variable. Hence, 

the bootstrapping technique is used in order to calculate the probability that the limits are ever 

going to be exceeded. Just like the sample is drawn from the whole population, the bootstrapped 

sample is drawn from the original sample or set of results. Starting from the original sample of 

size N, bootstrapped samples (usually 1000) of the equal size can be generated and the statistics 
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performed on each sample pooled together, constructing a sampling distribution which can be 

used to make statistical inference.  

   If two MPs are harmonised, the rate of flagged results when the groups are joined and 

evaluated according to the unique target value, as opposed to the flagging rate of laboratories 

when the groups are split, is within the predefined limit of 20% points. In Tables 14, 16 and 

18, harmonised MP pairs are presented with 95-100% harmonisation, or 95-100% of samples 

not exceeding the predefined limit. Indeed, defining harmonisation with the same logic of 

flagged results before and after the groups are split can assure that the evaluation of individual 

laboratories will not be significantly different. Assuming their harmonisation, one can easily 

observe the different behaviour of those same MPs on the EQA control samples. As seen in the 

case of CHOD-PAP-SD MP in the EQA survey 1 and 2 (Tables 14 and 16), the flagging rate 

changed substantially for all combinations of MPs with CHOD-PAP SD, causing at some 

instances none of the samples to meet the predefined limits. Percentages of commutability for 

these MPs combinations range from 0.2 – 80.4% and 0.0 – 21.6% for C1/2016 and C2/2016 

control samples, respectively. The conclusion on noncommutability of these EQA samples is 

rather straightforward, after observing quite different behaviour of evaluated MPs with these 

controls as opposed to their behaviour on serum samples. The rate of falsely flagged results of 

participating laboratories indicated the commutability issues of these controls. On the other 

hand, the control C3/2016 showed commutability with all MPs for cholesterol, where the rate 

of flagged results on serum samples and this control was approximately the same, or within the 

predefined limits. The conclusions on commutability using false flagging method for 

cholesterol were the same as conclusions from simple linear regression analysis for C1/2016 

and C2/2016, but quite opposite for C3/2016 (Table 20). A statistically significant difference 

in the behaviour of C3/2016 was found using CLSI protocol for evaluating commutability, 

although this significance was not observed in terms of the difference of flagging status of 

laboratories when evaluated according to the same target value. Respecting these findings, we 

concluded that the behaviour of this control regarding predefined APS for cholesterol was not 

significantly different in control and serum sample, which makes C3/2016 reliable control for 

assessing both laboratory and MP performance. The observed difference compared to patient 

samples in the CLSI protocol might be statistically significant, mainly influenced by the initial 

relationship between evaluated MPs, yet not significantly different to jeopardize intended use 

of RM. 

   The noncommutability of control materials for HDL was confirmed using the false flagging 

method. In all three surveys, harmonised MPs yield quite different results on lyophilised 
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controls, although the C3/2016 shows better commutability compared to the other two controls. 

According to our classification of commutability, C1/2016 and C2/2016 would be described as 

noncommutable materials for HDL cholesterol with more than 60% noncommutable MP pairs, 

whereas the control C3/2016 shows moderate noncommutability with 40% noncommutable 

MP pairs. The results partially agree with conclusions from protocol according to CLSI on 

commutability for evaluated MPs (Table 20), but some differences are important. As it can be 

seen in Table 14, C1/2016 shows commutability with almost all MPs including Homogenous-

BC AU because the 95% prediction interval around the regression line for all MP pairs is very 

wide and permissive in terms of commutability decisions (see Figure 12B). Although the 

scatter of results from this control indeed belongs to the limits of the scatter observed on patient 

samples, these limits are very wide according to limits allowed in the EQA program. Because 

of these differences, many laboratories would be falsely flagged if methods are joined and 

evaluated according to the consensus target value. In conclusion, the statistical equality 

observed in regression analysis is not restrictive enough for applied APS or clinical needs for 

this analyte. On the other hand, observed statistical differences in C3/2016 are too insignificant 

according to APS at this concentration level (the highest concentration of HDL in control 

samples; 1.8 mmol/L) to jeopardize evaluation in the EQA program, hence the conclusion on 

commutability differs from the CLSI protocol. In addition, the evaluated MPs in CLSI protocol 

did not include Roche Hitachi instrument, where pairwise combinations of MPs with this 

instrument showed noncommutability according to the false flagging method.  

   Glucose is another example where the APS in the EQA scheme allow the results to differ in 

a way that the statistically significant differences observed in regression analysis don’t 

influence the decision on the flagging of individual laboratories. The commutability evaluation 

of control materials according to CLSI protocol results in a high number of noncommutability 

decisions, while using the false flagging method these materials are considered commutable 

for the majority of MP combinations (Table 20). 

   The approach in evaluation commutability using regression analysis used in CLSI 

recommended protocol is very different than the approach used in the false flagging method. 

While one looks at statistically significant differences between results from patient and control 

samples using regression analysis in describing closeness of agreement, the false flagging 

method describes this closeness according to the intended use of control material using fixed 

limits for commutability which are dependent on the APS used in the EQA program. 

Respecting these different approaches, we feel that the comparison with commutability results 
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from CLSI protocol might only serve for explanatory purposes in finding the reason for 

observed differences, as shown in the cases of HDL and glucose. 

   As stated before, the commutability decision using false flagging method for harmonised 

MPs is relatively easy because one starts from the results that are comparable, or substantially 

equal. For nonharmonised MPs, the decisions on noncommutability are somewhat different, 

because the results are different even on serum samples. Therefore, in order to prove 

noncommutability, it has to be shown that the results are even more different on control 

samples or, that they are comparable, which is also the proof of noncommutability, because the 

control sample shows different behaviour from a serum sample. Actually, in order to prove 

commutability of control materials, one would have to prove how ‘equally unequal’ are the 

results on serum and control samples. In our opinion, the logic of analysing the change in 

flagging rate qualifies for this purpose, because MPs are not only evaluated by the proportion 

of flagged laboratories, but rather the change in this proportion. Yet, it has to be noticed, that 

among nonharmonised MPs, many pairs of MPs show noncommutability as well. 

Nonharmonisation was most likely the cause for noncommutability of some MP pairs, for 

example, all combinations with IFCC-SD MP for ALT in the EQA survey 1 (Table 14) and 

almost all nonharmonised MP pairs used to measure calcium in EQA survey 3 (Table 18). 

Actually, all nonharmonised MPs with less than 80% harmonisation show noncommutability. 

Evaluation of commutability of nonharmonised MPs is thus considered as a possible limitation 

of false flagging method in evaluating commutability. The number of noncommutability 

decisions from nonharmonised MP pairs is shown in Tables 15, 17 and 19, following analysis 

of each EQA survey. 

   In fact, it was probably the issue of nonharmonisation resulting in noncommutability the root-

cause of exclusion of many MP pairs from the evaluation in the EQA survey 2. In this survey, 

in order to achieve high concentration levels of some analytes, the native fresh serum was 

spiked with glucose, urea, bilirubin, sodium and chloride. Since one cannot assume that any 

processed material behaves like fresh serum sample, we evaluated this kind of material in the 

third EQA survey, where one volume of the serum was distributed native and the other spiked 

with these analytes. Both sera were measured in the same run on the instruments, and the false 

flagging method was used to evaluate the commutability of the spiked volume of serum in 

order to prove that spiked serum can be used as a substitute for fresh serum samples. After 

analysis, the total of 48/379 MPs were excluded from further evaluation because of the elevated 

number of flagged results in spiked serum samples (Appendix). Although the cause for 

exclusion of many MPs might have been nonharmonisation of MPs, the reason why so many 
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MPs were excluded for creatinine was unclear to us. The creatinine was not the analyte used 

for spiking, and the number of excluded harmonised MPs was 16/28. Thus, the assumption that 

spiking with low amounts of relatively simple analytes assures commutability might not be 

true, and it must always be checked. We proved that this assumption certainly was not true in 

the cases of many MPs used for measurement of chloride and bilirubin. The choice of spiking 

serum in order to achieve high concentration was a good decision for glucose, urea and sodium, 

but regarding bilirubin and chloride, the pooling of the samples with high concentrations of 

evaluated analytes might have been the better choice. Nevertheless, the pools of serum samples 

also have to be validated for commutability with native clinical samples. 

   The variability of results in the MPs’ groups also influences the commutability decisions, 

regardless of the MPs used for evaluation. Recognising this observation, IFCC-WG requires 

only MPs with satisfactory precision to participate in the commutability evaluation. High 

imprecision of the MP expressed as the variability of measurement results around the mean 

value introduces larger uncertainty estimates which, in turn, can result in too permissive 

prediction intervals around the regression line in CLSI protocol. In the IFCC-WG 

recommended protocol, it is expected to result in large uncertainty intervals around the 

difference in bias between two MPs, making more commutability decisions as inconclusive. 

As far as our false flagging method is concerned, the variability of results reported for each MP 

influences the commutability in a way that some materials appear to be noncommutable with 

MPs having larger variability. The variability that is presented in EQA results might be thought 

as maximum imprecision for an MP, whose positive influence on nonharmonisation of MPs 

might be followed by noncommutability decision. When only mean values and difference of 

means for serum and control samples are observed in the pairwise combination of MPs, it might 

be seen on some occasions that for same differences we get quite a different harmonisation and 

commutability decisions, which is, in fact, due to different variabilities between methods. For 

example, this can be seen in the case of comparison between FES-CC-Indirect-AA and FES-

CC-Indirect-SD for potassium measurement in the EQA survey 1 (Table 14). The means and 

the differences between these two MPs combinations are approximately the same, but the 

conclusions on commutability are quite different (88% commutability as opposed to 99.9% 

commutability). The reason is that the standard deviation for Indirect ISE-AA is quite larger 

(SD = 0.12) than for Indirect ISE-SD (SD = 0.06), and thus more laboratories are flagged in 

the MP group of Indirect-AA. Similar observations can be seen throughout all three surveys. 

Regardless of the means, variability means that the substantial number of laboratories have 

results on the extremities of their distribution, being characterised as ones exceeding the 
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predefined limits. Moreover, if the limits are very strict, as it is the case with calcium, one can 

expect that larger variability in the groups would result in more results being flagged, further 

described as nonharmonisation or noncommutability. 

 

Commutability is an important characteristic of EQA samples enabling evaluation of laboratory 

and MP performance according to unique target values. Control samples that mimic clinical 

patient samples can give valuable information on quality standards met in the MBLs as well as 

harmonisation and standardisation of MPs used in the clinical setting. EQA programs using 

commutable control samples and reference target values offer multiple evaluation capabilities 

and are recognised as the most useful programs considering the information they provide to 

their participants and healthcare community. In order to fulfill the requirements for 

commutability assessment in the EQA scheme with many MPs used for analysis, we presented 

a method that can give the EQA providers information on the commutability of MPs used in 

the program. The method is based on the ‘closeness of agreement’ of performance of both 

laboratories and MPs on serum and control samples. This way the intended use of RM in 

identifying poor performance and/or harmonisation and standardisation of MPs used by the 

laboratories is recognised. For a commutable control sample, the equal performance of 

laboratories is expected on patient serum samples and control samples. If the proportion of 

flagged laboratories changed substantially in only one sample, noncommutability of control 

materials is assumed, where the behaviour of processed material is different from the native 

serum sample. We defined the limit of 20% points change in flagging status as the limit for 

commutability, respecting variability of results within groups and a small number of results for 

some MPs. By doing so, we were able to demonstrate noncommutability of all lyophilised 

control materials for some analytes. The number of MPs showing noncommutability with 

evaluated control samples varied depending on both sample and analyte. The use of the false 

flagging method can even give substantial evidence in identifying controls where some MPs 

show a very low percentage of commutability, thus very different behaviour of those samples 

than patient samples. As shown in Tables 14, 16 and 18, very low commutability percentages 

for many MPs used for measuring HDL in all three control samples, or AP and creatinine in 

C3/2016, give a clear conclusion on commutability of those samples. On the other hand, some 

commutability percentages are in the line of 90%, giving a possibility that near-commutability 

may be expected, which may require additional analysis using, for example, the IFCC-WG 

protocol for evaluation. Actually, this protocol may also be advised in cases where only a few 

MPs show noncommutability, especially if the percentages of commutability are rather high, 
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raising the need for additional analysis. On the contrary, when controls are defined as showing 

high noncommutability (noncommutable for > 60 % MPs combinations used in the 

measurement of stated analyte) or full commutability, there is no need for additional analysis 

and further costs. 

   In the proposed commutability evaluation experiment, we were able to analyse both normal 

and high concentration levels of some analytes in both samples (glucose, urea, cholesterol, 

sodium, potassium, chlorides and bilirubin). However, the spiking of serum samples with 

simple analytes similar to the protocol described by SKML scheme where commutability was 

demonstrated was not so successful in our study. For example, spiking with chloride introduced 

commutability issues with serum sample, as well as spiking with ditauro-bilirubin for many 

MPs. In addition, spiking seems to be a problem also for some rather non-specific MPs used 

for measurement of creatinine, although creatinine was not added to the serum samples. 

Because one cannot a priori assume commutability of any processed material, we would advise 

using pools of clinical samples for commutability assessment. Pools with a high concentration 

of several analytes can be collected relatively easy, for example, high levels of urea, creatinine 

and potassium, since high concentration of these analytes is present in the same clinical entities 

(chronic kidney failure). In a similar way pools with high concentrations of glucose and lipids 

can be obtained, high activities of some enzymes, etc. The volumes needed for analysis are 

also small, and several different pools can be sent together with control samples to participating 

laboratories in order to evaluate their commutability with MPs in routine use. Once established, 

the false flagging method can be used periodically in order to evaluate the commutability of 

existing control materials with new MPs used by participants or to validate the conclusions on 

commutability across any time period. The proposed commutability criterion can also be 

adjusted to any specific circumstance of EQA program or clinical significance of the analyte. 

The price and logistics applied are far more affordable and acceptable, with the criteria of 

commutability being clearly connected to defined quality requirements in laboratory medicine.
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6. CONCLUSIONS 

Result of this research showed the following: 

 Statistically determined commutability limits using regression analysis offer a numeric 

and objective assessment of commutability of control materials but are very dependent 

on the variability of MPs. The commutability limits derived from the 95% prediction 

interval in regression analysis are highly influenced by precision profiles of evaluated 

MPs.  

 The regression analysis showed that all three control samples are highly 

noncommutable for evaluated pairwise combinations of MPs used for measurement of 

cholesterol, HDL cholesterol and glucose. The controls were also found highly 

noncommutable for chloride at normal concentration level (C1/2016 and C3/2016) and 

creatinine at high concentration level (C2/2016 and C3/2016). C3/2016 showed to be 

noncommutable for 60% MP pairs used for measuring ALT. 

 Commutability of control materials for all evaluated MP pairs was proven for 

potassium, sodium, GGT, triglycerides and AST using regression analysis. 

 Commutability of control materials might be assessed through an EQA program by 

analysis of native serum samples and lyophilised control materials at the same time 

using appropriate MPs. 

 Assessment of the statistical significance of the difference of mean MP differences of 

control and serum samples using ANOVA analysis for commutability evaluation is 

highly dependent on the number and variability of the data in each MP group and cannot 

be suggested for commutability assessment within EQA program. 

 Commutability evaluation of control materials using statistically determined 

commutability limits have no association to APS used in the EQA program or clinical 

relevance of an analyte. 

 The closeness of agreement between patient samples and control materials can be 

assessed through evaluation of the flagging rate of laboratories on serum samples and 

control materials. 

 Criteria for commutability limits using false flagging method can be related to APS of 

the EQA scheme, expecting the similar proportion of laboratories to be flagged in both 

serum samples and lyophilised control materials under the presumption of comparable 

concentration levels 
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 Criteria for commutability limits can be adjusted to specific characteristics of the EQA 

program (number and variability of data) but also to the clinical significance of analyte.  

 Pairwise combinations of MPs involving instrument Siemens Dimension were often 

found noncommutable using false flagging method. 

 Nonharmonised MP combinations very often show noncommutability for control 

samples; the noncommutability of nonharmonised MP pairs was > 80% in all three 

controls. 

 Commutability of spiked serum samples cannot be presumed: all processed materials 

have to be evaluated for commutability for all assessed analytes (spiked and not-spiked) 

and pairwise combination of MPs. 

 The false flagging method represents a new approach in commutability evaluation and 

it can be used for evaluating commutability of control samples within the EQA program 

of medical biochemical laboratories.  

 Using the false flagging method in evaluating commutability, the commutability limits 

are equally designed for all MP combinations. The limits are connected to established 

APS of the EQA program and may be set to reflect the clinical relevance of the analyte.  
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TTT – Total Testing Process 
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9.  APPENDIX 

 MP pairs excluded from commutability evaluation in the EQA survey 2 

 

MP 1 MP 2 

Mean 
MP1 
(serum) 

Mean 
MP2 
(serum) 

Mean 
MP1 
(control) 

Mean 
MP2 
(control) 

% 
harmoni
sation 

% 
commut
ability 

ALT 
IFCC- BC 
AU 

IFCC- SD 7.28 13.25 6.79 11.42 0.1 67.5 

IFCC- SD Photometry UV- 
AA 

13.25 7 11.42 6.56 2.5 66.9 

IFCC- SD Photometry UV- 
BC AU 

13.25 6.64 11.42 6.34 0 58.8 

IFCC- SD Photometry UV- 
RCc 

13.25 6.62 11.42 6.25 2.8 43.9 

IFCC- SD Photometry UV- 
RCI 

13.25 6.43 11.42 6.07 0 79.7 

IFCC- SD Photometry UV- 
RH 

13.25 6.89 11.42 6.21 0 79.1 

AMY 
IFCC- BC 
AU 

IFCC- RH 55.58 52.36 51.99 47.35 100 61.4 

CALCIUM 
Arsenaso III- 
AA 

cresolphthalein- 
SD 

2.42 2.33 2.25 2.18 51.6 85 

Arsenaso III- 
BC AU 

cresolphthalein- 
BC AU 

2.41 2.38 2.27 2.23 79.3 83.5 

Arsenaso III- 
BC AU 

cresolphthalein- 
SD 

2.41 2.33 2.27 2.18 32.7 66.5 

CHLORIDE 
Indirect ISE- 
AA 

Indirect ISE- BC 
AU 

105.27 105.02 121.1 135.18 100 0 

Indirect ISE- 
BC AU 

Indirect ISE- SD 105.02 102.57 135.18 122 91.5 0 

CREATININE 
Compensated 
Jaffe- AA     

Compensated 
Jaffe- BC AU 

66 60.33 66.71 56.91 94.5 5.3 

Compensated 
Jaffe- AA     

Compensated 
Jaffe- RCc  

66 64.42 66.71 59.83 100 66.2 

Compensated 
Jaffe- AA     

Compensated 
Jaffe- RCI  

66 66.46 66.71 61 100 76.9 

Compensated 
Jaffe- AA     

Compensated 
Jaffe- RH  

66 63.42 66.71 62.69 100 89.5 

Compensated 
Jaffe- AA     

Enzymatic 
method- BC AU 

66 59.8 66.71 56.33 100 35.2 

Compensated 
Jaffe- BC AU 

Compensated 
Jaffe- RCc  

60.33 64.42 56.91 59.83 81.5 91.6 

Compensated 
Jaffe- BC AU 

Compensated 
Jaffe- RCI  

60.33 66.46 56.91 61 49 90.5 

Compensated 
Jaffe- BC AU 

Compensated 
Jaffe- RH  

60.33 63.42 56.91 62.69 100 39.6 
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Compensated 
Jaffe- BC AU 

Compensated 
Jaffe- SD  

60.33 63 56.91 63.22 100 90.9 

Compensated 
Jaffe- BC AU 

Non-
compensated 
Jaffe- BC AU  

60.33 72.55 56.91 69.86 0 86.8 

Compensated 
Jaffe- RCc  

Non-
compensated 
Jaffe- BC AU  

64.42 72.55 59.83 69.86 20.3 74.3 

Compensated 
Jaffe- RCI 

Non-
compensated 
Jaffe- BC AU  

66.46 72.55 61 69.86 78.1 76.9 

Compensated 
Jaffe- RH  

Enzymatic 
method- BC AU 

63.42 59.8 62.69 56.33 100 91.1 

Compensated 
Jaffe- RH  

Non-
compensated 
Jaffe- BC AU  

63.42 72.55 62.69 69.86 47 91.1 

Compensated 
Jaffe- SD  

Non-
compensated 
Jaffe  - BC AU 

63 72.55 63.22 69.86 29.1 48.1 

Enzymatic 
method- BC 
AU 

Non-
compensated 
Jaffe- BC AU  

59.8 72.55 56.33 69.86 0 62.7 

HDL 
Homogenous
- BC AU 

Homogenous- 
SD 

1.61 1.7 1.5 1.6 65.4 77.7 

LDH
IFCC- BC 
AU 

IFCC- SD 133.73 126 121.54 111.33 87 74 

IFCC- RCI IFCC- SD 135.57 126 123.54 111.33 91.9 85.7 

PHOSPHATE 
Ammonium-
molybdate- 
AA 

Ammonium-
molybdate- BC 
AU 

0.8 0.79 0.76 0.73 100 84.9 

BILIRUBIN 
Diazo- AA Diazo- BC AU 6.6 7.37 39.27 47.79 100 0 

Diazo- AA Diazo- HP 6.6 6.5 39.27 45.17 100 62.6 

Diazo- AA Diazo- RH 6.6 6.45 39.27 42.48 100 83.2 

Diazo- AA Diazo- SD 6.6 6.08 39.27 43.15 100 84.4 

Diazo- BC 
AU 

Diazo- RCc 7.37 5.15 47.79 39.77 100 0 

Diazo- BC 
AU 

Diazo- RCI 7.37 5.19 47.79 38.93 88.7 0 

Diazo- BC 
AU 

Diazo- SD 7.37 6.08 47.79 43.15 100 87.7 

Diazo- HP Diazo- RCc 6.5 5.15 45.17 39.77 100 70.2 

Diazo- HP Diazo- RCI 6.5 5.19 45.17 38.93 100 30.2 

PROTEINS 
Biuret- AA Biuret- BC AU 66.2 68.16 61.1 63.49 98.9 85.5 

URATE 
Uricase,POD
- AA 

Uricase- SD 176.83 157.3 164 149.33 59 82.2 

Uricase,POD
- BC AU 

Uricase- SD 173.11 157.3 159.6 149.33 81.6 83.2 
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UREA 
Urease,GLD
H- BC AU 

Urease,GLDH- 
RCI 

4.47 4.22 14.77 14.36 78.4 83.2 

Urease,GLD
H- BC AU 

Urease,GLDH- 
SD 

4.47 4.6 14.77 15.01 86.7 89.1 

Urease,GLD
H- RCI 

Urease,GLDH- 
RH 

4.22 4.57 14.36 14.9 79.3 85.9 

Urease,GLD
H- RCI 

Urease,GLDH- 
SD 

4.22 4.6 14.36 15.01 45 85.10 
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Uvod i cilj: Vanjska procjena kvalitete sastavni je dio sustava za upravljanje kvalitetom medicinsko-
biokemijskih laboratorija. Osim prosudbe mjernih rezultata, vanjska procjena kvalitete ima za svrhu 
praćenje globalnih ciljeva harmonizacije i standardizacije mjernih postupaka (MP) koji se koriste u 
laboratorijima. Komutabilnost kontrolnih uzoraka nužan je preduvjet za valjanu prosudbu kvalitete 
prema jedinstvenoj ciljnoj vrijednosti. Komutabilni uzorci pokazuju jednaka svojstva kao i uzorci 
pacijenata u različitim MP. Komutabilnost se uobičajeno procjenjuje korištenjem regresijske analize i 
statističkih kriterija za prosudbu, ne uzimajući u obzir analitičke ciljeve kvalitete ispitivanog analita. 
Stoga je cilj ovog doktorskog rada postavljanje i validacija nove metode za prosudbu komutabilnosti 
kontrolnih uzoraka uzimajući u obzir postavljene analitičke ciljeve kvalitete u sklopu vanjske procjene 
kvalitete medicinsko-biokemijskih laboratorija . 
Materijali i metode. Medicinsko-biokemijskim laboratorijima koji sudjeluju u vanjskoj procjeni 
kvalitete CROQALM poslani su liofilizirani komercijalni kontrolni uzorci zajedno sa svježim uzorcima 
seruma, te svježim uzorcima seruma uz dodatak glukoze, ureje, natrija, kalija, klorida i bilirubina. 
Uzorci su analizirani upotrebom standardnih MP, a komutabilnost komercijalnih kontrolnih uzoraka 
ispitana je korištenjem dvije vrste uzoraka i novom predloženom ‘metodom lažnog odstupanja’ (engl. 
false flagging method). Dobiveni rezultati uspoređivani su sa statističkim kriterijima prosudbe 
komutabilnosti kontrolnih uzoraka u okviru vanjske procjene kvalitete medicinsko-biokemijskih 
laboratorija.  
Rezultati: Metodom lažnog odstupanja ispitana je komutabilnost kontrolnih uzoraka za 22 analita i 
331-426 parova MP koji se koriste u rutinskom radu laboratorija. Sva tri kontrolna uzorka pokazuju 
komutabilnost za većinu kombinacija MP za mjerenje amilaza, AST, CK, glukoze, željeza, LDH, 
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rezultatima mjerenja uzoraka seruma pacijenata na ispitivanim MP. 
Zaključci: Metoda lažnog odstupanja predložena u ovom radu predstavlja novi pristup u prosudbi 
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Abstract

Background: Laboratory evaluation through external 
quality assessment (EQA) schemes is often performed 
as ‘peer group’ comparison under the assumption that 
matrix effects influence the comparisons between results 
of different methods, for analytes where no commutable 
materials with reference value assignment are available. 
With EQA schemes that are not large but have many avail-
able instruments and reagent options for same analyte, 
homogenous peer groups must be created with adequate 
number of results to enable satisfactory statistical evalu-
ation. We proposed a multivariate analysis of variance 
(MANOVA)-based test to evaluate heterogeneity of peer 
groups within the Croatian EQA biochemistry scheme and 
identify groups where further splitting might improve lab-
oratory evaluation.
Methods: EQA biochemistry results were divided accord-
ing to instruments used per analyte and the MANOVA 
test was used to verify statistically significant differences 
between subgroups. The number of samples was deter-
mined by sample size calculation ensuring a power of 
90% and allowing the false flagging rate to increase not 
more than 5%. When statistically significant differences 

between subgroups were found, clear improvement of lab-
oratory evaluation was assessed before splitting groups.
Results: After evaluating 29 peer groups, we found 
strong evidence for further splitting of six groups. Overall 
improvement of 6% reported results were observed, with 
the percentage being as high as 27.4% for one particular 
method.
Conclusions: Defining maximal allowable differences 
between subgroups based on flagging rate change, fol-
lowed by sample size planning and MANOVA, identi-
fies heterogeneous peer groups where further splitting 
improves laboratory evaluation and enables continu-
ous monitoring for peer group heterogeneity within EQA 
schemes.

Keywords: external quality assessment; multivariate anal-
ysis of variance; peer group.

Introduction
External quality assessment (EQA) provides an essential 
tool for medical laboratories for evaluating assay perfor-
mances and establishing quality standards. One of the 
key purposes of such an evaluation is standardization of 
analytical measurement procedures which, in turn, would 
yield comparable patient results across a variety of meas-
urement procedures and calibration details in different 
laboratories. Depending on the EQA scheme design and 
type of control material used, results are usually validated 
based on distance of results from the target value [1]. EQA 
schemes distributing samples with target values assessed 
by reference methods are now recognized as category 1 or 2 
schemes [2] being able to assess individual laboratory per-
formance and monitor standardization and traceability of 
laboratory methods used. Target value assessment by ref-
erence method depends on the commutability of control 
material and the availability of a reference method for a 
particular analyte. When the commutability of a sample 
is unknown, a reference measurement value cannot be 
used as target value since it is not possible to determine 
whether the observed difference from the target is caused 
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by calibration bias or assays not traceable to higher order 
reference methods or matrix-related bias of unknown 
magnitude. Although EQA organizers should strive to use 
commutable material [3], commutability of EQA mate-
rial is not always assured due to processing steps used to 
enhance sample stability or allow distribution on a large 
scale [4]. Samples used in EQA schemes are often consid-
ered commutable based on stringency of their prepara-
tion, but commutability should not always be assumed a 
priori in highly processed materials without a validation 
for all combination of measurement methods used. In case 
commutability is not assured, results are usually catego-
rized into peer groups within which results are obtained 
by a similar technology. Target values for peer groups are 
generally calculated for each peer group individually and 
are called ‘consensus values’. Members of peer groups are 
expected to have the same matrix-related bias for a given 
EQA sample [2].

Whenever statistical techniques are used to calculate 
consensus values and deviation of results from consensus 
values, two antagonistic criteria play a role. Peer groups 
should be as large as possible to produce reliable statistics, 
and they should be as homogenous as possible to produce 
correct statistical calculations. Hence, the creation of peer 
groups is a compromise between obtaining satisfactory 
homogeneity within the peer group, and maintaining sat-
isfactory peer group sizes. A test is proposed to identify 
heterogeneity of peer groups and has been applied to the 
Croatian EQA scheme for general biochemistry. It helps 
identifying heterogeneity of peer groups that consist of 
different subgroups of data that were obtained on analyz-
ers that use the same analytical principle, but are from dif-
ferent manufacturers.

Croatian laboratories often use ‘open systems’, in 
which reagents and instruments may be from different 
manufacturers. Due to the large number of possible com-
binations of instruments and reagents, the EQA organ-
izer initially identifies peer groups based on the method 
or analytical principle, without making any distinc-
tion between equipment, reagents or calibrators used. 
Although this approach is useful in addressing harmo-
nization of individual laboratories’ results, inadequate 
standardization within the same method [5] and the influ-
ence of dominant instruments on the consensus value 
are evident shortcomings of method-based peer groups. 
The aim of this study was to identify peer groups for their 
homogeneity and to verify that splitting based on equip-
ment manufacturer would improve laboratory evaluation. 
Currently, laboratories are evaluated based on their per-
centage difference from their peer group mean with pre-
defined analyte-specific allowable limits of performance 

(ALP), based on biological variation, statistical analysis, 
expert opinion and combination of approaches [6].

Materials and methods
Study design

The results from four rounds from the Croatian EQA biochemis-
try scheme in 2014 and 2015 were analyzed. The analytes included 
enzymes [aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT), alkaline phosphatase (AP), lipase], electrolytes 
(sodium, potassium, chloride, calcium, phosphorous, magnesium), 
substrates (glucose, total bilirubin, creatinine, urea, uric acid, 
total iron binding capacity), proteins (total protein, albumin, CRP) 
and total cholesterol. The data submitted by laboratories were first 
divided into peer groups according to the analyte and analytical 
method and peer groups were divided into subgroups according to 
the manufacturer. Every subgroup that contained at least 10 labora-
tories for every sample was considered as an independent subgroup. 
Subgroups of smaller size were all joined together into a subgroup 
called ‘Other’. The data were graphically inspected using two scatter 
plots containing data from two rounds each. The rounds on the scat-
ter plots were combined to assess, when possible, both lower and 
higher concentration levels on the same graph.

Statistical analysis

In a first instance, the effect of peer group heterogeneity on the lab-
oratory evaluation was modeled. The assumption was made that 
reported results follow a Gaussian distribution and that the mean 
and standard deviation are not influenced by outliers. The last crite-
rion can be achieved by removing outliers before calculating mean 
and standard deviation or by using robust estimates of the mean and 
standard deviation.

When a peer group is homogeneous, any subgroup consisting 
of results that have been obtained by analyzers from the same manu-
facturer, has the same mean. The chance of falsely flagging a result 
is given by:

	 hom hom homfalse flagging 2 F 1 % /100 ,( ( ( ) ) ), , sm d m= ∗ − � (1)

with F(x, m, s) being the cumulative probability function of a Gauss-
ian distribution with mean m and standard deviations. The para-
meters mhom and shom are the mean and standard deviation of the 
homogeneous peer group and d(%) is the deviation from the assigned 
value, defined by the ALP, expressed as a percentage. This probabil-
ity increases with decreasing d and increasing standard deviation.

When a peer group is heterogeneous, the mean and standard devi-
ation of one or more peer subgroups may be different from the mean 
and standard deviation of the whole group. For example, when there are 
exactly two subgroups, with unequal means x1 and x2, respectively, with 
x2 = x1 + δ, the mean of the heterogeneous peer group mhet is given by:

	 het 1 ,m x p δ= + ∗ � (2)

where p is the fraction of data belonging to the group with mean x2.
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If the two subgroups have the same standard deviation s1, the 
standard deviation of the heterogeneous group shet becomes:

	
( ) δ δ− + −

=
−

2 2 2 2
1

het

2
.

1
n s pn p n

s
n �

(3)

When n is large, this formula can be simplified to:

	 2 2 2 2
het 1 .s s p pδ δ= + − � (4)

The probability of false flagging now becomes:

	 het het hetFalse flagging 2 F 1 /100 ,( ( (%)  ) ),, m d m s= ∗ − � (5)

with mhet and shet given by Eqs. 2 and 3, respectively. The larger δ 
becomes, the larger the false flagging rate and hence, the larger the 
effect of peer group heterogeneity on laboratory evaluation. When x1, 
p and s1 are known, Eq. 5 gives the relation between the degree of het-
erogeneity and the increase of false flagging. Equation 5 also enables 
the calculation of the maximal difference between subgroups δ when 
x1, p and s1 are known, and a limit on the increase of the false flagging 
rate has been proposed.

The logic was applied to the Croatian EQA scheme for gen-
eral biochemistry. Subgroups were defined and heterogeneity was 
assessed by combining every two sets of subgroups that belonged to 
the same peer group. For every combination of subgroups, x1 and s1 
were calculated as the mean and standard deviation of the largest 
subgroup and p was calculated as the proportion of the results that 
belonged to the other subgroup after outliers identified by a Grubbs 
test for which the p-value was smaller than 5%, were omitted. Using 
an increased allowed false flagging rate of 5% points, the parameter 
δ was derived from Eq. 5 and the number of samples that is needed 
to give a significant multivariate analysis of variance (MANOVA) test 
with a power of 90% if the difference is equal to δ was calculated 
[7–9]. A MANOVA test was applied to assess differences between sub-
groups, in which the multivariate response consisted of the results 
reported by the same laboratories for multiple samples.

For every group where the MANOVA test indicated that sub-
groups should be split, the improvement in flagging was considered. 
It can be assumed that, if subgroup size remains relatively large 
(n ≥ 10), a flagging based on subgroup means is more correct than 
a flagging based on peer group means. For this reason, every result 
that is flagged based on the peer group mean but not based on the 
subgroup mean, and every result that is not flagged based on the peer 
group mean but is flagged based on the subgroup mean is considered 
as an improved evaluation. Peer groups were split only if the percent-
age of improved evaluations was higher than 5%.

Results
Twenty-nine method-based peer groups for 20 analytes 
were identified assuring each group has more than 10 par-
ticipants and at least two instruments within same method 
used for analysis. For example, only two peer groups were 
created for sodium (‘indirect ISE’ and ‘flame photometry’) 
because ‘direct ISE’ peer group did not have enough par-
ticipants to assure different instrument subgroups of at 
least 10 participants across four schemes. The groups were 

further divided into 75 subgroups according to instruments 
used for analysis. For each subgroup, data were visually 
explored by means of scatter plots where data of two 
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Figure 1: Graphical presentation of EQA results for creatinine, com-
pensated Jaffe method traceable to NIST SRM 967 on (A) Beckman 
Coulter AU series (B) Roche Hitachi/Modular and (C) others.
Left graph shows each time the results from round 2014/1 vs. 
2014/2 and the right graph shows results from round 2014/3 
vs. 2015/1. Rectangles within scatter plots represent ALP with 
respect to peer group (dotted rectangle) and subgroup (continuous 
rectangle) median. The position of rectangles to one another give 
indication that further splitting will improve evaluation of subgroups 
Roche Hitachi/Modular and Other.
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Figure 2: Workflow for MANOVA analysis applied to results for creatinine (compensated Jaffe method traceable to NIST SRM 967) in four 
rounds of Croatian EQA scheme.

successive EQA rounds were plotted against each other. 
Graphical presentation of EQA results with respect to ALP 
for each analyte revealed subgroups where further split-
ting might improve the laboratory evaluation (Figure 1).

For each of the subgroups, defined per analyte and 
method, mostly results from samples in two EQA rounds 
were selected based on the parameter δ from Eq. 5 to 
perform the MANOVA. For one group, three samples were 
needed, and for another group, four samples were needed 
to perform the MANOVA (Figure 2). 

Based on statistically significant differences 
between pairs of different subgroups (p < 0.05), there 
was evidence for further splitting of 16 peer groups into 
subgroups. For example, reported results of MANOVA 
analysis for creatinine compensated Jaffe method trace-
able to NIST SRM 967 peer group are presented in Table 1. 
In each group for which the MANOVA test indicated that 
groups should be split, the amount of improved flag-
ging was considered. The groups were actually split into 
subgroups if the improvement in laboratory evaluation 
exceeded 5% and clear improvement of correctly flagged 
results was observed for 6% of all results in groups 
needed to be split. For a particular method, this percent-
age was 27.4% (Roche Hitachi/Modular subgroup for 
creatinine). It should be noted though that the improve-
ment was observed mainly in the subgroup ‘Other’ which 
is composed of different small groups of results. Table 2 

Table 1: Results of MANOVA analysis for creatinine compensated 
Jaffe method traceable to NIST SRM 967 peer group.

Group comparison   p-Value for 
distinguishing groups 

Beckman Coulter AU series – Other   0.0055
Beckman Coulter AU series – Roche 
Hitachi/Modular

  < 0.0001

Other – Roche Hitachi/Modular   0.0001

summarizes the effect of peer group splitting applied 
to instrument subgroups where statistically significant 
differences between subgroups were found and clear 
improvement in flagging rate (above 5%) was observed 
in 50% of the cases (8/16).

Discussion and conclusions
Splitting peer groups is a trade-off between a large peer 
group with higher probability to be heterogeneous or small 
group with higher probability of unreliable summary 
statistics and evaluation, especially when split groups 
become small. Splitting peer groups according to manu-
facturer of equipment for a certain analyte is common in 
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EQA schemes, but such an approach in Croatian scheme 
yields too many small peer groups, especially since lot of 
groups still show great heterogeneity in combinations of 
different manufacturers’ instruments and reagents used. 
Creating larger, method-based peer groups seemed like a 
good solution to have more reliable statistic evaluation of 
particular result, but the obvious numerical dominance 
of one group (Beckman Coulter) shifted the target value 
toward median of its’ results. Such an evaluation revealed 
many incorrect flagging for non-Beckman Coulter instru-
ments. It was clear that a statistical approach has to be 
applied to find significant differences in consensus target 
values among different subgroups of instruments, with 
a general objective to separate peer groups that consist 
of different instrument-linked subgroups as soon as the 
within-subgroup variation is smaller than the between 
subgroup variation.

An important note should be made about significant 
differences between p-values. Significant p-value might 
not have any clinical relevance when a lot of data are 
involved, and a non-significant p-value may not lead to 
the right conclusions if too few data are involved. Since 
historic data from an EQA round cannot be augmented or 
reduced, a test is needed that involves multiple samples 
and for which the necessary number of involved samples 
can be calculated. For this reason, sample size planning 
prior to applying MANOVA test is a major prerequisite for 

obtaining correct and informative statistical analysis. The 
planning depends on the expected difference between 
subgroup means, subgroup size and the ratio between 
subgroup variability and the evaluation limit. It can be 
expected that false flagging of laboratories increases 
when peer groups are not split and subgroup means are 
situated further from each other. For this reason, the nec-
essary number of samples were calculated in such a way 
that a theoretical increase in false flagging rate of 5% or 
more should give a significant MANOVA p-value with at 
least 90% of the time. Using this logic, the results of indi-
vidual laboratory depend on the evaluation criteria in use 
and may change when new recommended analytical per-
formance specifications are set [10].

The improvement in correct evaluation of EQA results 
is particularly high for creatinine, compensated Jaffe 
method traceable to NIST SRM 967. It might seem that 
standardization and traceability to primary reference 
material would yield a better harmonization among dif-
ferent instruments on which method is applied, but non-
specificity in terms of interferences and cross-reactants 
questions the possibility of Jaffe method for creatinine to 
be standardized [11]. The measurement procedure that is 
sensitive to interference potentially introduces commut-
ability problems even in minimally processed control 
samples, and the magnitude of interference depends on 
the individual sample [12]. Indeed, commutability is not 

Table 2: Effect of peer group splitting on correct flagging of laboratories’ results.

Parameter  Method   Instrument   Number of 
data

  Number of 
missed flags

  Number of 
wrong flags

  Percentage 
improved, %

Total 
bilirubin

  DPD   Beckman Coulter AU   294  0  0  0.0

    Other   97  6  15  21.6
    Roche Hitachi/Modular  102  0  5  4.9

Creatinine  Compensated Jaffe, traceable to 
NIST SRM 967

  Beckman Coulter AU   152  2  6  5.3

    Other   145  1  4  3.4
    Roche Hitachi/Modular  84  6  17  27.4

Creatinine  Jaffe   Beckman Coulter AU   129  1  1  1.6
    Other   139  5  5  7.2

Total 
protein

  Biuret   Beckman Coulter AU   222  2  2  1.8

    Other   112  0  0  0.0
    Roche Cobas Integra   44  0  0  0.0
    Roche Hitachi/Modular  73  2  2  5.5

Chloride   ISE Indirect   Beckman Coulter AU   191  0  0  0.0
    Other   107  8  11  17.8

Albumin   BCG   Beckman Coulter AU   123  5  5  8.1
    Other   80  6  8  17.5

Total       2094  44  81  6
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only the property of EQA sample, but rather combination 
of material-method interaction. The same non-specificity 
issues can be applied to uncompensated Jaffe method in 
creatinine determinations.

It has been shown previously that total bilirubin 
methods lack harmonization, particularly in the low con-
centration range [13]. We showed that harmonization was 
not achieved even within one method for total bilirubin 
(DPD method) probably because of lack of detailed expla-
nation of DPD method and thus numerous variations in 
reagent composition and method design among different 
manufacturers [14].

Albumin concentration differences among different 
manufacturers can be explained by the chemically and 
immunologically undefined measurand, whereas differ-
ences in chloride measurements come as unpleasant sur-
prise given that measurand is defined and standardization 
can be achieved through unbroken chain of traceability.

It should be stressed that peer group evaluation is 
recommended only when commutability of control mate-
rial has not been validated and cannot be assumed due 
to numerous processing steps needed to ensure homoge-
nous and stable samples with multiple and clinically rele
vant analyte composition and concentrations. All efforts 
from EQA providers should be directed toward creating 
commutable control material in order to enable target 
value assignment by reference methods and commutable 
materials where available. Consequently, such schemes 
can be used to monitor standardization and give valuable 
information about the harmonization of measurement 
procedures. Although this approach is preferable, com-
mutability cannot always be achieved. Whenever com-
mutability is unknown, the model can be of particular 
value, certainly when higher-order reference materials or 
methods [15] are not available (for example peptide hor-
mones, tumor markers).

Choosing peer groups with comparable results from 
different equipment providers must be done with outmost 
care considering measurand and method itself, number of 
instruments and statistical evaluation. A MANOVA-based 
test, with a prior sample size planning that is based on 
maximal allowable difference between groups helps identi-
fying groups that should be split and confirms the homoge-
neity of existing peer groups. The test may be applied as well 
for a continuous monitoring of the peer group homogeneity 
and for a fast detection of possible upcoming peer group 
heterogeneity, for which splitting would become recom-
mended. Depending on the scheme design, a time period 
should be chosen by EQA providers for new evaluation of 
homogeneity of peer groups to allow any new potential 
subgroups to be created and/or to prevent splitting groups 

if differences among instruments enable correct evaluation 
within larger peer group. It should also be performed every 
time a new control material with different preparation pro-
tocol is introduced, given that the matrix related bias on 
individual measurement procedure might also be differ-
ent. Whenever new group heterogeneity appears, caused 
by deviating results from individual instrument-based peer 
subgroup, EQA organizers should check if the observed dif-
ference is due to matrix effect or method bias.

Identifying heterogeneity within the peer group and 
splitting the groups accordingly enables verification that 
the individual laboratory is performing in accordance to 
the manufacturer’s specifications and to other laboratories 
using the same technology. Observed differences among 
instrument-based subgroups can further be assessed by 
EQA providers for potential non-commutability of control 
samples, lack of harmonization or unsatisfactory accu-
racy of measurement procedure used if target values 
according to reference method can be assured. Until the 
origin of such differences is identified, observed hetero-
geneity within Croatian EQA biochemistry scheme lead us 
to decide that splitting specific peer groups led to a better 
laboratory evaluation.
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ABSTRACT: Proficiency Testing (PT) External Quality Assessment (EQA) schemes are designed to
ascertain the ability of individual laboratories to perform satisfactorily with respect to their peer
laboratories or to limits imposed by external sources. Observed deviation of a laboratory result for a PT
sample must be entirely attributed to the laboratory and not to the PT provider. To minimize the
probability that deviations could be attributed to the PT provider, sample homogeneity should be
assured. It is generally required that for quantitative parameters, the standard deviation among PT units
should be calculated on the basis of duplicate measurements of at least 10 samples chosen at random, and
the standard deviation among PT units should not exceed 0.3 times the standard deviation used to
evaluate laboratories. Because this approach has important drawbacks, an alternative procedure is
proposed by applying the theory of acceptance sampling to the assessment of sample heterogeneity for
both quantitative and qualitative data and deriving acceptance limits on the basis of minimizing the
probability of falsely evaluating laboratories. For obtaining acceptance limits for quantitative parameters, a
distinction is made between laboratory evaluation using fixed limits on the one hand and laboratory
evaluation using limits that are based on the variability of the reported results on the other hand. Sequential tests are proposed
to evaluate sample heterogeneity by means of a comparison with the χ2 distribution. For qualitative parameters, acceptance-
sampling plans are proposed that are based on minimizing the joint probability of rejecting batches that have a satisfactory
amount of defective samples and accepting batches unnecessarily. The approach for quantitative parameters is applied on
samples for a PT scheme of ethanol quantification and for qualitative parameters on the presence of monoblasts in a blood
smear. It was found that five samples could already be enough to prove that the batch was homogeneous for quantitative
parameters, although more than 20 samples were needed to prove homogeneity for qualitative parameters. This study describes
a direct relation among the objective of an PT round, the criteria for evaluating the results, and the sample heterogeneity. When
samples are effectively homogeneous, less measurements are needed than current practices require. A drawback of the proposed
approach is that the number of samples to be tested is not known beforehand, and good knowledge of the analytical variability is
crucial. The formulas to be applied are relatively simple. Despite the drawbacks, the proposed approach is generally applicable
for both quantitative and qualitative data.

Q uality control in laboratory analysis includes different
aspects. Apart from internal controls, external controls

such as proficiency testing (PT) and external quality
assessment (EQA) are designed to ascertain the ability of
individual laboratories to perform satisfactorily with respect to
their peer laboratories or to limits imposed by external sources.
PT and EQA are often used interchangeably. The former is
more often used in North America and is often related to
regulatory or legal attributes. The latter is more often used
within European areas, is often seen as a broader activity, of
which laboratory evaluation makes up only a part and is usually
regarded as educational. In this manuscript, the term PT will
be used to describe both PT and EQA.
The general organization of a PT scheme is to distribute

samples with the same content to the participating laboratories
from the PT provider. Participating laboratories are asked to
analyze the sample and send back the results to the PT

provider. By comparing the results of each laboratory with the
target value, laboratories are evaluated. Because the results of
the PT are often part of an accreditation process, it is very
important that the PT is managed correctly. Among other
concerns, the observed deviation of a laboratory result from a
PT sample must be entirely attributed to the laboratory and
not to the PT provider. To minimize the probability that
deviations could be attributed to the PT provider, PT samples
and their content should be identical. International standards
for PT schemes1,2 require that for quantitative parameters, the
standard deviation among samples should be calculated on the
basis of duplicate measurements of at least 10 samples chosen
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at random, and formulas are provided to estimate the analytical
repeatability, σr, and the standard deviation among PT
samples, σs. In short, the estimate, sS, of the variability between
PT samples, σs, should be smaller than 0.3σp, the PT standard
deviation for a homogeneous sample. The notion of inference
around the standard deviation among PT units and a proposal
to apply an F-test instead of the simple <0.3σp criterion have
been introduced3 and been adopted by the IUPAC interna-
tional harmonized protocol for proficiency testing2 and ISO
13528.1 For qualitative parameters, the requirements are vague.
ISO 13528,1 for example, requires that an appropriate number
of samples should have the right outcome, without specifying
what an appropriate number of samples might be.
Although widely applied, the approach for quantitative

parameters has some important drawbacks. The factor of 0.3 to
be multiplied by σp was chosen to limit the contribution of the
standard deviation among samples to less than 10% of the total
variation of the reported results. As a consequence, Z-scores
would be inflated to 5% or less.3 It should be noted that this
rule applies solely to cases in which a predefined standard
deviation is used to calculate Z-scores, not the standard
deviation of the reported PT results. In addition, because the
calculation of sS involves the square root of a difference that is
more likely to be negative when the ratio of the repeatability,
σr, over the sample variability, σs, increases, the calculation of sS
is not always possible, and the only solution is to consider σs
equal to 0. Lastly, the inference test about σs rejects the sample
only when there is clear proof of heterogeneity and may accept
samples for which there is no proof that they are satisfactorily
homogeneous. These arguments demonstrate that valid
alternative approaches should be envisaged.
This study introduces the theory of acceptance sampling to

the assessment of sample heterogeneity for both quantitative
and qualitative data using data from sample preparations for
ethanol in blood and lymphocyte subset counting, respectively.
The theory of acceptance sampling, which originated more
than a century ago,4 was, in its early years, based on qualitative
testing: a limited number of samples were taken from a batch,
and the batch was rejected when the number of non-
conforming units was above a predefined limit and accepted
otherwise. Later, models for application to quantitative
parameters were developed as well.4 In order to determine
the limits within which acceptance sampling for quantitative
parameters should operate, the effects of sample heterogeneity
on PT standard deviations and laboratory evaluations have to
be outlined first.

■ CONTROLLING SAMPLE HETEROGENEITY FOR
QUANTITATIVE RESULTS

Effect of Sample Heterogeneity on the Variability of
Reported PT Results. Sample heterogeneity has a direct
effect on the variability of the reported results. Without aiming
at quantifying each of the individual components, it can be
stated that the variance of the reported results, σs

2, consists of
the sum of the variance among samples, σs

2, and the
interlaboratory reproducibility, σR

2:

p
2

s
2

R
2σ σ σ= + (1)

This equation assumes that all laboratories show the same
analytical variability, a realistic assumption when the same
analytical methodology is used across laboratories. It also
assumes that variances can be summed up without taking into

account covariances, a technique that is quite common in the
field.5 In fact, sample heterogeneity contributes to the total PT
standard deviation in the same way as the interlaboratory
reproducibility, σR: it will inflate the estimation of the PT
standard deviation. If a correct estimation of the PT standard
deviation is of interest, a limit on the inflation of the PT
standard deviation by sample heterogeneity can be used to
calculate a limit for the sample heterogeneity. For example,
when inflation of the PT standard deviation induced by the
sample heterogeneity should not exceed a certain proportion, a
(e.g., 0.1, which equals 10%), by rearranging eq 1, we have

a a( 2)s R
2

max
σ σ= + (2)

with σsmax
being the maximum allowed value of σs. The term σR

can also be considered as the standard deviation of the
reported PT results for homogeneous samples. An estimate
could be obtained from past PT rounds using homogeneous
samples.

Effect of Sample Heterogeneity on Laboratory
Evaluation. An increased PT standard deviation that is due
to sample heterogeneity has diverse effects on laboratory
evaluation, depending on how laboratories are evaluated. Two
distinct types of laboratory evaluation exist: (a) using fixed
limits, for example, a maximum allowable relative deviation
from the target or consensus value, and (b) using limits that
depend on the variability of the reported results.

Effect of Sample Heterogeneity on Laboratory
Evaluation Based on Fixed Limits. When fixed limits are
applied, a laboratory is flagged for poor performance when its
reported result falls outside the interval [L, U] = [xa ± dxa] or
outside the interval [xa ± kxσp] when the PT standard
deviation, σp, is fixed and known beforehand.

6 Parameters xa, d,
and k stand, respectively, for the assigned value, the maximum
allowable relative deviation from xa, and a percentile score
(chosen by the PT organizer, usually 2 or 3) that reflects the
number of standard deviations that a reported result is allowed
to deviate from the assigned value. The effect of sample
heterogeneity on a fixed-limits evaluation is displayed in Figure
1.
When the sample is homogeneous, σs is equal to 0, and

hence the standard deviation of the reported results, denoted
by σp|hom, is given by σR.
Even when laboratories perform well, there is a small

probability that the value they reported is situated outside of
the interval [L, U]. Let us call this probability the probability of
falsely flagging. The term false refers to situations in which
well-performing laboratories are flagged despite good perform-
ance. The probability of falsely flagging for a homogeneous
sample (pFF|hom) is given by

p F L x F U x2 ( , , ) 2 2 ( , , )FF hom a p hom a p homσ σ= = −| | | (3)

where F stands for the cumulative probability function of
normally distributed values with xa as the mean and a standard
deviation of σp|hom.
When the sample is heterogeneous, σs is not equal to 0, and

the standard deviation of the reported results can now be
described by σp|het:

p het p hom
2

s
2σ σ σ= +| | (4)

In this case, the probability of falsely flagging (pFF|het) under
heterogeneity is given by

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.8b03313
Anal. Chem. 2019, 91, 1847−1854

1848

http://dx.doi.org/10.1021/acs.analchem.8b03313


p F L x F U x2 ( , , ) 2 2 ( , , )FF het a p het a p hetσ σ= = −| | | (5)

The increase in the probability of falsely flagging due to
heterogeneity (ΔpFF|het) is given by

p p pFF FF het FF homΔ = −| | (6)

Controlling the Effect on Laboratory Evaluation with
Fixed Limits. The maximum allowable sample heterogeneity,
σsmax

, can be calculated according to two methods. The first
method consists of putting limits on ΔpFF by defining an
allowed probability of falsely flagging. The maximum allowed
sample heterogeneity, σsmax

, can be derived by an iterative

process, in which σsmax
is estimated such that ΔpFF remains

limited. The process consists of deriving ΔpFF from eqs 3−5 by
using a starting value for σsmax

. When the obtained ΔpFF is

above the limit, the whole process is repeated for a small σsmax
,

and when the obtained ΔpFF is below the limit, the whole
process is repeated for a larger σsmax

. Algorithms exist to

calculate the optimum values of σsmax
after each iteration step.7

The second approach of putting limits on the flawed
laboratory evaluation consists of considering the actual
deviation that gives the same probability of falsely flagging as
under sample homogeneity, which can be denoted by d(%)′. It
is found by calculating d(%)′ such that

F L x F L x( , , ) ( , , )a p het a p homσ σ′ =| | (7)

where L′ is the acceptance limit under sample heterogeneity
that leads to the same probability of falsely flagging as L does
under sample homogeneity. L could be replaced by U, and L′
could be replaced by U′ in this equation (see Figure 1). Here,
an iterative calculation has to be used to obtain d(%)′ after
choosing an initial estimate of σsmax

.
Effect on Laboratory Evaluation Based on Standard-

Deviation-Dependent Limits. When laboratories are
evaluated on the basis of the number of standard deviations

that their reported value deviates from the assigned value, and
the standard deviation is calculated from the reported results,
there is no fixed interval of acceptability, and limits for flagging
laboratories extend when the standard deviation of the
reported results increases. This means that compared with an
evaluation on fixed limits, sample heterogeneity has another
effect on the laboratory evaluation: a portion of the results are
not flagged, whereas they would have been flagged if the
sample had been homogeneous. As a consequence, if the
sample is heterogeneous, the probability of falsely flagging, on
the one hand, remains unchanged, and the probability of falsely
not flagging, on the other hand, appears. The relation between
the probability of falsely not flagging (pFNF) and the PT
standard deviation, calculated on the basis of the reported
results, is illustrated in Figure 2.

Note that that the probability of falsely not flagging results
appears only in the case of heterogeneity. For this reason,
contrary to the case of flagging laboratories with fixed limits, no
Δ symbol is required, and the subscript het does not need to be
used to describe the probability of falsely not flagging. If the
assigned value is represented by xa, the expected standard
deviation of the reported results from a homogeneous sample
is represented by σp|hom, and that of a heterogeneous sample is
represented by σp|het, the following holds:

p F x k x

F x k x

2 ( , , )

2 ( , , )
FNF a p hom a p het

a p het a p het

σ σ

σ σ

= −

− −

| |

| | (8)

The proportion of well-performing values that are flagged
when the sample is heterogeneous is given by the last part of
eq 8. This proportion depends solely on k and is equal to
0.0455 when k = 2 and to 0.0027 when k = 3.

Controlling the Effect on Laboratory Evaluation with
Standard-Deviation-Dependent Limits. The probability of
falsely not flagging is chosen beforehand, and σp|hom can be
estimated from previous PT results. When k is chosen (usually

Figure 1. Effect of sample heterogeneity on laboratory evaluation
using fixed limits. A theoretical distribution of reported data is shown
for a homogeneous (solid line) and a heterogeneous (dashed line)
sample, presuming a Gaussian distribution, around the assigned value
(xa), of values reported by well-performing laboratories. L and U are
the limits beyond which laboratories are flagged for bad performance.
The area under the curve beyond these values is called the probability
of false flagging. It is indicated by the gray zones when the sample is
homogeneous. The red zones show the increase in the probability of
false flagging under sample heterogeneity. U′ and L′ are the limits for
a heterogeneous sample with the same probability of falsely flagging as
L and U in the case of a homogeneous sample.

Figure 2. Effect of sample heterogeneity on laboratory evaluation
using standard-deviation-dependent limits. The solid line shows the
distribution of reported PT results for a homogeneous sample; the
dashed line shows the distribution for a heterogeneous sample. The
black zones show the probability of falsely flagging under sample
homogeneity; the red zones show the probability of falsely not
flagging under sample heterogeneity. The factor k stands for the
number of standard deviations that a reported result is allowed to
deviate from the assigned value; k is usually 2 or 3.
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2 or 3), the PT standard deviation that relates to the maximum
probability of falsely not flagging can be obtained from eq 8 by

F x k x s

p F x k x

( , , )

0.5 ( , , )

a p hom a p het

FNF a p het a p het

σ

σ σ

−

= + −

| |

| | (9)

By rewriting the left part of eq 9 as F , 0, 1
x k xa p hom a

p het

σ

σ

− −|

|

i
k
jjj

y
{
zzz, we

obtain

F k p F x k x, 0, 1 0.5 ( , , )p hom

p het
FNF a p het a

σ
σ

σ σ− = + −|

|
|

i

k
jjjjjj

y

{
zzzzzz

(10)

Once a limit for pFNF is chosen, the right part of eq 9 is
independent from the variability of the reported results. Let us
define Q as the value for which the area to the left of Q under a
standard normal curve is equal to 0.5pFNF + F(xa − kσp|het, xa,
σp|het).
We then have

k Q
k

Q
orp hom

p het
p het p hom

σ
σ

σ σ= − = −|

|
| |

(11)

After that, the allowed sample heterogeneity can be obtained
by means of eq 4:

k
Q

1s p het
2

p hom
2

p hom

2

2max
σ σ σ σ= − = × −| | |

(12)

with σsmax
being the maximum allowable value of σs.

Another way to calculate the maximum allowed sample
heterogeneity is by considering the effective Z-limit, which is
the limit that gives the same probability of falsely flagging when
the sample is heterogeneous as the original Z-limit yields when
the sample is homogeneous. It is given by ke, the effective value
of k, and is calculated by

k ke
p het

p hom

σ
σ

= |

| (13)

After proposing a value for ke, eq 4 can be used to calculate
σsmax

.
Estimating Expected PT Standard Deviation under

Homogeneity. Independently from how laboratories are
evaluated, the expected PT standard deviation when the
sample is homogeneous, σp|hom, needs to be estimated, and PT
organizers can rely on PT results reported in the past.
Eventually, a supposed estimated sample heterogeneity could
be subtracted from the calculated PT standard deviations from
the past. Because the PT standard deviation of the reported
results varies from sample to sample, an interpolation between
standard deviations for different concentrations is recom-
mended, for example, by using the characteristic function,8,9 a
function that draws the relation between the target value and
standard deviation.
Evaluating Sample Heterogeneity to Keep Wrong

Evaluations under Control. With the introduction of
sequential tests,10 it became clear that acceptance sampling
by analyzing a predefined number of samples could be
performed in a more efficient way, with, on average, fewer
samples. Sequential-sampling plans were introduced, which
consist of sampling unit by unit, calculating an evaluation

statistic, and comparing this statistic with upper and lower
limits; the sample is rejected when the evaluation statistic
exceeds the upper limit and accepted when the statistic is
below the lower limit. As long as the evaluation statistic is
between the two limits, testing of an extra unit should be
performed, with a new evaluation statistic calculated and
evaluated with respect to the two limits.
Sequential tests can be performed to evaluate sample

heterogeneity by means of a comparison with the χ2

distribution. It is built on the basic idea that when the sample
heterogeneity is exactly equal to the maximum allowed sample
heterogeneity, the following equation holds:

s n( 1)

r
n

s
2

s
2 2 1

2

max
σ σ

χ
−
+

∼ −
(14)

where σr is the analytical variability of the method that is used
for evaluating the sample homogeneity, σsmax

is the maximum
allowed sample heterogeneity (both expressed as standard
deviations), n is the number of vials taken so far, and ss is the
standard deviation of the samples that are evaluated.
Note that all variability estimates in eq 14 are written as

variances (i.e., squares of the standard deviations). When the
actual standard deviation between the samples is smaller than
σsmax

, the ratio will be smaller than expected under a χ2

distribution, and when the actual standard deviation is larger,
the ratio will be larger than expected under a χ2 distribution.
The evaluation of sample heterogeneity is explained in Figure
3.

Initially, five vials are measured, and their mean is used to
derive σr from measurements obtained during method

validation; σr is then used to calculate the ratio s n( 1)s
2

smax
2

r
2σ σ

−
+

, and

this ratio is compared with a χ2 distribution with n − 1 degrees
of freedom. Testng is stoppend and the batch is accepted when

the ratio s n( 1)s
2

smax
2

r
2σ σ

−
+

is located in the left 2.5% tail of the χ2

distribution and the batch is rejected when it is located in the
right 2.5% tail of the χ2 distribution. Testing continues when

the ratio s n( 1)s
2

smax
2

r
2σ σ

−
+

is located in the middle 95% part of the

Figure 3. Flowchart for evaluating sample heterogeneity for
quantitative parameters.
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distribution, and after each analyzed sample, the ratio s n( 1)s
2

smax
2

r
2σ σ

−
+

and the χ2 distribution are updated and evaluated.
Controlling Sample Heterogeneity for Qualitative

Results. A test for sample heterogeneity for qualitative results
can be constructed using the operator-characteristic curve. It is
illustrated in Figure 4.

The curve illustrates the decisions that can be taken when a
fixed-sized sample of units is taken from a large batch, and each
unit in the sample is tested for conformity.
The proportion of nonconforming units in the sample

reflects the true proportion of nonconforming units in the
whole batch and can be used to decide whether the batch
should be rejected or accepted: the batch is rejected when the
number of nonconforming units is too large, and it is accepted
otherwise. Because the proportion of nonconforming units in
the sample is only a reflection and hence only gives an
approximate value of the proportion in the whole batch,
batches may be accepted or rejected wrongly when the
approximation is not good enough.
Two types of risks play a role in this decision process. When

the sample contains a number of nonconforming units that is
high with respect to the total nonconforming units in the
batch, the batch may be wrongly rejected. When the sample
contains a number of nonconforming units that is low with
respect to the total nonconforming units, the batch may be
wrongly accepted.
From the point of view of laboratory evaluation, it is

disadvantageous to accept batches with too many non-
conforming units. The quality level, expressed as the
proportion of nonconforming units in the batch, beyond
which a correct laboratory evaluation is jeopardized is called
the consumer’s quality level (CQL), and the probability of
accepting a batch with a worse quality level is called β. From
the point of view of costs involved in sample preparation, it is
disadvantageous to reject batches unnecessarily. The quality
level below which the sample provider does not want to have

batches rejected is called the producer’s quality level (PQL),
and the chance of rejecting a batch with a proportion of
nonconforming units below PQL is α. Evidently, PQL is always
lower than CQL.
Similar to the evaluation of the sample heterogeneity for

quantitative parameters, sequential testing can be applied for
qualitative parameters as well. On the basis of predefined PQL,
CQL, α, and β, a rejection−acceptation graph can be drawn as
shown in Figure 5 using the following parameters:4,9

h
b
G

h
a
G

s
g

G
, ,1 2

2= = =

where a = ( )log 1 β
α
− , b = ( )log 1 α

β
− , g1 = ( )log CQL

PQL
, g2 =

( )log 1 PQL
1 CQL

−
−

, and G = g1 + g2.

The parameters h1, h2, and s are used to calculate two lines:

line of acceptance

Y s k h1= × −

line of rejection

Y s k h2= × −

where Y stands for the cumulative number of nonconforming
vials, and k stands for the number of vials tested so far.
Randomly chosen units are consecutively tested, and the

cumulative number of nonconforming units is plotted on the
graph. The sample is accepted when the cumulative number of
nonconforming units (Y) is smaller than the line of acceptance
and rejected when Y is larger than the line of rejection.
The graph is equipped with rejection and acceptance zones,

of which the positions and the spaces are determined by α, β,
PQL, and CQL. Testing continues until the sample is rejected
or accepted (see Figure 5).

Figure 4. Example of an operator-characteristic curve. The producer’s
quality level (PQL) is the percentage of nonconforming units below
which a producer does not want to have batches rejected, with
probability 1 − α, and the consumer’s quality level (CQL) is the
percentage of nonconforming units above which a consumer does not
want to have batches accepted, with probability 1 − β.

Figure 5. Rejection and acceptance zones for a PQL of 1%, a CQL of
10%, an α of 1%, and a β of 10%. Two lines are drawn to illustrate two
distinct testing processes, A and B. Testing process A starts with a
nonconforming unit, after which testing continues. Eleven conforming
units follow and make the line stretch horizontally. The 13th and 14th
units, however, are nonconforming, which makes the line to reach the
rejection zone, after which the batch is rejected. Process B starts with
15 consecutive conforming units. The 16th unit is nonconforming,
which makes the line to shift up one unit. All subsequent units are
conforming, which makes it reasonable to accept the batch after
testing 51 units.
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■ MATERIALS AND METHODS

The theory of acceptance sampling for quantitative parameters
was applied on a PT scheme for serum ethanol. Five samples
for a PT survey of ethanol were tested. The Belgian PT survey
assesses laboratory performance in two ways: laboratories are
flagged when their Z-scores (based on robust peer-group
statistics) are beyond 3 or when the relative difference with
respect to the consensus median is larger than 25% for samples
with concentrations <0.4 g/L and larger than 15% for samples
with concentrations ≥0.4 g/L.
Samples were made of fresh, non-alcohol-containing serum

and were spiked to obtain concentrations of 0.15, 0.45, 0.75,
1.5, and 3 g/L ethanol, respectively. The analytical variability
was determined on 20 different measurements for 7 different
controls with concentrations ranging from 0.0617 to 3.950 g/
L. PT standard deviations from the past were determined by
means of the characteristic function on the basis of results of
the last 33 samples, which were reported from 2013 to 2015.
Only methods used by at least 10 participants were taken into
account. As a result, five different analytical methods were
taken into consideration. For the Z-scores, an effective limit of
4 was proposed and for the relative differences, an increase in
the probability of falsely flagging of 2 percentage points was
accepted.
The theory of acceptance sampling for qualitative parame-

ters was applied to the evaluation of a blood smear for use in a
PT for hematology. Randomly selected blood smears from a
patient with acute monoblastic leukemia were evaluated for the
percentage of monoblasts. PQL, CQL, α, and β, were set to 1,
20, 1, and 1% respectively. On every slide, 100 leucocytes were
counted and a blood smear was considered as conforming
when at least 60 monoblasts were identified.

■ RESULTS

In order to deal with the various values for the PT standard
deviation, the highest and lowest PT standard deviations for
various methods where calculated from the last 33 samples that
were used in the Belgian PT scheme for serum ethanol, ranging
from 0.14 to 2.99 g/L, using the characteristic function. The
analytical variability for the specific sample concentrations was
derived by interpolation on the characteristic function and is
given in Table 1. It ranges from 0.0041 g/L for the lowest
target concentration to 0.0521 g/L for the highest target
concentration.
Table 1 shows the maximum allowed sample heterogeneity

for relative differences, the maximum allowed heterogeneity for
Z-scores, the final maximum allowed sample heterogeneity
(the smallest of the two), and the analytical variability.
The evaluation of sample heterogeneity, as obtained by

sequential testing, is listed in Table 2. Enough evidence for
homogeneity was reached after five to seven measurements.

For the qualitative testing, the sample could be accepted after
evaluating 25 samples that all conformed. The acceptance and
rejection regions, together with the line representing the 25
conforming results, are shown in Figure 6.

■ DISCUSSION
Because evaluation criteria may vary widely among PT
organizers, deriving limits from sample heterogeneity that are
more apt to the evaluation criteria than the classical criterion of
0.3σp is the first important issue raised in this study. The ISO
13528:2012 standard acknowledged that the classical criterion
does not hold when the standard deviation is calculated on the
basis of the reported results but offers very limited alternatives.
Whatever the limit for the standard deviation among

samples, when a single-point estimator like the standard
deviation among samples is compared with the limit, as the
international standards currently request, there is a probability

Table 1. PT Standard Deviation, Maximum Sample Variability, Analytical Variability, and Maximum Number of Data Points
Needed for the Five Samples Evaluated for Homogeneity for Serum Ethanol

sample
concentration

(g/L)

lowest
σp|hom
(g/L)

highest
σp|hom (g/L)

analytical
variability, σp

(g/L)
relative-difference-linked maximum

sample heterogeneity (g/L)
Z-score-linked maximum
sample heterogeneity

maximum sample
heterogeneity (g/L)

0.15 0.0070 0.0253 0.0041 0.008 14 0.006 21 0.006 21
0.45 0.0133 0.0289 0.0084 0.0155 0.0118 0.0118
0.75 0.0208 0.0367 0.0134 0.0328 0.0184 0.0184
1.5 0.0401 0.0734 0.0262 0.0655 0.035 0.0354
3 0.0762 0.1469 0.0521 0.1309 0.0672 0.0672

Table 2. Consecutive Measurements for Each Samplea

measurement
sample 1
(0.15 g/L)

sample 2
(0.45 g/L)

sample 3
(0.75 g/L)

sample 4
(1.5 g/L)

sample
5

(3 g/L)

1 0.13 0.45 0.73 1.51 2.99
2 0.13 0.46 0.74 1.48 2.99
3 0.13 0.46 0.73 1.47 3.05
4 0.13 0.45 0.73 1.49 2.97
5 0.13 0.45 0.73 1.47 3.05
6 0.47 1.52 3.05
7 0.46 1.49 2.97

aContinued until enough evidence was found that the sample could
be considered sufficiently homogeneous.

Figure 6. Acceptance and rejection zones for testing for monoblast
counting. Because no nonconforming slides were found, the batch was
accepted after the evaluation of 25 slides.
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that a batch will be wrongly accepted or rejected, and this
probability increases when the actual sample heterogeneity
approaches the acceptance limit. This study describes a direct
relation among the objective of a PT round, the criteria for
evaluating the results, and the sample heterogeneity.
Concerning quantitative data, evaluations based on fixed

limits require that the chance that a good result would be
falsely flagged (the probability of falsely flagging) has to be
controlled. For evaluations that are based on limits using the
standard deviation that is calculated using the reported data,
the chance of not flagging a bad result (the probability of
falsely not flagging) has to be controlled. For PT schemes that
evaluate the laboratories by different methods, the sample
heterogeneity requirements are not necessarily the same for the
different evaluation methods, and the strictest requirement
should be chosen. For the case of serum ethanol, the Z-score
based on a standard deviation derived from the reported data
required the lowest sample heterogeneity.
For qualitative data, a sampling plan is presented by building

a protection against rejecting batches with very few non-
conforming units and accepting batches with a lot of
nonconforming units. The sampling plan is based on
quantitated choices of “very few” and “a lot” and the degree
of protection.
Concerning the relation between the allowed sample

heterogeneity and PT standard deviation, this study shows
that the limit of 0.3σp is not always appropriate for effectively
reducing the chance of falsely flagging or not flagging
laboratories. The example in this study has shown that the
limits for variability between samples may even exceed the PT
standard deviation for evaluations based on fixed limits. For
evaluations based on limits based on the variability of reported
results, we found that the standard deviation among samples
may be up to 0.9σp without jeopardizing a correct laboratory
evaluation in PT. Of course, these numbers depend not only
on the tolerance with respect to a correct laboratory evaluation
but also on the evaluation criteria and the expected variability
of the reported results. Moreover, the theory is worked out for
data that are normally distributed. The distribution of the data
should be tested for every assessed parameter. We believe that
one assessment based on reported PT results is sufficient for
assessing the normal distribution.
The proposed methods for evaluating batches of PT samples

for qualitative or quantitative data rely heavily on a random
selection of vials, and it should be emphasized that in case the
order of sample production is known, computer algorithms and
not humans should define which vials are to be taken. In order
to identify possible faults in the production process, a stratified
sample may be considered, in which the complete production
batch is divided into sub-batches of equal size, and a random
selection per sub-batch should be considered. The algorithms
however, do not take into account the order of sample
preparation. In case heterogeneity could be linked to a trend in
the sample preparation, for example when a certain
sedimentation of cells would occur during the sample-
production process, other techniques that are based on
detecting a trend, using linear regression, could be worked
out as well.
Current standards require at least 10 samples to be

measured in duplicate without taking into account the
difference between the actual sample heterogeneity and the
acceptance limit. In fact, the number of measurements to be
performed depends on the difference between the actual

sample heterogeneity and its limit. The higher the difference,
the lower the number of data that are needed. For the case
study of serum ethanol described here, batches could already
be accepted after testing five samples.
It should be borne in mind that all calculations performed

here are made in the context of proving homogeneity for a
sample preparation for which there is no evidence that it gives
homogeneous samples and for which the preparation order is
not known. Sample homogeneity for materials that can easily
be mixed, like liquids, is much easier to accomplish, and hence,
for a preparation method that has been demonstrated as
yielding homogeneous samples, criteria can be less tight,
requiring fewer samples to test for future preparations.
In contrast to the low number of samples for quantitative

results and the small ratio between actual and allowable sample
heterogeneity, the number of required samples for qualitative
testing is higher. Even with moderately high values for PQL
and CQL, more than 20 samples have to be tested before the
sample can be accepted for homogeneity. If several samples are
sent in one round and laboratories are only flagged if they
report wrong results for more than one sample, higher PQL
and CQL values could be used, and as a consequence, a lower
number of samples have to be tested.
The requirements for sample heterogeneity also depend on

the tolerance that a PT organizer has with respect to falsely
evaluating laboratories by flagging good results or not flagging
bad results. This tolerance may be used to rank PT schemes,11

in which higher-ranked PT schemes that use commutable
material, with target values set by reference methods, have
lower tolerances for false flagging or nonflagging. In fact, this
approach allows one to model the sensitivities for both the PT
organizer and the PT participant. A PT organizer wants to
avoid rejecting batches that are wrongly evaluated as too
heterogeneous or having too much nonconforming units,
whereas a PT participant wants to participate in PT schemes
for which wrong laboratory evaluations are minimal and well-
described. It suffices for PT providers to mention in their
general description or in the reports which limits the samples
have been tested against for homogeneity. Of course, all
calculations made here and the results only apply to well-
performing laboratories (i.e., laboratories that produce good
PT results) and for which a flagging is rare and coincidental.
Two major drawbacks of this approach need to be reported.

A first drawback is the a priori unknown number of vials to be
tested. The sequential vial heterogeneity testing continues until
enough evidence is found that the sample heterogeneity is
smaller than the sample heterogeneity limit, after which the
batch is accepted, or larger than the sample heterogeneity limit,
after which the batch is rejected. The closer the actual sample
heterogeneity and the limit are to each other, the more vials
will be needed in order to collect enough evidence to accept or
reject the batch. While applying the proposed methodology in
testing homogeneity for PT samples, we experienced that up to
20 samples were needed to confirm sufficient homogeneity for
quantitative parameters. Theoretically, this number could be
higher and in the most extreme cases; when the actual sample
heterogeneity is equal to the limit, an infinite number of vials
are needed. Several solutions can be envisaged, for example by
defining an actual and an upper limit of acceptability for the
sample heterogeneity. Another solution consists of abandoning
the idea of sequential testing. Although sequential testing has
the advantage of exhibiting the highest efficiency, other

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.8b03313
Anal. Chem. 2019, 91, 1847−1854

1853

http://dx.doi.org/10.1021/acs.analchem.8b03313


approaches may be easier to realize in the laboratory on
automated analyzers, like double and single testing plans.4

The second drawback is the dependency on the knowledge
of the analytical repeatability. When it is overestimated,
heterogeneous samples could be wrongly accepted. Otherwise,
homogeneous batches could be wrongly rejected when it is
underestimated. Although testing analytical variability is an
essential aspect of method validation, it is recommended that a
measure of analytical variability that is based on at least 20
measurements is used and reassessed regularly, for example, by
using the 50 last variability estimates of the controls. Another
solution might consist of considering the variability of multiple
measurements in one vial and the variability that is obtained
just before performing the sample heterogeneity measure-
ments.
Despite the drawbacks, the proposed approach is generally

applicable, both for quantitative and qualitative data.
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Abstract

Introduction: Variability among manufacturers of urine dipsticks, respective to their accuracy and measurement range, may lead to diagnostic 
errors and thus create a serious risk for the patient. Our aims were to determine the level of agreement between 12 most commonly used urine dip-
sticks in Croatia, examine their accuracy for glucose and total protein and to test their repeatability.
Materials and methods: A total of 75 urine samples were used to examine comparability and accuracy of 12 dipstick brands (Combur 10 Tes-
tM, ChoiceLine 10, Combur 10 TestUX, ComboStik 10M, ComboStik 11M, CombiScreen 11SYS, CombiScreen 10SL, Combina 13, Combina 11S, Com-
bina 10M, UriGnost 11, Multistix 10SG). Agreement between each dipstick and the reference (Combur 10 TestM) was expressed as kappa coeffici-
ent (acceptable κ ≥ 0.80). Accuracy for glucose and total protein was tested by comparison with quantitative measurements on analysers: AU400 
(Beckman Coulter, USA), Cobas 6000 c501 (Roche Diagnostics, Germany) and Architect plus c4000 (Abbott, USA). Repeatability was assessed on 20 
replicates (acceptable > 90%). 
Results: Best agreement was achieved for glucose, total protein and nitrite (11/11, k > 0.80) and the lowest for bilirubin (5/5, k < 0.60). Sensitivi-
ties for total protein were 41-75% (AU400) and 56-92% (Cobas and Architect); while specificities were 41-75% (AU400, Cobas, Architect). Dipsticks’ 
sensitivity and specificity for glucose were 68-98%. Most of the dipsticks showed unacceptable repeatability (6/12, < 90%) for one parameter, most 
prominently for pH (3/12, < 90%).
Conclusions: Most commonly used dipsticks in Croatia showed low level of agreement between each other. Moreover, their repeatability vary 
among manufacturers and their accuracy for glucose and proteins is poor. 
Keywords: verification; urine dipsticks; comparability; accuracy; repeatability
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Introduction

Urine dipstick analysis is one of the most common-
ly performed tests in clinical laboratories. It is a 
simple and rapid test suitable for emergency as 
well as for primary care settings where urine dip-
stick analysis is often used to diagnose urinary 
tract infections, proteinuria, haematuria, and some 
other conditions (1,2). 

Unfortunately, urine dipstick testing suffers from a 
substantial variability among manufacturers re-
spective to their sensitivity, specificity and meas-
urement range (3). It has been demonstrated that 
some urine dipsticks have poor ability to accurate-
ly detect proteinuria due to their low sensitivity 
(4). Various dipsticks may differ in their diagnostic 
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performance regarding leukocyte and erythrocyte 
detection (5). There is also evidence that urine dip-
stick pH analysis shows insufficient accuracy (6). 

Such difference between manufacturers increases 
the possibility for diagnostic errors, leading to in-
appropriate decisions thus creating a serious risk 
for the patient. Obviously, it is highly desirable that 
results of urine dipstick testing are comparable be-
tween different test strip manufacturers. 

There are 195 medical laboratories in Croatia, out 
of which majority (N = 174) perform urine dipstick 
testing. Based on the data of our national External 
Quality Assessment (EQA) provider (Croatian Cen-
tre for Quality Assessment in Laboratory Medicine, 
CROQALM), there are 14 urine dipstick manufac-
turers on the market, who all together offer 24 dif-
ferent types of urine dipsticks (EQA – CROQALM 
laboratory reports, unpublished data). Our hy-
pothesis was that dipsticks used for qualitative uri-
nalysis in Croatia are heterogeneous and poorly 
standardized. Although many authors have stud-
ied the comparability of several dipsticks, such a 
comprehensive analysis of 12 different dipstick 
manufacturers so far has not been done. Our aim 
was therefore: a) to determine the level of agree-
ment between 12 most commonly used dipsticks 
in Croatia using urine samples, and b) to examine 
their analytical performance by determining their 
repeatability and analytical accuracy for glucose 
and total protein (by comparison with quantitative 
measurement on chemistry analyser). 

Materials and methods

Samples

This analytical validation study was done in the 
University Hospital “Sveti Duh” (Zagreb, Croatia) 
between March and May 2017. We have collected 
75 urine samples from in- and out- patients to vali-
date comparability and accuracy of 12 dipstick 
brands used in Croatia. Samples were collected 
randomly (at any time) in polystyrene tubes (10 
mL, 16x95, Deltalab, Barcelona, Spain) and ana-
lysed within 2 hours of sample receipt. Additional-
ly, 12 urine samples were used to validate repeata-

bility for each dipstick brand. The list of 12 dip-
sticks used in this study is provided in Table 1. 

Urine samples were carefully chosen according to 
the results (negative, 1+, 2+ and 3+) obtained on 
automated urinalysis chemistry analyser (iChem 
Velocity, Beckman Coulter, Brea, USA) to ensure a 
wide range of concentrations of each dipstick pa-
rameter. Only urine samples with adequate vol-
ume (at least 5 mL) have been selected and further 
divided into three aliquots (1 mL each) and the 
rest of the sample was used for urine test strips 
dipping. Aliquotes were measured on three auto-
mated analysers to assess dipsticks accuracy for 
glucose and total protein. Patient data privacy was 
ensured throughout the study. Study was done 
with the approval of the hospital Ethical Commit-
tee.

Dipsticks comparability and repeatability

Comparability and repeatability of the dipsticks 
were performed according to the Clinical and Lab-
oratory Standards Institute (CLSI) guideline EP12-
A2 (7). The comparability of urine dipsticks was ex-

Number Dipstick Manufacturer (City, State)

1 Combur 10 Test M Roche (Mannheim, Germany)

2 ChoiceLine 10 Roche (Mannheim, Germany)

3 Combur 10 Test UX Roche (Mannheim, Germany)

4 ComboStik 10M DFI Co., Ltd. (Gimhae, South 
Korea)

5 ComboStik 11M DFI Co., Ltd. (Gimhae, South 
Korea)

6 CombiScreen 
11SYS

Analyticon (Lichtenfels, 
Germany)

7 CombiScreen 
10SL

Analyticon (Lichtenfels, 
Germany)

8 Combina 13 Human (Wiesbaden, Germany)

9 Combina 11S Human (Wiesbaden, Germany) 

10 Combina 10M Human (Wiesbaden, Germany)

11 UriGnost 11 BioGnost Ltd. (Zagreb, Croatia)

12 Multistix 10SG Siemens (Erlangen, Germany)

Table 1. Most common urine dipstick brands and manufactur-
ers in Croatia, used in this study
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amined on 75 urine samples for parameters: glu-
cose, total protein, erythrocytes, lekocytes, ke-
tones, bilirubin, urobilinogen, nitrite and specific 
gravity (SG). Test strips were examinated visually 
by three observers at the same time, using the 
color scale provided by the manufacturer. In case 
when there was a disagreement between observ-
ers, a reassessment was done and final color was 
agreed by a consensus opinion of all three observ-
ers.

Dipsticks repeatability was tested on 20 repeated 
measurements of each dipstick brand. Replicates 
were done using the same urine sample in one 
laboratory (under the same ambient conditions, 
e.g. the same room temperature and light expo-
sure). Three observers also visually examined these 
dipsticks.

Analytical accuracy: comparison of dipstick 
and quantitative measurement 

Analytical accuracy assessment was performed ac-
cording to CLSI EP09-A3 guideline (8). Accuracy of 
urine dipsticks for glucose and total protein was 
investigated on 75 urine samples. Glucose and to-
tal protein were quantitatively measured using 
three different analysers on three locations in Za-
greb: AU400 (Beckman Coulter, Brea, USA) in Uni-
versity Hospital “Sveti Duh”, Architect plus c4000 
(Abbott, Abbott Park, USA) in Children’s Hospital 
Zagreb, and Cobas 6000 c501 (Roche Diagnostics 
GmbH, Mannheim, Germany) in University Hospi-
tal Centre Zagreb. Urine aliquots (1 mL) were 
wrapped in aluminum, transported to other two 
laboratories on the same day and analysed within 
4 hours. Urine proteins were measured with origi-
nal reagents, by photometric dye-binding pyro-
gallol red molybdate assay on AU400 analyser, and 
turbidimetric method with benzethonium chlo-
ride on Cobas 600 c501 and Architect plus c4000. 
Glucose was measured by hexokinase method on 
all three analysers, with original reagents. Systems 
were monitored daily using commercial internal 
quality control (IQC) materials: AU400 (Liquichek 
urine chemistry control, Bio-Rad Laboratories Inc., 
Hercules, USA, LOT: 66781 and 66782), Architect 

plus c4000 (Multichem U, Technopath, New York, 
USA, LOT: 23110161 and 23109162) and for Cobas 
600 c501 (Liquichek urine chemistry control, Bio-
Rad Laboratories Inc., Hercules, USA, LOT: 66771 
and 66752). Analysers were calibrated in case IQC 
results were out of range. 

Since there is no recommendation for a reference 
method for urinary total protein measurement, 
and given the large differences between these 
two methods, dipstick results for proteins were 
compared with quantitative measurements by 
two methods (pyrogallol red molybdate and ben-
zethonium chloride) separately (9). Furthermore, 
dipstick results for glucose were compared to 
mean value of all three chemistry analysers. 

Day-to-day precision of glucose and total 
protein in urine samples 

For each analyser included in this study, day-to-
day precision was evaluated on measurements of 
two level control materials (Liquichek urine chem-
istry control, Bio-Rad Laboratories Inc. and Multi-
chem U, Technopath) in 20 days. Day to day preci-
sion performance criteria (coefficient of variation: 
CV, %) were set in accordance with Reference Insti-
tute for Bioanalytics (RfB): for proteins 19.73% and 
10.13% (at concentrations 0.15 and 0.97 g/L) and 
for glucose 10.94% and 7.81% (at concentrations 
1.2 and 11 mmol/L). 

Statistical analysis

Level of agreement between each dipstick and the 
reference dipstick was tested by weighted kappa 
test and expressed as Cohen kappa value (κ). The 
most commonly used brand in Croatia in 2017 
(based on the data from our national EQA provid-
er), served as a reference. Kappa value was consid-
ered acceptable if ≥ 0.80 (10). Although the num-
ber of fields for each parameter differed between 
the dipstick brands, for the purpose of the assess-
ment of the agreement, the observers have 
merged some categories (where the number of 
observations was low) and results were classified 
into 4 categories (neg/norm (N), 1+, 2+, 3+). For 
each category at least 10 samples were used. 
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We have excluded from comparability analysis 
those dipstick brands which did not have concen-
trations assigned to categories: ChoiceLine 10 
(Roche), Combur 10 Test UX (Roche), ComboStik 
10M (DFI Co., Ltd.), ComboStik 11M (DFI Co., Ltd.), 
Combina 10M (Human) and Multistix 10SG (Sie-
mens) for bilirubin and UriGnost 11 (BioGnost Ltd.) 
for erythrocytes.

Analytical accuracy of urine dipsticks for glucose 
and total protein was assessed by comparing the 
readings from the dipsticks with the true value of 
the parameter measured by the quantitative test 
results from chemistry analysers. Glucose and total 
protein concentrations were distributed into cate-
gories: for total protein: N = 0 - 0.29 g/L, 1 = 0.30 - 
0.99 g/L, 2 = 1.00 - 2.99 g/L, 3 = more than 3.00 
g/L); and for glucose: N = 0 - 2.79 mmol/L, 1 = 2.80 
- 8.29 mmol/L, 2 = 8.30 - 27.99 mmol/L, 3 = more 
than 28 mmol/L. Categories obtained by dipstick 
and quantitative testing were compared and num-
ber of true positive and negative, and false posi-
tive and negative findings were established. Ac-
cording to these results, analytical sensitivity and 
specificity were calculated for each dipstick brand. 
Dipsticks with sensitivity and specificity ≥ 90% 
were considered excellent, those with ≥ 80% were 

satisfactory and the other dipsticks (< 80%) were 
considered as being of less than acceptable quali-
ty. Acceptance criteria for repeatability was 90% 
(18/20 results) of repeated measurements. 

Data were analysed using MedCalc 12.6.2.0 (Os-
tend, Belgium) statistical software.

Results

Dipsticks comparability

Combur 10 Test M (Roche) was chosen as a refer-
ence because it was the most commonly used dip-
stick brand in Croatia in 2017 according to the na-
tional EQA provider (44/174, 25%). Levels of agree-
ment between dipsticks and the reference for 
each parameter, expressed as κ, are shown in Ta-
ble 2. Combur 10 Test UX (Roche) showed the best 
agreement with the reference dipstick (κ > 0.80) 
for all parameters. The lowest level of agreement 
was shown for Combina 13 (Human) and the refer-
ence, particularly for bilirubin, urobilinogen, pH 
and SG (κ < 0.46). 

The best overall comparability (κ > 0.80) was 
achieved for glucose and nitrite (11/11 brands) and 
total protein (10/11 brands). Moderate agreement 

κappa value

Dipstick Glc Prot Erc Leu Ket Bil Ubg Nit pH SG

ChoiceLine 10 0.90 0.89 0.76 0.82 0.73 / 0.89 0.97 0.71 0.81

Combur 10 Test UX 0.99 0.93 0.94 0.85 0.92 / 0.90 0.97 0.95 0.90

ComboStik 10M 0.89 0.87 0.75 0.71 0.71 / 0.51 0.97 0.40 0.31

ComboStik 11M 0.86 0.87 0.72 0.78 0.69 / 0.46 0.97 0.43 0.32

CombiScreen 11SYS 0.90 0.87 0.79 0.71 0.71 0.54 0.78 1.00 0.87 0.64

CombiScreen 10SL 0.89 0.87 0.76 0.70 0.80 0.51 0.74 1.00 0.87 0.62

Combina 13 0.84 0.79 0.60 0.71 0.84 0.16 0.36 0.97 0.46 0.42

Combina 11S 0.88 0.81 0.76 0.68 0.71 0.44 0.81 0.97 0.79 0.60

Combina 10M 0.91 0.87 0.78 0.72 0.80 / 0.19 1.00 0.53 0.41

UriGnost 11 0.83 0.87 / 0.78 0.85 0.33 0.85 0.97 0.88 0.49

Multistix 10SG 0.80 0.87 0.71 0.71 0.78 / 0.89 0.97 0.56 0.54

Darker grey fields represent the highest κ-values (κ ≥ 0.80); lighter grey fields show lower κ-values (κ < 0.80); white fields represent 
excluded parameters (/). Glc – glucose. Prot – total protein. Erc – erythrocytes. Leu – lekocytes. Ket – ketones. Bil – bilirubin. Ubg – 
urobilinogen. Nit – nitrite. pH - acidity or basicity. SG – specific gravity.

Table 2. Agreement between 11 most common dipstick brands in Croatia with the reference Combur 10 Test M (Roche)



https://doi.org/10.11613/BM.2019.010708	 Biochem Med (Zagreb) 2019;29(1):010708 

		  5

Vuljanić D. et al.	 Analytical verification of 12 urine dipsticks  

(κ = 0.60 - 0.79) was observed for erythrocytes 
(9/10 brands) and leukocytes (9/11 brands). Overall, 
lowest kappa values were achieved for bilirubin. 
There was a weak level of agreement (κ = 0.44 - 
0.54) for bilirubin in 3/5 brands and for the other 
two brands the agreement was minimal to none (κ 
= 0.33 - 0.16). 

Dipsticks repeatability

Repeatability was assessed on 20 replicates of 
each dipstick brand (Table 3). Repeatability for at 
least one parameter was < 90% for 6/12 dipstick 
brands. The most problematic parameter was pH, 
where as many as three dipstick brands had < 90% 
repeatability: ChoiceLine 10 (Roche), CombiScreen 
10SL (Analyticon) and Combina 13 (Human).

Day-to-day precision of glucose and total 
protein in urine samples 

Day-to-day precision (CV, %) for total protein 
measurement ranged 1.90 – 3.90% in the lower 
range (concentrations 0.18 – 0.27 g/L) and 1.10–
2.88% in the higher range concentrations (0.62 – 
1.26 g/L) on all three analysers. For urinary glucose 
measurement, CVs were 1.60 – 3.29% at lower con-

centrations (1.43 – 1.89 mmol/L) and 1.21 – 1.71% 
at higher concentrations (16.28 – 20.40 mmol/L) of 
control materials on all three analysers. 

Analytical accuracy: comparison of dipstick 
and quantitative measurement 

Glucose
Analytical sensitivity and specificity of each dip-
stick for urinary glucose measurement is presented 
in Table 4. While sensitivity for glucose was > 90% 
for 5/12 dipstick brands, their specificity was mod-
est (71 - 83%). Only three dipstick brands, Combina 
13 (Human), Urignost 11 (BioGnost Ltd.) and Multi-
stix 10SG (Siemens), were able to detect glucose 
with high specificity (> 90%), but with much lower 
sensitivity and higher false negative rate.

Proteins
Analytical accuracy for urinary proteins is present-
ed for each method (pyrogallol red and benzetho-
nium chloride) separately (Table 5). Regarding py-
rogallol red molybdate assay (AU 400, Beckman 
Coulter), none out of twelve dipsticks detected 
proteins with analytical sensitivity or specificity > 
80%. Sensitivity was the highest (75%) for Combi-

Number of acceptable replicates / total number of replicates

Dipstick SG pH Leu Nit Prot Glc Ket Bil Ubg Erc

Combur 10 Test M 20/20 19/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20

ChoiceLine 10 19/20 17/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20

Combur 10 Test UX 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20

ComboStik 10M 20/20 20/20 19/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20

ComboStik 11M 20/20 20/20 19/20 20/20 20/20 18/20 18/20 20/20 20/20 20/20

CombiScreen 11SYS 16/20 20/20 20/20 20/20 19/20 18/20 15/20 20/20 20/20 20/20

CombiScreen 10SL 20/20 16/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20

Combina 13 19/20 11/20 20/20 20/20 19/20 20/20 20/20 19/20 20/20 18/20

Combina 11S 18/20 20/20 20/20 20/20 19/20 20/20 20/20 20/20 20/20 20/20

Combina 10M 20/20 20/20 18/20 20/20 19/20 20/20 20/20 20/20 20/20 20/20

UriGnost 11 19/20 20/20 17/20 20/20 20/20 20/20 20/20 18/20 20/20 20/20

Multistix 10SG 20/20 18/20 20/20 20/20 20/20 20/20 20/20 13/20 20/20 20/20

Grey fields represent parameters that did not meet the acceptance criteria. SG – specific gravity. pH – acidity or basicity. Leu – 
lekocytes. Nit – nitrite. Prot – proteins. Glc – glucose. Ket – ketones. Bil – bilirubin. Ubg – urobilinogen. Erc – erythrocytes.

Table 3. Repeatability of 12 most common dipstick brands in Croatia (assessed on 20 replicates for all parameters). 
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Dipstick Manufacturer Sensitivity Specificity

Combur 10 Test M Roche 97.0% 81.0%

ChoiceLine 10 Roche 96.3% 75.0%

Combur 10 Test UX Roche 97.0% 83.3%

ComboStik 10M DFI Co., Ltd. 80.0% 80.0%

ComboStik 11M DFI Co., Ltd. 73.3% 80.0%

CombiScreen 11SYS Analyticon 89.3% 76.6%

CombiScreen 10SL Analyticon 85.7% 76.6%

Combina 13 Human 69.7% 92.9%

Combina 11S Human 95.8% 70.6%

Combina 10M Human 93.1% 80.4%

UriGnost 11 BioGnost Ltd. 72.7% 97.6%

Multistix 10SG Siemens 67.7% 93.2%

Grey fields represent acceptable sensitivity or specificity (light grey fields ≥ 80%, darker grey > 90%).

Table 4. The analytical sensitivities and specificities for glucose for 12 most common dipsticks in Croatia with hexokinase method as 
a reference

Pyrogallol red molybdate assay Turbidimetric method with 
benzethonium chloride

Dipstick Manufacturer Sensitivity Specificity Sensitivity Specificity

Combur 10 Test M Roche 69.8% 75.0% 87.2% 72.2%

ChoiceLine 10 Roche 69.2% 69.4% 81.8% 64.3%

Combur 10 Test UX Roche 66.7% 66.7% 85.7% 65.0%

ComboStik 10M DFI Co., Ltd. 60.0% 71.4% 77.8% 69.2%

ComboStik 11M DFI Co., Ltd. 60.0% 71.4% 77.8% 69.2%

CombiScreen 11SYS Analyticon 61.5% 69.4% 75.8% 66.7%

CombiScreen 10SL Analyticon 60.0% 71.4% 73.5% 68.3%

Combina 13 Human 41.0% 72.2% 55.9% 70.7%

Combina 11S Human 75.0% 45.7% 85.3% 41.5%

Combina 10M Human 70.0% 62.9% 91.7% 66.7%

UriGnost 11 BioGnost Ltd. 70.7% 70.6% 86.1% 66.7%

Multistix 10SG Siemens 67.5% 74.3% 80.0% 67.5%

Light grey fields represent the highest (≥ 80%) and dark grey fields the lowest (< 60%) sensitivities and specificities.

Table 5. The analytical sensitivities and specificities for urinary total protein for 12 most common dipsticks in Croatia with pyrogallol 
red molybdate assay and turbidimetric method with benzethonium chloride as a references

na 11S (Human), but this dipstick brand had lowest 
specificity (only 45%). Specificity was the highest 
(75%) for Combur 10 Test M (Roche), but its sensi-
tivity was average (70%). Combina 13 (Human) had 

the lowest sensitivity for proteins (41%) and the 
highest false negative rate. Ability of other dip-
sticks to detect proteins specifically, varied be-
tween 63 - 74%. 
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As of the analytical accuracy respective to the tur-
bidimetric method with benzethonium chloride, 
Combina 10M (Human) had the highest analytical 
sensitivity (92%) and several other dipsticks have 
achieved sensitivity > 80%. However, analytical 
specificities for these dipsticks varied between 41 
– 72%. Combina 11S (Human) had the lowest spec-
ificity for proteins (42%) and the highest false posi-
tive rate (24/75). The lowest sensitivity (56%) was 
observed for Combina 13 (Human), with the high-
est false negative rate (15/75) and only average 
specificity (71%).  

Discussion

In this study, we performed comprehensive ana-
lytical verification of 12 most commonly used dip-
sticks in Croatia. Our results showed that these 
dipsticks are not sufficiently comparable and that 
they vary in analytical performance. Agreement 
between the dipsticks was acceptable for nitrites, 
proteins and glucose but there was remarkable di-
versity for other parameters like bilirubin, uro-
bilinogen, pH and specific gravity. The most im-
portant clinically relevant finding was that most of 
the dipsticks did not accurately detected glucose 
and proteins. 

As previously described in the literature, quantita-
tive methods for urinary proteins are not mutually 
comparable and none of the available methods is 
considered as a “gold standard” method (9). In our 
study, the agreement of dipsticks was better with 
turbidimetric method for total urinary protein. Re-
spective to pyrogallol red molybdate assay, none 
of the dipsticks showed acceptable accuracy for 
total urinary protein. On the other hand, respec-
tive to turbidimetric method with benzethonium 
chloride, seven out of twelve dipsticks showed sat-
isfactory sensitivity but were lacking the adequate 
specificity for urinary proteins. Consistent with 
these observations, reference intervals for total 
urinary protein excretion recommended by the 
European Urinalysis Group are higher for pyro-
gallol red molybdate assay (< 180 mg/day) than 
turbidimetric methods (< 75 mg/day) (11). 

In general, our results demonstrate that dipsticks 
have unacceptably high false negative rates and 
even higher false positive rates for total protein. 
Our findings are in line with several previous stud-
ies, who have also confirmed the suboptimal accu-
racy of qualitative urine dipstick analysis for total 
urinary protein (4,12). Our findings also point to 
low accuracy of urine dipstick analysis for glucose. 
Only four dipstick brands have achieved both sen-
sitivity and specificity higher than 80%. This is in 
line with some earlier observations (13). Consider-
ing this limitation, International Diabetes Federa-
tion suggests the use of glucose dipstick testing 
only in low resource settings, where other glucose 
tests are not affordable (14). Obviously, substantial 
improvement of the accuracy of dipsticks for pro-
tein and glucose is highly warranted.  

Whereas the level of agreement between the dip-
sticks in our study was acceptable for nitrites, it 
was less than acceptable for erythrocytes and leu-
kocytes. Given the widespread heterogeneity of 
available brands of dipstick manufacturers in Croa-
tia, and probably even worldwide, such lack of 
agreement between various manufacturers cre-
ates the opportunity for patient misclassification 
in these conditions where parameters such as ni-
trites, erythrocytes and leukocytes are of diagnos-
tic relevance (e.g. urinary tract infections). Moreo-
ver, at least for some manufacturers, low repro-
ducibility for leukocytes might be an additional is-
sue. Urine dipstick testing (especially the combina-
tion of leukocytes, blood and nitrites) has been 
proposed as a first step to diagnose urinary tract 
infection (UTI) (15,16). National Institute for Health 
and Care Excellence (NICE) guidelines recommend 
using dipsticks as a screening tool, based on the 
assumption that UTI can be safely ruled out with 
both negative leukocyte esterase and nitrite in 
asymptomatic patients (17). Obviously, while this 
may be the case for some dipsticks, other may not 
be as accurate. Therefore, unless some improve-
ment in this respect is made, it is to be expected 
that at least for the users of some dipstick manu-
facturers, the ability to detect UTI will remain less 
that acceptable. This is even more worrying, given 
the fact that positive leukocytes in extravascular 
fluids such as ascites and synovial fluid have re-
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cently been proposed as useful indication for 
some conditions like spontaneous bacterial peri-
tonitis and periprosthetic joint infection, respec-
tively (18-22). 

Low level of agreement of urine dipstick parame-
ters is an issue in some other health conditions 
where erythrocytes alone are used in diagnostic 
process. For example, dipstick blood assessment is 
often used for bladder cancer regular check-up. 
NICE guidelines state that asymptomatic micro-
haematuria may be an early sign of a bladder can-
cer in people aged 60 and older, but do not define 
whether dipsticks or microscopy should be used 
for asymptomatic microhaematuria assessment 
(23). Moreover, American Urological Association 
recommends that positive blood on the dipstick 
and negative on sediment count, should be fol-
lowed by three additional sediment microscopic 
evaluations. If at least one of those tests is positive, 
further actions and treatment decisions should be 
taken (24). Apparently, the above-mentioned 
guidelines and recommendations do not take into 
account the low accuracy of dipstick testing for 
erythrocytes (haematuria) and low level of agree-
ment between various manufacturers, and thus 
may lead to either over- or under-estimation of the 
occurrence of haematuria, which may significantly 
jeopardize patient safety. Due to unacceptable 
high false negative rate, negative dipstick test can-
not rule out disease of symptomatic patients. False 
positive haematuria dipstick result can also lead to 
increased number of microscopic sediment exami-
nations, further urological examinations and un-
necessary testing like imaging or cystoscopy (25). 
Hence, high false positive rate of erythrocytes may 
also substantially increase laboratory workload 
and affect healthcare costs. Given the reasons dis-
cussed above, it is essential that dipstick manufac-
turers improve analytical performance for dipstick 
ability to accurately detect erythrocytes in urine. 
Otherwise, it is reasonable to consider diagnostic 
value of blood on the dipstick quite limited or 
even questionable. 

In our study on 12 most common dipsticks in Croa-
tia there was a wide heterogeneity in kappa values 
for bilirubin, urobilinogen, pH and specific gravity, 
pointing to the low comparability of the results 

obtained by different brands of dipsticks. Also, 
some dipsticks in our study were of unacceptable 
repeatability for pH. Some previous literature re-
ports have also demonstrated unacceptable preci-
sion and accuracy of the dipsticks comparing 
them with gold standard, pH – meter (26). It has 
also been reported that dipsticks vary in accuracy 
due to proportions and combinations of the rea-
gents (like methyl red and bromthymol blue) in pH 
fields provided by different manufacturers (27). 
Previous studies described usefulness of specific 
gravity as additional parameter which increases 
the accuracy for proteinuria assuming that con-
centrated urine is more likely to have positive pro-
tein field on the dipstick (28). Hillege opposed this 
statement claiming that this algorithm has nonsig-
nificant yield in diagnostic accuracy (29). Further-
more, there is inconsistency in some earlier studies 
which described the use of specific gravity in eval-
uating the degree of dehydration and optimal 
urine output in patients with nephrolithiasis (30). 
Although bilirubin and urobilinogen in urine indi-
cate several liver conditions like hepatocellular dis-
ease, biliary obstruction and cholestatic jaundice, 
it should be noted that liver diseases are diag-
nosed after clinical examination, some obvious 
symptoms like yellow skin and eye discoloration, 
imaging studies and liver tests in blood. Therefore, 
bilirubin and urobilinogen dipstick tests have no 
real diagnostic value (11). Given the low analytical 
quality and limited clinical utility of these parame-
ters, it would be reasonable to question the need 
for these parameters in the first place. 

Our study has some potential limitations. We have 
assessed the level of agreement of 12 most com-
mon dipstick brands by comparing them to the 
one which was the most common in Croatia. It 
could be that the agreement would be different if 
some other manufacturer was chosen as a refer-
ence. Also, we have analyzed dipstick repeatability 
by testing different urine sample for every dipstick 
brand, since it was logistically challenging to en-
sure an adequate amount of urine to do all testing 
in the same urine. We acknowledge this as a limi-
tation and potential source of bias, due to matrix 
effects. Furthermore, only pathological samples 
were chosen for this part of the study thus possi-
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ble endogenous and exogenous interferences 
could have also affected our results. Finally, we 
have assessed the accuracy only for glucose and 
proteins. We acknowledge that it would be benefi-
cial to also evaluate the accuracy for some other 
parameters, such as leukocytes, erythrocytes and 
nitrites, by comparison with urine sediment mi-
croscopy and microbiological testing. Neverthe-
less, due to some local challenges and operational 
difficulties we were not able to perform such anal-
ysis in this study. 

In summary, 12 most commonly used dipsticks in 
Croatia showed low level of agreement among 
each other. Dipsticks accuracy and precision 
showed considerable variability between different 
manufacturers. Most dipsticks do not accurately 

detect glucose and proteins. Given the wide-
spread heterogeneity of available brands of dip-
stick manufacturers in Croatia, but also possibly 
even worldwide, these issues create the opportu-
nity for patient misclassification, jeopardize pa-
tient safety and increase healthcare costs. Obvi-
ously, some improvement in that respect (i.e. 
standardization among manufacturers and im-
provement of the quality of dipsticks) is highly 
necessary to minimize patient risk. We believe 
that, although our study addresses the situation in 
Croatia, it is also relevant to other countries in Eu-
rope and beyond.

Potential conflict of interest

None declared.

References
  1.	 Stein R, Dogan HS, Hoebeke P, Kočvara R, Nijman RJ, Rad-

mayr C, et al. European Association of Urology; Europe-
an Society for Pediatric Urology. Urinary tract infections in 
children: EAU/ESPU guidelines. Eur Urol. 2015;67:546-58. 
https://doi.org/10.1016/j.eururo.2014.11.007

  2.	 Matulewicz RS, DeLancey JO, Pavey E, Schaeffer EM, Popes-
cu O, Meeks JJ. Dipstick Urinalysis as a Test for Microhaema-
turiaand Occult Bladder Cancer. Bladder Cancer. 2017;3:45-
9. https://doi.org/10.3233/BLC-160068

  3.	 Correa ME, Côté AM, De Silva DA, Wang L, Packianathan 
P, von Dadelszen P, et al. Visual or automated dipstick te-
sting for proteinuria in pregnancy? Pregnancy Hypertens. 
2017;7:50-3. https://doi.org/10.1016/j.preghy.2017.01.005

  4.	 Kumar A, Kapoor S, Gupta RC. Comparison of urinary 
protein: Creatinine index and dipsticks for detection of 
microproteinuria in diabetes mellitus patients. J Clin Di-
agnostic Res. 2013;7:622–6. https://doi.org/10.7860/
JCDR/2013/4745.2867

  5.	 Ko K, Kwon MJ, Ryu S, Woo HY, Park H. Performance Eva-
luation of Three URiSCAN Devices for Routine Urinalysis. 
J Clin Lab Anal. 2016;30:424-30. https://doi.org/10.1002/
jcla.21874

  6.	 Abbott JE, Miller DL, Shi W, Wenzler D, Elkhoury FF, Patel ND, 
et al. Optimization of urinary dipstick pH: Are multiple dip-
stick pH readings reliably comparable to commercial 24-
hour urinary pH? Investig Clin Urol. 2017;58:378-82. https://
doi.org/10.4111/icu.2017.58.5.378

  7.	 Clinical and laboratory standards institute (CLSI). User Pro-
tocol for Evaluation of Qualitative Test Performance; Appro-
ved Guideline - Second Edition. CLSI Document EP12-A2. 
Wayne, PA:CLSI,2008.

  8.	 Clinical and laboratory standards institute (CLSI). Measure-
ment Procedure Comparison and Bias Estimation Using 
Patient Samples - Third Edition. CLSI Document EP09-A3. 
Wayne, PA:CLSI,2013.

  9.	 Yalamati P, Karra ML, Bhongir AV. Comparison of Urinary 
Total Proteins by Four Different methods. Ind J Clin Bio-
chem. 2016;31:463-7. https://doi.org/10.1007/s12291-016-
0551-3

10.	 McHugh ML. Interrater reliability: the kappa statistic, Bi-
ochem Med (Zagreb). 2012;22:276–82. https://doi.
org/10.11613/BM.2012.031

11.	 Kouri TT, Gant VA, Fogazzi GB, Hofmann W, Hallander HO, 
Guder WG. Towards European urinalysis guidelines. Clin 
Chim Acta. 2000;297:305–11. https://doi.org/10.1016/
S0009-8981(00)00256-4 

12.	 White SL, Yu R, Craig JC, Polkinghorne KR, Atkins RC, Chad-
ban SJ. Diagnostic accuracy of urine dipsticks for detection 
of albuminuria in the general community. Am J Kidney Dis. 
2011;58:19-28. https://doi.org/10.1053/j.ajkd.2010.12.026

13.	 Storey HL, van Pelt MH, Bun S, Daily F, Neogi T, Thompson M, 
et al. Diagnostic accuracy of self-administered urine gluco-
se test strips as a diabetes screening tool in a low-resource 
setting in Cambodia. BMJ Open. 2018;8:e019924. https://
doi.org/10.1136/bmjopen-2017-019924 

14.	 International Diabetes Federation. Clinical Guidelines Task 
Force Global Guideline for Type 2 Diabetes. Available at: 
https://www.idf.org/e-library/guidelines/79-global-guideli-
ne-for-type-2-diabetes. Accessed April 5th 2018.

15.	 Grabe M, Johansen BTE, Botto H, Çek M, Naber KG, Pickard 
RS, et al. Guidelines on Urological Infections. Available at: 
https://uroweb.org/wp-content/uploads/19-Urological-in-
fections_LR2.pdf. Accessed April 5th 2018.



Biochem Med (Zagreb) 2019;29(1):010708		  https://doi.org/10.11613/BM.2019.010708 

10

Vuljanić D. et al.	 Analytical verification of 12 urine dipsticks  

16.	 Fernandes DJ, Jaidev MD, Castelino DN. Utility of dip-
stick test (nitrite and leukocyte esterase) and microscopic 
analysis of urine when compared to culture in the diagno-
sis of urinary tract infection in children. Int J Contemp Pe-
diatr. 2018;5:156-60. https://doi.org/10.18203/2349-3291.
ijcp20175578

17.	 National Institute for Health and Care Excellence (NICE). Uri-
nary tract infection in under 16s Diagnosis and manage-
ment; Clinical guideline. Available at: https://www.nice.org.
uk/guidance/cg54. Accessed April 6th 2018.

18.	 Rathore V, Joshi H, Kimmatkar DP, Malhotra V, Agarwal 
D, Beniwal P, et al. Leukocyte Esterase Reagent Strip as 
a Bedside Tool to Detect Peritonitis in Patients Undergo-
ing Acute Peritoneal Dialysis. Saudi J Kidney Dis Transpl. 
2017;28:1264-9. https://doi.org/10.4103/1319-2442.220875

19.	 Chugh K, Agrawal Y, Goyal V, Khatri V, Kumar P. Diagnosing 
bacterial peritonitis made easy by use of leukocyte este-
rase dipsticks. Int J Crit Illn Inj Sci. 2015;5:32-7. https://doi.
org/10.4103/2229-5151.152337

20.	 Oey RC,Kuiper JJ, van Buuren HR, de Man RA. Reagent strips 
are efficient to rule out spontaneous bacterial peritonitis in 
cirrhotics. Neth J Med. 2016;74:257-61.

21.	 Wang C, Li R, Wang Q, Duan J, Wang C. Leukocyte Estera-
se as a Biomarker in the Diagnosis of Periprosthetic Jo-
int Infection. Med Sci Monit. 2017;23:353-8. https://doi.
org/10.12659/MSM.899368

22.	 Tischler HE, Cavanaugh KP, Parvizi J. Leukocyte Esterase 
Strip Test: Matched for Musculoskeletal Infection Society 
Criteria. J Bone Joint Surg Am. 2014;96:1917-20. https://doi.
org/10.2106/JBJS.M.01591

23.	 National Institute for Health and Care Excellence (NICE). 
Suspected cancer: recognition and referral; NICE guideli-
nes. Available at: https://www.nice.org.uk/guidance/ng12. 
Accessed April 6th 2018.

24.	 Davis R, Jones JS, Barocas DA, Castle EP, Lang EK, Leveillee 
RJ, et al. Diagnosis, evaluation and follow-up of asymp-
tomatic microhaematuria(AMH) in adults: AUA guideli-
ne. J Urol. 2012;188:2473-81. https://doi.org/10.1016/j.
juro.2012.09.078

25.	 Linder BJ, Bass EJ, Mostafid H, Boorjian SA. Guideline of gu-
idelines: asymptomatic microscopic haematuria. BJU In-
ternational. 2018;121:176–83. https://doi.org/10.1111/
bju.14016

26.	 Ilyas R, Chow K, Young JG. What Is the Best Method to Evalu-
ate Urine pH? A Trial of Three Urinary pH Measurement Met-
hods in a Stone Clinic. J Endourol. 2015;29:70-4. https://doi.
org/10.1089/end.2014.0317

27.	 Desai RA, Assimos DG. Accuracy of Urinary Dipstick Testing 
for pH Manipulation Therapy. J Endourol. 2008;22:1367-70. 
https://doi.org/10.1089/end.2008.0053 

28.	 Constantiner M, Sehgal AR, Humbert L, Constantiner D, Arce 
L, Sedor JR, et al. A dipstick protein and specific gravity al-
gorithm accurately predicts pathological proteinuria. Am 
J Kidney Dis. 2005;45:833-41. https://doi.org/10.1053/j.
ajkd.2005.02.012

29.	 Hillege HL. Can an algorithm based on dipstick urine pro-
tein and urine specific gravity accurately predict prote-
inuria? Nat Clin Pract Nephrol. 2006;2:68-9. https://doi.
org/10.1038/ncpneph0099

30.	 Khorami MH, Hashemi R, Bagherian-Sararoudi R, Sicha-
ni MM, Tadayon F, Shahdoost AA, et al. The assessment of 
24-h urine volume by measurement of urine specific gravity 
with dipstick in adults with nephrolithiasis. Adv Biomed Res. 
2012;1:86. https://doi.org/10.4103/2277-9175.105168


	1_Thesis_JVT_FINAL (2)
	2_rad 1 )
	3_Rad 2 (1)
	4_Rad 3 (1)

