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Antiproliferative evaluation of various aminoquinoline 
derivatives

Four classes of aminoquinoline derivatives were prepared: 
primaquine ureas 1a–f, primaquine bis-ureas 2a–f, chloro-
quine fumardiamides 3a–f and mefloquine fumardiamides 
4a–f. Their antiproliferative activities against breast adeno-
carcinoma (MCF-7), lung carcinoma (H460) and colon carci-
noma (HCT 116 and SW620) cell lines were evaluated in vitro, 
using MTT cell proliferation assay. The results revealed a 
low activity of primaquine urea and bis-urea derivatives 
and high activity of all fumardiamides, with IC50 values in 
low micromolar range against all tested cancer cell lines. 

Keywords: primaquine, chloroquine, mefloquine, fumar-
diamide, antiproliferative activity

Finding novel therapeutic indications for already approved drugs (drug repurposing), 
is one of the possible strategies in the search of novel medicines (1, 2). Repurposing of an-
timalarial drugs as anticancer agents is very promising since different classes of antima-
larials change the sensitivity of resistant tumour cell lines, inhibit the development of drug 
resistance, or show synergistic effects with clinically approved anticancer drugs (3–16). 
Anticancer effects of 14 registered antimalarial drugs have been reported and many of 
them (hydroxychloroquine, chloroquine, quinacrine, artemisinin, artemether, artesunate, 
quinine, atovaquone, doxycycline) were evaluated or are currently under evaluation in 
approximately a hundred and fifty clinical anticancer trials, mainly in the combination 
with conventional anticancer drugs (4, 17).

Primaquine (PQ), chloroquine (CQ) and mefloquine (MQ) are 8- or 4-aminoquinoline 
antimalarial drugs, recognized by the World Health Organization as essential medicines 
(18). Numerous modifications of their structures, both at the quinoline heterocycle and at 
the side chain, were performed in order to avoid drug resistance, to obtain the antima-
larial agents with reduced toxicity and/or increased activity or to get biologically active 
compounds outside the antimalarial field (19–22).

During the last ten years, derivatization of the antimalarial drugs was the main focus 
of our research group as well. We have prepared a number of novel CQ-based (23, 24), MQ-
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based derivatives (25) and approximately 150 novel PQ-derivatives, and evaluated their 
antiplasmodial, anticancer, antioxidative and/or antimicrobial activities (26–37). Among 
others, we have prepared PQ-urea (1) and bis-urea (2) derivatives (38) and hybrid molecules 
3, composed of CQ-pharmacophore, fumaric acid and halogenaniline fragments, and 
analogues compounds 4 bearing the MQ-scaffold (Fig. 1) (25). Their antiplasmodial and/or 
antimycobacterial activity was also reported in combination with synthesis. To view their 
full biological profile, we additionally evaluated their antiproliferative activity and report 
the results in this paper.

Fig. 1. Structure of primaquine-ureas 1a–f, primaquine-bis-ureas 2a–f, chloroquine fumardiamides 
3a–f and mefloquine fumardiamides 4a–f.
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EXPERIMENTAL

Chemistry

The following compounds were prepared: 3-[1-(hydroxymethyl)cyclopropyl]-1-{4-[(6-
methoxyquinolin-8-yl)amino]pentyl}urea (1a), 3-[1-(hydroxymethyl)cyclobutyl]-1-{4-[(6-
methoxyquinolin-8-yl)amino]pentyl}urea (1b), 3-[(1S,3R)-3-hydroxycyclopentyl]-1-{4-[(6- 
-methoxyquinolin-8-yl)amino]pentyl}urea (1c), 3-(4-fluoro-1 -hy droxy butan -2-yl)-1-{4-[(6-  
methoxyquinolin-8-yl)amino]pentyl}urea (1d), 1-{4-[(6-methoxyquinolin-8-yl)amino]
pentyl}-3-(3,3,3-trifluoro-2-hydroxypropyl)urea (1e), 3-[2-(4-hydroxyphenyl)ethyl]-1-{4-[(6-
methoxyquinolin-8-yl)amino]pentyl}urea (1f), 3-({[1-(hydroxymethyl)cyclopropyl]
carbamoyl}amino)-1-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}urea (2a), 3-({[1-(hydroxy-
methyl)cyclobutyl]carbamoyl}amino)-1-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}urea 
(2b), 3-({[(1S,3R)-3-hydroxycyclopentyl]carbamoyl}amino)-1-{4-[(6-methoxyquinolin-8-yl)
amino]pentyl}urea (2c), 3-{[(4-fluoro-1-hydroxybutan-2-yl)carbamoyl]amino}-1-{4-[(6-
methoxyquinolin-8-yl)amino]pentyl}urea (2d), 1-{4-[(6-methoxyquinolin-8-yl)amino]
pentyl}-3-{[(3,3,3-trifluoro-2-hydroxypropyl)carbamoyl]amino}urea (2e), 3-({[2-(4 -hydroxy - 
phenyl)ethyl]carbamoyl}amino)-1-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}urea (2f), 
(2E)-N’-{4-[(7-chloroquinolin-4-yl)amino]butyl}-N-(3-fluorophenyl)but-2-enediamide (3a), 
(2E)-N’-{4-[(7-chloroquinolin-4-yl)amino]butyl}-N-(4-fluorophenyl)but-2-enediamide (3b), 
(2E)-N-(3-chlorophenyl)-N’-{4-[(7-chloroquinolin-4-yl)amino]butyl}but-2-enediamide (3c), 
(2E)-N-(4-chlorophenyl)-N’-{4-[(7-chloroquinolin-4-yl)amino]butyl}but-2-enediamide (3d), 



663

B. Zorc et al.: Antiproliferative evaluation of various aminoquinoline derivatives, Acta Pharm. 69 (2019) 661–672.

 

(2E)-N’-{4-[(7-chloroquinolin-4-yl)amino]butyl}-N-[3-(trifluoromethyl)phenyl]but-2-
enediamide (3e) and (2E)-N’-{4-[(7-chloroquinolin-4-yl)amino]butyl}-N-[4-(trifluoromethyl)
phenyl]but-2-enediamide (3f), (2E)-N’-(4-{[2,8-bis(trifluoromethyl)quinolin-4-yl]amino}
butyl)-N-(3-fluorophenyl)but-2-enediamide (4a), (2E)-N’-(4-{[2,8-bis(trifluoromethyl)
quinolin-4-yl]amino}butyl)-N-(4-fluorophenyl)but-2-enediamide (4b), (2E)-N’-(4-{[2,8-
bis(trifluoromethyl)quinolin-4-yl]amino}butyl)-N-(3-chlorophenyl)but-2-enediamide (4c), 
(2E)-N’-(4-{[2,8-bis(trifluoromethyl)quinolin-4-yl]amino}butyl)-N-(4-chlorophenyl)but-2-
enediamide (4d), (2E)-N’-(4-{[2,8-bis(trifluoromethyl)quinolin-4-yl]amino}butyl)-N-[3-
(trifluoromethyl)phenyl]but-2-enediamide (4e), (2E)-N’-(4-{[2,8-bis(trifluoromethyl)
quinolin-4-yl]amino}butyl)-N-[4-(trifluoromethyl)phenyl]but-2-enediamide (4f). Rf values 
and IR, 1H and 13C NMR spectra of all compounds were in accord with the previously 
published data (25, 38). 

Biology

Antiproliferative evaluation

Cell lines. – The antiproliferative evaluation was carried out on four human cancer cell 
lines: MCF-7 (breast adenocarcinoma), H460 (lung carcinoma), HCT 116 and SW620 (colon 
carcinoma), following the previously published procedure (29).

Cell culturing. – The cells were cultured as monolayers and maintained in Dulbecco’s 
modified Eagle medium (DMEM), supplemented with 10 % foetal bovine serum (FBS), 2 
mmol L–1 glutamine, 100 U mL–1 penicillin and 100 μg mL–1 streptomycin in a humidified 
atmosphere with 5 % CO2 at 37 °C.

Proliferation assay. – The panel cell lines were inoculated in parallel onto a series of 
standard 96-well microtiter plates on day 0, at 1 × 104 to 3 × 104 cells per mL, depending on 
the doubling time of the specific cell line. Test compounds were then added in five 10-fold 
dilutions (10–8 to 10–4 M) and incubated for the next 72 hours. Working dilutions were 
freshly prepared on the day of the testing. After 72 hours of incubation, the cell growth 
rate was evaluated by performing the MTT cell proliferation assay, which detects 
dehydrogenase activity in viable cells. The MTT assay is a colorimetric assay, which 
measures the reduction of the tetrazolium component (MTT) into the insoluble formazan 
product by the mitochondria of viable cells. For this purpose, the substance treated 
medium was discarded and MTT was added to each well at a concentration of 0.5 μg μL–1. 
After four hours of incubation, the precipitates were dissolved in DMSO (160 μL). The 
absorbance (OD, optical density) was measured on a microplate reader at 570 nm. The 
absorbance is directly proportional to the cell viability. The percentage of growth (PG) of 
the cell lines was calculated according to one or the other of the following two expressions:

If (mean ODtest – mean ODtzero) ≥ 0 then
PG = 100 × (mean ODtest – mean ODtzero) / (mean ODctrl – mean ODtzero);
If (mean ODtest – mean ODtzero) < 0 then
PG = 100 × (mean ODtest – mean ODtzero) / ODtzero;

where mean ODtzero is the average of optical density measurements before exposure of cells 
to the test compound, mean ODtest is the average of optical density measurements after the 
desired period of time and mean ODctrl is the average of optical density measurements 
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after the desired period of time with no exposure of cells to the test compound. Each test 
point was performed in quadruplicate in three individual experiments. The results were 
expressed as IC50, a concentration necessary for 50 % of inhibition.

IC50 calculations. – The concentration that causes 50 % growth inhibition (IC50) for each 
compound was calculated from dose-response curves using linear regression analysis by 
fitting the test concentrations that give PG values above and below the respective reference 
value (e.g. 50 for IC50). Therefore, a real value for any of the response parameters was 
obtained only if at least one of the tested drug concentrations fell above, and likewise at 
least one fell below the respective reference value. If however, for a given cell line all of the 
tested concentrations produced PGs exceeding the respective reference level of the effect 
(e.g. PG value of 50), then the highest tested concentration was assigned as the default 
value, preceded by the sign >.

Interaction with glutathione (GSH)

CQ-fumardiamide 3c (1.25 μM) was incubated with GSH (125 μM) in ammonium 
formate buffer (pH = 7.4) containing 10 % acetonitrile at 37 °C for four days (39). The pro-
gress of the reactions was monitored with the percent of remaining fumardiamide deter-
mined by mass spectroscopy using an internal standard (chloroquine). Aliquots of the 
reaction mixture (taken after 0, 4.5, 24, 48, 72 and 96 h) were analysed with Synapt G2-Si 
ESI-QTOF-MS system (Waters, Milford, USA). The aliquots were diluted 10 times with 
acetonitrile and sprayed at a flow rate of 50 μL min–1 using the fluidics system of the instru-
ment. MS conditions were set as follows: positive ion mode, capillary voltage 3 kV, sam-
pling cone voltage 10 V, source temperature 120 °C, desolvation temperature 350 °C, desol-
vation gas flow 800 L h–1. Mass spectra were recorded from 100–1000 m/z at a frequency of 
1 Hz. Data were acquired and analysed with Waters MassLynx v4.1 software. The ana-
logue experiment was performed with MQ-fumardiamide 4a.

RESULTS AND DISCUSSION

Chemistry

Four classes of aminoquinoline derivatives were prepared: PQ-ureas 1a–f, PQ-bis-ureas 
2a–f, CQ-fumardiamides 3a–f and MQ-fumardiamides 4a–f. Their general structures are 
given in Fig. 1 and chemical structures of each particular compound in Tables I–IV.

All tested compounds were prepared according to our previously published methods. 
The procedure leading to PQ-derivatives 1a–f consisted of: a) synthesis of PQ-benzotriazolide 
from PQ base and 1-benzotriazole carboxylic acid chloride (26), b)  reaction of PQ-benzo-
triazolide and the corresponding amine (1-aminocyclopropyl)methanol, (1-aminocyclobutyl)
methanol, (1R,3S)-3-aminocyclopentanol, 2-amino-4-fluorobutan-1-ol, 3-amino-1,1,1-tri-
fluoro propan-2-ol or 4-(2-aminoethyl)phenol (38). The starting PQ-benzotriazolide was 
prepared by the acylation of PQ with 1-benzotriazole carboxylic acid chloride (26).

Synthesis of PQ-derivatives 2a–f was more complex. Synthesis of bis-ureas 2a–f 
included the preparation of PQ-benzotriazolide, N-(4-((6-methoxyquinolin-8-yl)amino)-
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pentyl)hydrazinecarboxamide and its benzotriazolide (29). The final step was, again, ami-
nolysis with the corresponding amino alcohols under microwave irradiation (38).

Synthesis of fumardiamides 3 and 4 proceeded via multi-step reactions, in which two 
amide bonds were formed (25). The amide bond between mono-ethyl fumarate and N1-(7-
chloroquinolin-4-yl)butane-1,4-diamine (CQ-pharmacophore) or N1-(2,8-bis(trifluoro-
methyl)quinolin-4-yl)butane-1,4-diamine (MQ-pharmacophore) was achieved using stan-
dard coupling conditions (HATU/DIEA). The obtained amidoesters were further 
hydrolized to afford intermediates with free carboxylic groups, which then reacted with 
the selected halogenanilines in the presence of HATU/DIEA and formed products 3 and 4, 
respectively.

Table I. PQ-ureas 1a-f: growth inhibition of tumour cell lines in vitro

Cmpd. Structure
IC50 (mmol L–1)a

MCF-7 HCT 116 H460 SW620

1a

O

N

NH
H
N

H
N

O
OH

41 ± 13 ≥ 100 ≥ 100 ≥ 100

1b

O

N

NH
H
N

H
N

O
OH

21 ± 5 35 ± 5 48 ± 8 52 ± 1

1c

O

N

NH
H
N

H
N

O
OH

42 ± 19 ≥ 100 ≥ 100 ≥ 100

1d

O

N

NH
H
N

H
N

O

F

OH
21 ± 9 ≥ 100 ≥ 100 ≥ 100

1e

O

N

NH
H
N

H
N

O F

F

OH

F

39 ± 19 79 ± 4 ≥ 100 ≥ 100

1f

O

N

NH
H
N

H
N

O
OH

18 ± 1 25 ± 6 21 ± 2 32 ± 2

PQb 9 ± 4 14 ± 5 20 ± 11 20 ± 6

a IC50 – a concentration that causes 50 % growth inhibition; b PQ – primaquine
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Antiproliferative activity

Antiproliferative evaluation was based on the MTT assay. Standard anticancer drug 
doxorubicin (Dox) was used as positive control. All PQ-ureas 1a–f showed moderate 
activity against MCF-7 cells, but lower than the parent compound (Table I). Ureas derived 
from various amino alcohols 1a–e were practically inactive against the other three cell 

Table II. PQ-bis-ureas 2a-f: growth inhibition of tumour cell lines in vitro

Cmpd. Structure
IC50 (mmol L–1)a

MCF-7 HCT 116 H460 SW620

2a

O

N

NH
H
N

H
N

O

N
H

O

N
H

OH

40 ± 5 ≥ 100 ≥ 100 ≥ 100

2b

O

N

NH
H
N

H
N

O

N
H

O

N
H

OH

40 ± 25 ≥ 100 ≥ 100 ≥ 100

2c

O

N

NH
H
N

H
N

O

N
H

O

N
H

OH

56 ± 21 ≥ 100 ≥ 100 ≥ 100

2d

O

N

NH
H
N

H
N

O

N
H

O

N
H

F

OH ≥ 100 ≥ 100 ≥ 100 ≥ 100

2e

O

N

NH
H
N

H
N

O

N
H

O

N
H

F

F
F

OH

43 ± 24 ≥ 100 ≥ 100 ≥ 100

2f

O

N

NH
H
N

H
N

O

N
H

O

N
H

OH 24 ± 13 44 ± 7 46 ± 5 45 ± 19

PQb 9 ± 4 14 ± 5 20 ± 11 20 ± 6

Doxc 0.01 ± 0.001 0.01 ± 0.006 0.003 ± 0.002 –

a IC50 – a concentration that causes 50 % growth inhibition; b PQ – primaquine; c Dox – doxorubicin
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lines, whereas compound 1f prepared from 4-(2-aminoethyl)phenol showed moderate 
activity. Very similar results were obtained for PQ-bis-ureas 2a–f (Table II). Previously, we 
have prepared analogues PQ-urea and bis-urea compounds derived from various aromatic 
amines, which exerted much higher antiproliferative activity (26, 30, 36). Obviously, the 
replacement of the aromatic amines with amino alcohols was not beneficial for the activity. 
However, activity against MCF-7 cell line still remained. Such observation is not surprising 

Table III. CQ-fumardiamides 3a-f: antiproliferative evaluation against embryonic kidney Hek293 cells and 
selected cancer cell lines in vitro

Cmpd. Structure
IC50 (mmol L–1)a

Hek293 MCF-7 HCT 116 H460

3a N

N
H

H
N

N
H

O

O

F

Cl

22.3 ± 6.6 1 ± 0.1 1 ± 0.3 2 ± 0.2

3b N

N
H

H
N

N
H

O

O
F

Cl

30.9 ± 4.7 2 ± 0.2 2 ± 0.2 5 ± 2

3c N

N
H

H
N

N
H

O

O

Cl

Cl

96 ± 41.0 1 ± 0.1 2 ± 0.1 2 ± 0.2

3d N

N
H

H
N

N
H

O

O
Cl

Cl

7.0 ± 2.9 1 ± 0.1 2 ± 0.2 2 ± 0.2

3e N

N
H

H
N

N
H

O

O

CF3

Cl

41.3 ± 18.4 14 ± 2 14 ± 2 16 ± 1

3f N

N
H

H
N

N
H

O

O
CF3

Cl

10.9 ± 0.4 0.4 ± 0.1 0.3 ± 0.1 1 ± 0.1

CQb – 3 ± 1 2 ± 1 2 ± 1

Doxc – 0.01 ± 0.001 0.01 ± 0.006 0.003 ± 0.002

a IC50 – a concentration that causes 50 % growth inhibition; b CQ – chloroquine; c Dox – doxorubicin
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since the sensitivity of MCF-7 cell line to primaquine and other antimalarial drugs has 
been observed by our research group and others (40–42). On the other hand, almost all 
CQ-fumardiamides 3a-f exerted antiproliferative effects in single-digit micromolar 
concentrations against all tested cancer cell lines and moderate activity against human 
embryonic kidney Hek293 (selectivity index ranging from 2.9 to 96, depending on the cell 
line). CQ-fumardiamide derived from p-CF3-aniline (compound 3f) was the most active 
compound in the series, with IC50 = 0.4 ± 0.1 μmol L–1 against MCF-7 and 0.3 ± 0.1 μmol L–1 
against HCT 116 cells. The analogous MQ-derivatives showed practically the same 
antiproliferative effects. p-Chloro (4d) and p-CF3-derivative (4f) inhibited proliferation of 
MCF-7 cells in low micromolar concentrations, with IC50 = 0.4 ± 0.1 and 0.3 ± 0.1 μmol L–1, 
respectively.

Table IV. IC50 values of MQ-derivatives 4a-f against selected cancer cell lines in vitro

Cmpd. Structure
IC50 (mmol L–1)a

MCF-7 HCT 116 H460

4a N

N
H

H
N

N
H

O

O

F
F3C

F3C
1 ± 0.2 2 ± 1 3 ± 2

4b N

N
H

H
N

N
H

O

O

F3C

F3C

F

2 ± 0.2 5 ± 0.2 12 ± 2

4c N

N
H

H
N

N
H

O

O

Cl
F3C

F3C
2 ± 0.3 2 ± 0.3 2 ± 0.1

4d N

N
H

H
N

N
H

O

O

F3C

F3C

Cl

0.4 ± 0.1 2 ± 0.1 21 ± 14

4e N

N
H

H
N

N
H

O

O

CF3
F3C

F3C
2 ± 0.3 2 ± 1 3 ± 1

4f N

N
H

H
N

N
H

O

O

F3C

F3C

CF3

0.3 ± 0.2 1 ± 1 23 ± 9

MQb 1.3 ± 0.2 1.0 ± 0.1 1.5 ± 0.19

Doxc 0.01 ± 0.001 0.01 ± 0.006 0.003 ± 0.002

a IC50 – a concentration that causes 50 % growth inhibition; b MQ – mefloquine; c Dox – doxorubicin
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Interactions with glutathione (GSH)

The interaction of two fumarmides, 3c and 4a, with GSH in buffer solution (pH = 7.4) 
containing 10 % acetonitrile at 37 °C was followed for four days. The rate of fumardiamides-
GSH consumption was slow and incomplete (4 and 5 %, respectively).

CONCLUSIONS

Antiproliferative screening in vitro revealed low to moderate activity of PQ-ureas (1) 
and bis-ureas (2). On the other hand, the antiproliferative activity of CQ- and MQ-
fumardiamides (3 and 4) was high. Almost all fumardiamides exerted antiproliferative 
effects in single-digit micromolar concentrations against all tested cancer cell lines. They 
represent interesting lead compounds that might be useful in the design of new anticancer 
agents.

Acknowledgments. – The study was supported by the Croatian Science Foundation (research proj-
ect IP-2014-09-1501). We thank Katja Ester, Lidija Uzelac and Marijeta Kralj for antiproliferative 
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Abbreviations, acronyms, symbols. – CQ, chloroquine; DIEA, N,N-diisopropylethylamine; DMEM, 
 Dulbecco’s modified Eagle’s medium; GSH, glutathione; H460, lung carcinoma cell line; HATU, 
1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium; 3-oxide hexafluorophosphate; HCT 
116, colorectal carcinoma cell line; Hek293, human embryonic kidney cell line; FBS, foetal bovine serum; 
IC50, concentration that causes 50 % growth inhibition; MQ, mefloquine; MTT, (3-(4,5-di methylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide; OD, optical density; PG, percentage of growth; PQ, primaquine; 
MCF-7, breast adenocarcinoma cell line; SW620, colon carcinoma cell line.
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