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In addition to analgesic, antipyretic, and antiinflamatory properties, salicylates pos-
sess also some other actions that have been proven to be therapeutically beneficial (1, 2).
More attention has been recently paid to the ability of salycilates to inhibit platelet ag-
gregation. Unfortunately, a number of side-effects are associated with the use of salicy-
lates, most notable being gastrointestinal disturbances such as dyspepsia, gastroduodenal
bleeding, gastric ulcerations and gastritis (3, 4).

Salicylic acid is 2-hydroxy benzoic acid, the simplest aromatic carboxylic acid, which
together with its hydroxyl derivatives are not only of importance as NSAIDs, but also as
semi-products of biosynhesis of aromatic amino-acids in plants (phenolic acids), metabo-
lites of numerous exogenous toxic substances including drugs, and endogenous catechol-
amines (5). It is well known that salicylic acid and its 2,4- and 2,5-dihydroxy derivatives
are present in many medicinal plants, e.g., Matricaria recutita L.
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The pharmacological effect, as well as the side-effects of salicylic acid, are due to its
structural features, so the active moiety for the cyclooxygenase (COX) inhibition appears
to be the salicylate anion, while side-effects appear to be associated with the carboxylic
acid functional group. Substitution on either the carboxyl or phenolic hydroxyl groups
may affect potency and toxicity, while placing the phenolic hydoxyl group meta- or para-
to the carboxyl group abolishes NSAID activity (1). Since metabolism affects pharmaco-
logical as well as toxicological effects of xenobiotics and drugs, the differentiation of
structurally related metabolites is of biomedical interest (6).

Pharmacological effects and biotransformation pathways of salicylic acid and its de-
rivatives are well known (1, 7–10), and the effect of the structural features on the phy-
sico-chemical properties and on the bioactivity of these compounds were investigated in
numerous theoretical and experimental studies (11–22). For the physico-chemical pro-
perties of phenolic carboxylic acids, intra- and intermolecular hydrogen bonding is very
important. This type of interaction is structure-determining, hence it is of great impor-
tance to rationalise the geometry of organic molecules and biomolecules (23–25). Al-
though the hydrogen bond is fairly weak compared to other types of molecular interac-
tions (e.g., electrostatic and van der Waals forces, as well as effects related to electron-trans-
fer and/or hydrophobic interactions), it considerably determines the properties of the
biological systems (26). Hydrogen bond strongly depends on the type of atoms that
build up the hydrogen bridge. Information gained from FT-IR and NMR spectroscopies
certainly enable clarifying the influence of structural parameters on the physico-chemi-
cal properties of H-bonded compounds.
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6: R = OCH3, R1 = H, R2 = OH, methyl 2,5-dihydroxybenzoate (methyl gentisate)

7: R = NH2, R1 = R2 = H, 2-hydroxybenzamide (salicylamide)

8: R = NH2

2

, R1 = OH, R2 = H, 2,4-dihydroxybenzamide

9: R = NH , R1 = H, R2 = OH, 2,5-dihydroxybenzamide (gentisamide)

Scheme 1



The finding that the amide protons orientation is opposite in gentisamide to that in
salicylamide, observed by NMR measurements in DMSO-d6, initiated the study of the
substituent effect in 2-hydroxy- and 2,4- and 2,5-dihydroxy benzoic acids and their me-
thyl esters and amides. Salicylic acid and its derivatives could serve as a good model
system for investigating H-bonding and the effect of additional hydroxyl substitution in
aromatic moieties.

The aim of this work was to study the substituent effects on the spectral properties
of salicylic acid derivatives (1 to 9, Scheme 1).

EXPERIMENTAL

Melting points were determined on a Boëtius Microheating Stage (Franz Küstner
Nachf. KG, Germany) and remained uncorrected. Elemental analyses were performed
by means of a CHN-LECO-932 elemental analyzer (LECO Corporation, USA).

Salicylic acid, 2,4-dihydroxy and 2,5-dihydroxy benzoic acid, methyl salicylate, me-
thyl 2,4-dihydroxy- and 2,5-dihydroxybenzoate and salicylamide were purchased from
Sigma-Aldrich (USA) and were used without further purification. 2,4-Dihydroxy- (8)
and 2,5-dihydroxybenzamides (9) were prepared by a modified procedure according to
Bray et al. (7). Synthesized amides were purified by column chromatography (silica gel
70–230 mesh ASTM, 0.063–0.200 mm, Kemika, Croatia) using ethyl acetate as a mobile
phase. Thin-layer chromatography (TLC) was performed on a 2-mm thick silica gel she-
ets Kieselgel 60 F254 (Merck, Germany) using the following solvent mixtures: benzene/
ether/acetic acid/methanol (60:30:9:1), benzene/ether/acetic acid/water (50:40:9:1) and
acetone/ethyl acetate/water (5.4:1). Spots were detected under UV light (254 nm) using
iron(III)-chloride as a reagent.

All other chemicals were of analytical grade and were commercially purchased.

Spectral analyses

Infrared absorption spectra were obtained in the range from 4000 to 450 cm–1 by us-
ing a Perkin-Elmer Paragon 500 FT-IR spectrometer. Solid samples dispersed in KBr pel-
lets were used.

The 1H and 13C one- and two-dimensional NMR spectra were recorded with a Va-
rian Gemini 300 spectrometer (Varian, USA) operating at 300 MHz and 75.5 MHz for the
1H and 13C nucleus, respectively, and with a Bruker Avance DRX500 spectrometer (Bruker,
Germany), operating at 500 MHz and 125 MHz for the 1H and 13C nucleus, respectively.
Experiments were performed in DMSO-d6 at 20 °C in 5-mm NMR tubes. Chemical shifts
� in ppm are referred to TMS as the internal standard.

The following spectra were recorded on a Gemini 300 spectrometer: 1H, 13C broadband
proton decoupling, gated proton decoupling, APT, COSY-45, LRCOSY-45, NOESY and HET-
COR. Digital resolutions in one-dimensional 1H NMR spectra were 0.20 Hz, and in 13C
NMR spectra 0.60 Hz per point. In all experiments, proton decoupling was performed by
Waltz-16 modulation. In two-dimensional experiments, standard pulse sequences were used.
COSY-45 and LRCOSY-45 spectra were measured in the magnitude mode, while NOESY
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spectra in the phase-sensitive mode. In COSY-45 and NOESY spectra, 1024 points in F2 di-
mension and 256 increments in F1 dimension, subsequently zero-filled to 1024 points, were
used. Each increment was obtained with 16 scans, 3000 Hz spectral width and a relaxation
delay of 1 s. Thus, the digital resolution was 5.9 Hz per point and 11.7 Hz per point in F2
and F1 dimensions, respectively. The time delay (D3) in LRCOSY-45 was set to 0.3 s. NOESY
spectra were measured with several mixing times (0.45–1.2 s). HETCOR spectra were re-
corded with 2048 points in F2 dimension and 256 increments in F1 dimension, zero-filled to
512 points. Increments were recorded with 180 scans, relaxation delay of 1 s and spectral
width of 20000 Hz in F2 and 4500 Hz in F1 dimensions. The corresponding digital resolu-
tions were 19.53 and 17.6 Hz per point in F2 and F1 dimensions, respectively.

The following spectra were recorded on a Bruker Avance DRX500 spectrometer: 1H,
APT, HMBC. Absolute value HMBC spectra were measured with pulsed field gradients.
The relaxation delay was 1.5 s, while spectra were recorded with 8–16 scans per incre-
ment. The spectral width was 6600 Hz in the acquisition domain F2 and 31000 Hz in the
time domain F1. Data were collected into the 2048 x 256 acquisition matrix and proces-
sed using a 2K x 1K transformed matrix with zero filling in F1 domain. The delay for the
long-range couplings was set to 60 ms in HMBC spectra.

Syntheses

General procedure for preparation of 2,4-dihydroxy- (8) and 2,5-dihydroxybenzamide (9). –
Amides 8 and 9 were prepared by addition of 1.69 g (0.10 mol) methyl 2,4-dihydroxy- or
2,5-dihydroxybenzoate in 10 mL of ammonia (pro analysi, 25% in water). The reaction
mixture was stirred for 24 hours at room temperature. The excess of ammonia and meth-
anol formed during the reaction were removed under reduced pressure. Upon addition
of 10 mL of water, the product was extracted by ether. Ether extracts were collected,
washed with water, and after separation the ether layer was dried over anhydrous so-
dium sulfate and evaporated under reduced pressure to give amide 8 or 9. Crude prod-
ucts were purified by column chromatography using ethyl acetate as a mobile phase.

Physical-chemical data for compounds 8 and 9 are as follows:
8: yield 0.71 g (42.0%), m.p. 244–245 °C, Mr 153.13, analysis for C7H7NO3 (%): calcd.

(found) C 54.90 (55.21), H 4.61 (4.33), N 9.14 (9.41); Rf1 0.53 (benzene/ether/acetic acid/
methanol, 60:30:9:1), Rf2 0.43 (benzene/ether/acetic acid/water, 50:40:9:1), Rf3 0.86 (ace-
tone/ethyl acetate/water, 5:4:1); IR (KBr) �: 3437vs, 3373s, 3320s, 3216vs, 1671vs, 1632vs,
1515s, 1428s, 1392s, 1332s, 1304s, 1249s, 1165s, 1115s, 975m, 840m, 762m, 708w, 612m and
521m cm–1.

9: yield 0.54 g (32.1%), m.p. 217–218 °C (215–216 °C in ref. 7), Mr 153.13, analysis for
C7H7NO3 (%): calcd. (found) C 54.90 (54.63), H 4.61 (4.58), N 9.14 (9.25); Rf1 0.36 (ben-
zene/ether/acetic acid/methanol, 60:30:9:1), Rf2 0.31 (benzene/ether/acetic acid/water,
50:40:9:1), Rf3 0.83 (acetone/ethyl acetate/water, 5:4:1); IR (KBr) �: 3444s, 3393s, 3350s,
3274s, 2971m, 2873m, 1665s, 1577s, 1495s, 1424s, 1353s, 1269s, 1234s, 1138m, 106m, 934w,
825m, 791s, 731w, 667m, 638w and 550w cm–1.
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RESULTS AND DISCUSSION

For the purpose of spectroscopic investigation, amides 2,4- and 2,5-dihydroxyben-
zamide were prepared by ammonolysis in the reaction of the corresponding mehyl es-
ters, methyl 2,4- and 2,5-dihydroxybenozate with ammonia. This reaction proceeds by
the mechanism where the nucleophile is ammonia and the leaving group is methyl alco-
hol (Scheme 2):

Salicylic acid (1), 2,4- and 2,5-dihydroxy benzoic acids (2, 3), and their correspond-
ing methyl esters, i.e., methyl salicylate (4), methyl 2,4- and 2,5-dihydroxybenzoates (5,
6) as well as amides, i.e,. salicylamide (7), 2,4- and 2,5-dihydroxybenzamides (8, 9) were
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Table I. Characteristic stretching absorption bands (�, cm–1) in FT-IR spectra (KBr) of compounds 1 to 9

Compd.
Wavenumber, � (cm–1)

�OH �C=O �NH2

1 3238 1662 –
2 3374

3300–2500
1650 –

3 3310
3300–2500

1670 –

4 3186 1686 –
5 3338

3186
1642 –

6 3339
3227

1678 –

7 3398 1676 (amide I)
1590 (amide II)

3364
3190

8 3450
3216

1672 (amide I)
1612 (amide II)

3372
3326

9 3446
3274

1666 (amide I)
1576 (amide II)

3396
3348



analyzed by FT-IR and one- and two-dimensional homo- and heteronuclear 1H and 13C
NMR methods.

Derivatives of carboxylic acids are characterized by several intense absorptions in
the infrared spectrum (27). The most prominent absorption bands are in the carbonyl
stretching region (1660–1800 cm–1). Their exact position depends on the type of acid de-
rivative. Thus, carboxylic acids usually absorb in the region 1700–1725 cm–1, while esters
are at a somewhat higher frequency (1735–1750 cm–1) and amides at a slightly lower fre-
quency (1670–1690 cm–1). However, the presence of other substituents or H-bonding in
the molecule gives rise to additional shifting of these bands. In addition to the carbonyl
stretching absorption, the acids themselves exibit a strong, broad absorption of O-H
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Fig. 1. FT-IR spectra of salicylic
acid (1), 2,4- (2) and 2,5-dihy-
droxy benzoic acid (3) in the
region of: a) 4400–2000 cm–1,
and b) 1800–1000 cm–1.



stretching. Due to the strongly hydrogen-bonded hydroxyl group, this band is spread
over the range of 3500–2500 cm–1. This absorption is one of the broadest absorptions in
an infrared spectrum, and it is frequently more than 600 cm–1 wide, hence quite easy to
recognize (23, 27).

The characteristic stretching absorption bands of the investigated compounds 1–9
are collected in Table I. Comparison of the IR spectrum of 1 (one hydroxyl group at 2-po-
sition, Scheme 1) with the spectra of 2 and 3 (two hydroxyl groups at 2,4- and 2,5-posi-
tions) showed significant differences in the OH-absorption region, both in band width
and frequency (Fig. 1a). Thus, in compound 1, the broad absorption band spreads from
3523 cm–1 to 2086 cm–1, having several peaks. The peak with the highest absorption in-
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the region of: a) 4400–2000 cm–1,
and b) 1800–1000 cm–1.



tensity is at 3238 cm–1. In compound 2, the OH absorption band spreads from 3514 cm–1

to 2138 cm–1, while in compound 3 from 3532 cm–1 to 2138 cm–1. The highest absorption
peak in 2 is at 3374 cm–1. In compound 3, the broad absorption band spreads from 3310
cm–1 to 3132 cm–1. These broadened bands correspond to different strengths of the intra-
and intermolecular H-bonding, which arise from the different number and position of
OH groups. The same is reflected on the carbonyl absorption bands in compounds 1 to
3, 1662 cm–1, 1650 cm–1 and 1670 cm–1, respectively (Fig. 1b).

In esters (4 to 6), the OH absorption region is less spread than in the corresponding
acids, which is expected due to the substitution of the methyl group for the OH group in
COOH moiety. The 2-OH band in methylsalicylate (4) is at 2956 cm–1. In both 5 and 6,
the additional OH band is at 3338 cm–1 (Fig. 2a). The carbonyl region of esters revealed
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expected differences in the corresponding acids. The differences between carbonyl ab-
sorption in esters arise due to the different number and positions of hydroxy groups.
Namely, in metylsalicylate (4) and methyl 2,5-dihydroxybenzoate (6) the carbonyl shift
is in accordance with the expectation for esters, i.e., towards slightly higher wavenum-
bers, while in methyl 2,4-dihydroxybenzoate (5) carbonyl absorption is shifted towards
lower wavenumbers. The latter is due to the fact that the 4-OH group increases the abil-
ity of 2-OH intramolecular H-bonding (Fig. 2b).

Primary amides give rise to medium-intensity N-H stretching absorptions in the
same region as for the O-H absorptions. The typical range for N-H stretching is 3250–
3400 cm–1. Primary amides give two bands in this region. According to the findings that
2-OH group in 7 forms the N….HO type of hydrogen bond, two distinguished N-H ab-
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Table II. 1H NMR data for compounds 1 to 9 in DMSO-d6

1H NMR, � (ppm), nJH,H (Hz)
H-atom 1 2 3 4 5 6 7 8 9
COOH 13.44, bs 10.78 13.25 – – – – – –

NH2 – – – – – – 8.43, s
7.92, s

8.09, s
7.58, s

8.24, s
7.74, s

C2-OH 11.52, bs 10.78 10.25 10.62 10.74, s 9.92, s 13.07 13.28, s 12.13, s

C4-OH – 10.78 – – 10.46, s – – 10.07, s –

C5-OH – – 11.40 – – 9.19, s – – 8.98, s

CH3 – – – 3.92 3.84, s 3.04, s – – –

H-3 6.96, d
3J = 7.5

7.20, s 7.60, d
3J = 8.7

7.02, dd
3J = 8.4
4J = 0.8

6.32, d
3J = 2.2

6.79, d
3J = 8.9

7.85, d
3J = 7.9

6.18, d
4J = 2.3

6.86, dd
3J = 8.6,
4J = 2.0

H-4 7.52, t
3J = 7.7

– 6.32, dd
3J = 8.6,
4J = 2.3

7.54, dt
3J = 7.2
4J = 1.7

– 6.69, dd
3J = 8.9,
4J = 3.0

7.38, t
3J = 7.3

– 6.69, d
3J = 8.6,
4J = 2.0

H-5 6.92, t
3J = 7.4

6.89, d
3J = 9.0,
4J = 1.3

– 6.95, dt
3J = 6.1
4J = 1.1

6.38, dd
3J = 8.7,
4J = 2.3

– 6.85, t
3J = 7.6

6.23, dd
3J = 8.7,
4J = 2.3

–

H-6 7.82, d
3J = 7.7

6.69, d
3J = 9.0

6.26, d
4J = 2.3

7.79, dd
3J = 7.9
4J = 1.6

7.64, d
3J = 8.7

7.13, d
4J = 3.0

6.89, d
3J = 7.9

7.64, d
3J = 8.6

7.20, d
4J = 2.0

bs – broadened singlet, s – singlet, d – doublet, t – triplet, dd – doublet of doublets, dt – doublet of triplets

Fig. 5. The 1H NMR spectrum
of 2,4-dihydroxybenzamide (8)
displaying two separated sig-
nals for amide protons.
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Fig. 6. The LRCOSY-45 spectrum of 2,4-dihydroxybenzamide (8) displaying the
five-bond H-H coupling between H-6 and C4-OH protons.

Fig. 7. The HETCOR spectrum of 2,4-dihydroxybenzamide (8) showing C-H connectivities
in the aromatic moiety.



sorptions at 3364 cm–1 and at 3190 cm–1 have been assigned to NH stretching absorption
bands of the primary amide moiety (28).

The NH region in the IR spectrum of 8 is more similar to that of 7 than to that of 9
(Fig. 3a). This is in accordance with findings for corresponding acids and esters. The
same similarity was found in the carbonyl region of amides 7 and 8 (Fig. 3b). In Fig. 4a
and b, FT-IR spectra of 2,4-dihydroxybenzamide are compared to the corresponding acid
and methyl ester.

The 1H NMR data are collected in Table II. In acids 1 to 3, the 1H NMR chemical
shifts of carboxylic protons are shifted more downfield than those of hydroxyl protons.
Aromatic protons have chemical shifts, H-H coupling constants and splitting patterns in
accordance with the structure of acids as well as esters 4 to 6. In all investigated amides
(7 to 9), two separated signals for NH2 were observed due to restricted rotation around
the C-N bond. Thus, the NH2 protons chemical shifts in 7 are at 8.43 ppm and 7.92 ppm,
in 8 at 8.09 ppm and 7.58 ppm (Fig. 5), while in 9 at 8.24 ppm and 7.74 ppm. The hy-
droxyl proton chemical shift at C-2 was observed at 13.07 ppm in 7, 13.28 ppm in 8, and
12.13 ppm in 9. One can see that the chemical shift values of 2-OH resemble more each
other in 7 and 8 than in 8 and 9, which is in agreement with different substituent effects
of C4-OH in 8 and C5-OH in 9. Different influences of C4-OH and C5-OH were observed
in FT-IR spectra as well. On the basis of these results, one can assume that the spatial
orientation in 2,4-dihydroxybenzamide (8) is more similar to that in salicylamide (7)
than to that in 2,5-dihydroxybenzamide (9). The 1H NMR spectrum of 8 is shown in Fig.
5, the LRCOSY45 in Fig. 6 and its HETCOR spectrum in Fig. 7.

The 13C NMR data are collected in Table III. The number of carbon signals and their
chemical shifts correspond to the structure of investigated compounds. Due to the pres-
ence of several substituents, the 13C chemical shifts do not comply with the additivity
rule. However, the assignments were confirmed by HMBC spectra.
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Table III. 13C NMR data for compounds 1 to 9 in DMSO-d6

13C NMR, � (ppm)
Compd. C-1 C-2 C-3 C-4 C-5 C-6 C-1’ C-2’ (CH3)

1 113.02 161.29 117.21 135.76 119.28 130.40 172.08 –
2 118.81 150.29 113.61 155.53 115.88 124.91 172.96 –
3 104.65 163.75 102.61 132.23 164.35 108.27 172.27 –
4 112.65 160.24 117.25 135.52 119.19 129.79 169.37 52.21
5 106.48 162.87 102.62 164.37 108.48 131.70 169.74 52.08
6 109.79 147.01 115.56 111.53 150.65 121.30 166.73 49.78
7 114.57 161.31 117.60 134.23 118.52 128.29 172.34 –
8 106.16 163.55 102.76 162.65 106.99 129.66 172.49 –
9 114.96 153.64 117.92 121.98 149.15 113.83 171.79 –



CONCLUSIONS

The spectral properties of salicylic acid derivatives and 2,4- and 2,5-dihydroxy ben-
zoic acid derivatives (methyl esters and amides), 1 to 9, were analyzed by means of
FT-IR, one- and twodimensional homo- and heteronuclear 1H and 13C NMR spectros-
copy. The results showed that the FT-IR and NMR spectral characteristics of 2,4-dihy-
droxy benzoic acid derivatives (2, 5, 8) are more similar to those of salicylic acid deriva-
tives (1, 4, 7) than to those of 2,5-dihydroxy benzoic acid derivatives (3, 6, 9). The results
also suggest that the spatial orientation of amide protons in 2,4-dihydroxybenzamide (8)
resembles more on the orientation of amide protons in salicylamide (7) than those in
2,5-dihydroxybenzamide (9).
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S A @ E T A K

FT-IR i NMR spektroskopska istra`ivanja derivata salicilne kiseline.
II. Usporedba 2-hidroksi- i 2,4- i 2,5-dihidroksi derivata

MILENA JADRIJEVI]-MLADAR TAKA^ i DRA@EN VIKI]-TOPI]

Spektroskopska svojstva derivata salicilne kiseline i 2,4- i 2,5-dihidroksi derivata ben-
zojeve kiseline (metilnih estera i amida), 1 do 9, analizirana su pomo}u FT-IR te jedno- i
dvodimenzijske homo- i heteronuklearne 1H i 13C NMR spektroskopije. Dobiveni rezul-
tati pokazuju da su FT-IR i NMR spektralne karakteristike derivata 2,4-dihidroksi-ben-
zojeve kiseline (2, 5, 8) sli~nije karakteristikama derivata salicilne kiseline (1, 4, 7) nego
derivata 2,5-dihidroksi-benzojeve kiseline (3, 6, 9). Rezultati istra`ivanja ukazuju da je
prostorna orijentacija amidnih protona 2,4-dihidroksibenzamida (8) sli~nija orijentaciji
amidnih protona salicilamida (7) nego 2,5-dihidroksibenzamida (9).

Klju~ne rije~i: salicilna kiselina 2,4- i 2,5-dihidroksi-benzojeva kiselina, metilni esteri, amidi, FT-IR,
1D i 2D homo- i heteronuklearna 1H i 13C NMR
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