Prvi izvještaj o bolesti zelene plijesni u Hrvatskoj

Hatvani, Lóránt; Sabolić, Petra; Kocsubé, Sándor; Kredics, László; Czifra, Dorina; Vágvölgyi, Csaba; Kaliterna, Joško; Ivić, Dario; Đermić, Edyta; Kosalec, Ivan

Source / Izvornik: Arhiv za higijenu rada i toksikologiju, 2012, 63, 487 - 487

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.2478/10004-1254-63-2012-2220

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:305697

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2023-09-29

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb
THE FIRST REPORT ON MUSHROOM GREEN MOULD DISEASE IN CROATIA*

Lóránt HATVANI1, Petra SABOLIĆ1, Sándor KOCSUBÉ2, László KREDICS2, Dorina CZIFRA2, Csaba VÁGVÖLGYI2, Joško KALITERNA3, Dario IVIĆ4, Edyta ĐERMIĆ3, and Ivan KOSALEC1

Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia1, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary2, University of Zagreb, Faculty of Agriculture, Department of Plant Pathology3, Institute for Plant Protection, Croatian Centre for Agriculture, Food and Rural Affairs4, Zagreb, Croatia

Green mould disease, caused by *Trichoderma* species, is a severe problem for mushroom growers worldwide, including Croatia. *Trichoderma* strains were isolated from green mould-affected *Agaricus bisporus* (button or common mushroom) compost and *Pleurotus ostreatus* (oyster mushroom) substrate samples collected from Croatian mushroom farms. The causal agents of green mould disease in the oyster mushroom were *T. pleurotum* and *T. pleuroticola*, similar to other countries. At the same time, the pathogen of *A. bisporus* was exclusively the species *T. harzianum*, which is different from earlier findings and indicates that the range of mushroom pathogens is widening. The temperature profiles of the isolates and their hosts overlapped, thus no range was found that would allow optimal growth of the mushrooms without mould contamination. Ferulic acid and certain phenolic compounds, such as thymol showed remarkable fungistatic effect on the *Trichoderma* isolates, but inhibited the host mushrooms as well. However, commercial fungicides prochloraz and carbendazim were effective agents for pest management. This is the first report on green mould disease of cultivated mushrooms in Croatia.

KEY WORDS: Pleurotus ostreatus, Agaricus bisporus, Trichoderma pleurotum, T. pleuroticola, T. harzianum, disease control

Mushroom green mould disease

Mushrooms dominating commercial cultivation worldwide are *Agaricus bisporus* (button or common mushroom), *Lentinula edodes* (shiitake), and *Pleurotus ostreatus* (oyster mushroom) (1). Conditions under which these mushrooms are cultivated favour fast mould growth. Moulds compete for space and nutrients more effectively than the mushrooms and can produce secondary toxic metabolites, extracellular enzymes, as well as various volatile organic compounds (2, 3), that can substantially lower or even entirely block commercial production.

Agaricus bisporus

The first green mould epidemic was reported in Northern Ireland in 1985, quickly followed by outbreaks in several European countries (4-7). In the early 1990s, a similar disease appeared in mushroom crops in the United States and Canada (8-10). Aggressive biotypes had originally been identified as *Trichoderma harzianum* Th2 and Th4, but later they were re-described on the basis of morphological characteristics and of the phylogenetic analyses of the

* The subject of this article has partly been presented at the International Symposium “Power of Fungi and Mycotoxins in Health and Disease” held in Primošten, Croatia, from 19 to 22 October 2011.
internal transcribed spacer (ITS) 1 region and the translation elongation factor 1-alpha (tef1) gene as new species *T. aggressivum* f. *europaeum* and *T. aggressivum* f. *aggressivum*, respectively (11).

Agaricus green mould reported in Hungary seems to have been caused by *Trichoderma aggressivum* f. *europaeum* (12).

The production of both *A. bisporus* and *P. ostreatus* in Croatia is affected by green mould infections. Though the disease generates serious production problems with significant economic consequences, its background has not been studied in Croatia until now.

MATERIALS AND METHODS

Isolation of fungal strains

Trichoderma strains were isolated from green mould-affected samples. Compost and substrate samples were obtained from a farm in north-western Croatia growing button mushroom and a farm in central Croatia growing oyster mushroom. Button mushroom compost samples were collected in the summer and oyster mushroom in both the summer and the winter growing seasons. Two green mould-affected and two healthy samples were collected each time. *Trichoderma* infections appeared sporadically at both farms at the time of sampling. *Trichoderma* isolates were deposited in the culture collection of the Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb under MFBF codes. Host mushrooms (button and oyster) were isolated from healthy samples collected together with the infected ones. All strains were isolated and maintained according to Hatvani et al. (12).

Species identification

DNA extraction, PCR-amplification of the internal transcribed spacer (ITS) region, DNA sequencing, and sequence analysis were performed as described by Kredics et al. (16).

In vitro confrontation assays

The aggressiveness of the isolates towards their corresponding host mushrooms was tested *in vitro* in dual-plate assays according to Szekeres et al. (21).

Table 1 Minimal inhibitory concentrations (MIC, mg mL⁻¹) of natural compounds on the *Trichoderma* pathogens in comparison with control oyster and button mushrooms

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannic acid</td>
<td>PP</td>
<td>1.25</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>>10</td>
<td>>10</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>PP</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>>10</td>
<td>>10</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Curcumin</td>
<td>PP</td>
<td>>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>>10</td>
<td>>10</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Rosmarinic acid</td>
<td>PA</td>
<td>10</td>
<td>5</td>
<td>2.5</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>PA</td>
<td>0.32</td>
<td>1.25</td>
<td>0.63</td>
<td>0.32</td>
<td>1.25</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Caffeic acid</td>
<td>PA</td>
<td>2.5</td>
<td>5</td>
<td>2.5</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>NT</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>PA</td>
<td>10</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Chrysirin</td>
<td>F</td>
<td>>10</td>
<td>>10</td>
<td>5</td>
<td>5</td>
<td>>10</td>
<td>>10</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Quercetin</td>
<td>F</td>
<td>>10</td>
<td>10</td>
<td>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Naringenin</td>
<td>F</td>
<td>>10</td>
<td>>10</td>
<td>10</td>
<td>10</td>
<td>>10</td>
<td>>10</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Thymol</td>
<td>P</td>
<td>0.16</td>
<td>0.32</td>
<td>0.16</td>
<td>0.08</td>
<td>0.16</td>
<td>0.08</td>
<td>0.08</td>
<td><0.08</td>
</tr>
<tr>
<td>1,8-Cineole</td>
<td>P</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>(+)-Menthol</td>
<td>P</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.32</td>
</tr>
<tr>
<td>(-)-Menthol</td>
<td>P</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>0.32</td>
</tr>
</tbody>
</table>

PP: polyphenol, PA: phenolic acid, F: flavonoid, P: phenol, MFBF: the number of strains from the Collection of Microorganisms, Department of Microbiology, Faculty of Pharmacy and Biochemistry University of Zagreb, NT: not tested
Characterisation of the isolates

The effect of temperature, natural compounds, and commercial fungicides on the mycelial growth of two isolates from each species in comparison with their host mushrooms were tested on solid YEG medium (12). The fungi were inoculated onto the solid surface as mycelial plugs (4 mm diameter) taken from the actively growing edge of young colonies. Trichoderma, P. ostreatus, and A. bisporus colony diameters were measured after two days, one week, and two weeks, respectively. All experiments were repeated three times.

In order to determine the temperature growth profiles of the isolates the plates were incubated at (5, 10, 15, 20, 25, 30, 35, and 40) °C.

Stock solutions (30 mg mL\(^{-1}\)) of natural compounds quercetin, caffeic acid, chrysin, curcumin, naringenin, gallic acid, tannic acid, ferulic acid, chlorogenic acid, rosmarinic acid, (+)-menthol, (-)-menthol, thymol, and 1,8-cineole (Sigma-Aldrich) were prepared in ethanol. Two-fold serial dilution series was made in eight steps in melted and cooled (60 °C) YEG medium. Tested concentrations were (10, 5, 2.5, 1.25, 0.63, 0.32, 0.16, and 0.08) mg mL\(^{-1}\). The fungi were inoculated onto the solidified media as described above, and incubated at 25 °C. The minimal inhibitory concentrations (MIC) of the compounds were determined after incubation and defined as the concentrations at which no fungal growth was observed in comparison with control without compounds added.

Stock solutions (10 mg mL\(^{-1}\)) of commercial fungicides prochloraz (SPORTAK®, Bayer CropScience, Zagreb, Croatia), tebuconazol (FOLICUR® W 250, Bayer CropScience, Zagreb, Croatia), and carbendazim (BAVISTIN® FL, Chromos Agro d.d., Zagreb, Croatia) were prepared in dimethyl sulphoxide (DMSO). Serial dilution (starting from 10 μg mL\(^{-1}\) for each fungicide), inoculations, incubation, and MIC determination were performed as described above.

RESULTS

Isolation of fungal strains

Twenty Trichoderma strains were isolated from green mould-affected oyster mushroom substrate and twenty from button mushroom compost samples.

Species identification

DNA was extracted from the isolates, and the ITS regions were amplified by PCR. The amplicons were subjected to automatic sequencing (external service), and the DNA sequences analysed by TrichOKEY v. 2.0 software (22, www.isth.info). All the 20 isolates collected from the button mushroom compost were identified as T. harzianum, while strains isolated from the oyster mushroom substrate included T. pleurotum and T. pleuroticola (9 and 11 isolates, respectively). Alignments (20) revealed that the ITS sequences of the isolates belonging to the same species did not share the same pattern. The differences suggested that they belonged to different strains within the species, but this did not affect the results of identification.

Dual-plate assays

At the sampling sites we observed heavy colonisation of the button mushroom compost (Figure 1) and the oyster mushroom substrate by Trichoderma. The in vitro confrontation assays performed between the isolates and the colonies of button and oyster mushroom also revealed high aggressiveness of the Trichoderma strains towards their hosts. No significant difference was found between the antagonistic activity of the isolates obtained from the same samples; all of them overgrew the mushroom colonies completely after four days of incubation and produced conidia on their surface. Figure 2 shows button mushroom inoculated as a single colony (A) and in confrontation with Trichoderma harzianum MFBF 10389 (B).

Characterisation of the isolates

As all Trichoderma isolates showed similarly high antagonistic activity towards their hosts, two strains of each species with different ITS types (see section...
“Species identification” in results) were selected for further characterisation in comparison with the button and oyster mushroom, namely T. harzianum MFBF 10389 and 10390, T. pleuroticola MFBF 10383 and 10387, and T. pleurotum MFBF 10386 and 10388.

The temperature growth profiles of the Trichoderma isolates and their hosts were found to be highly overlapping, with optima between 25 °C and 30 °C. Figure 3 shows the temperature growth profiles of the button mushroom (A) and oyster mushroom pathogenic Trichoderma isolates (B) in comparison with their host mushrooms.

The effect of the 10 natural compounds on the mycelial growth of the Trichoderma isolates and the mushrooms was also tested. Thymol, ferulic acid, (+)-menthol, and (-)-menthol showed remarkable inhibitory effect on the Trichoderma isolates at low concentrations (between 0.08 mg mL⁻¹ and 1.25 mg mL⁻¹, Table 1). However, at these concentrations they entirely blocked the growth of the mushroom strains as well.

Among the commercial fungicides tested, tebuconazol was more inhibitory to mushrooms than to the Trichoderma isolates. Prochloraz and carbendazim showed promising features for controlling green mould disease in cultivated button and oyster mushrooms, as they inhibited the growth of the examined Trichoderma strains even at low concentrations without affecting their hosts (Table 2). Based on the higher MIC, T. harzianum isolates were more tolerant to all fungicides tested than the Pleurotus-pathogenic species (T. pleurotum and T. pleuroticola).

DISCUSSION

In this study, the causal agents and potential means of disease control of mushroom green mould were examined based on Croatian samples. Oyster mushroom green mould disease was caused by T. pleurotum and T. pleuroticola, which is in accordance with findings from other countries (16-20). At the same time, in the cultivation of button mushroom the sole isolated pathogen was T. harzianum. These results add a new name to the list of the potential mushroom-pathogenic Trichoderma species, as earlier studies from other countries identified only T. aggressivum as the button mushroom pathogen (11, 12). This finding suggests a continuous evolving of green mould disease in cultivated mushrooms and underlines the importance of monitoring these infections.

In order to find proper means of disease control, we investigated the effects of temperature, natural compounds, and commercial fungicides on pathogen and host mycelial growth. Similar to an earlier report by Woo et al. (15), the temperature profiles of the pathogens and their hosts highly overlapped (Figure 3), showing no room for effective disease control. Green mould isolates tolerated most of the natural compounds even at concentrations above 10 mg mL⁻¹. However, thymol, ferulic acid, (+)-menthol, and (-)-menthol inhibited their growth at concentrations...
as low as 0.08 mg mL$^{-1}$ to 1.25 mg mL$^{-1}$ (Table 1). These results show that phenols have a remarkable inhibitory effect on the growth of green mould isolates. Notable differences were observed between species and isolates in their susceptibility to ferulic acid and thymol. Šegvić Klarić et al. (23) showed the inhibitory effect of thymol on the growth of moulds, including *Trichoderma* spp., even at very low concentrations (MIC 1.6 μg mL$^{-1}$ to 6.72 μg mL$^{-1}$). In contrast, our *Trichoderma* isolates tolerated this compound at much higher concentrations (0.08 mg mL$^{-1}$ to 0.32 mg mL$^{-1}$). However, as thymol, ferulic acid, and menthol blocked the growth of the host mushroom as well, their use in pest management is not possible.

Of the commercial fungicides tested, prochloraz and carbendazim proved to be efficient in inhibiting the green mould isolates at very low concentrations (0.63 μg mL$^{-1}$ to 5 μg mL$^{-1}$) and did not influence the growth of their host mushrooms (Table 2), which is similar to findings reported by Woo et al. (15) in oyster mushroom. Therefore they might be considered as potential chemical control agents to prevent or stop the spreading of mushroom green mould disease.

Acknowledgements

These materials are based on work financed partially by the FEMS Research Fellowship (FRF 2010-1) and the Postdoc Grant of the Croatian Science Foundation (Project ID number: 02.03/130) for L. Hatvani.

REFERENCES

PRVI IZVJEŠTAJ O BOLESTI ZELENE PLIJESNI U HRVATSKOJ

Bolest zelene plijesni uzrokovane vrstama roda *Trichoderma* velik je problem pri uzgoju gljiva u cijelom svijetu, uključujući i Hrvatsku. Vrste *Trichoderma* izolirane su iz komposta onečišćenog zelenom plijesni pri uzgoju šampinjona (*Agaricus bisporus*), kao i iz uzoraka supstrata uzgoja bukovača (*Pleurotus ostreatus*), s farma gljiva u Hrvatskoj. Pri infekciji bukovača izolirani su i identificirani uzročnici vrsta *Trichoderma pleurotum* i *T. pleuroticola*, što odgovara nalazima u drugim zemljama, dok je iz uzgoja šampinjona izolirana samo vrsta *T. harzianum*. Navedeni su podaci različiti od prijašnjih nalaza i upućuju na to da se širi broj infektivnih uzročnika pri uzgoju gljiva. Temperaturni profil izolata i njihovih domaćina preklapao se, a komercijalni fungicidi prokloraz i karbendazim nadeni su kao potencijalno dobi kandidati za učinkovito suzbijanje ovih infekcija. Ferulična kiselina i neke fenolne tvari kao što je timol pokazuju značajan fungistatski učinak na izolate vrsta roda *Trichoderma*, ali su također inhibitorni i za domaćine - gljive. Ovo je prvo izvješće o bolesti izazvanoj zelenom plijesni pri uzgoju gljiva šampinjona i bukovača u Hrvatskoj.

KLIJUČNE RIJEČI: Agaricus bisporus, kontrola zaraze, Pleurotus ostreatus, T. harzianum, T. pleuroticola, Trichoderma pleurotum

CORRESPONDING AUTHOR:

Dr Lóránt Hatvani
University of Szeged, Faculty of Science and Informatics
Department of Microbiology
Közép fasor 52, 6726 Szeged, Hungary
E-mail: lorant.hatvani@gmail.com