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Abstract: Acacetin, apigenin, chrysin, and pinocembrin are flavonoid aglycones found in foods such
as parsley, honey, celery, and chamomile tea. Flavonoids can act as substrates and inhibitors of the
CYP3A4 enzyme, a heme containing enzyme responsible for the metabolism of one third of drugs on
the market. The aim of this study was to investigate the inhibitory effect of selected flavonoids on
the CYP3A4 enzyme, the kinetics of inhibition, the possible covalent binding of the inhibitor to the
enzyme, and whether flavonoids can act as pseudo-irreversible inhibitors. For the determination of
inhibition kinetics, nifedipine oxidation was used as a marker reaction. A hemochromopyridine test
was used to assess the possible covalent binding to the heme, and incubation with dialysis was used
in order to assess the reversibility of the inhibition. All the tested flavonoids inhibited the CYP3A4
enzyme activity. Chrysin was the most potent inhibitor: IC50 = 2.5 ± 0.6 µM, Ki = 2.4 ± 1.0 µM,
kinact = 0.07 ± 0.01 min−1, kinact/Ki = 0.03 min−1 µM−1. Chrysin caused the highest reduction of
heme (94.5± 0.5% residual concentration). None of the tested flavonoids showed pseudo-irreversible
inhibition. Although the inactivation of the CYP3A4 enzyme is caused by interaction with heme,
inhibitor-heme adducts could not be trapped. These results indicate that flavonoids have the potential
to inhibit the CYP3A4 enzyme and interact with other drugs and medications. However, possible
food–drug interactions have to be assessed clinically.

Keywords: acacetin; apigenin; chrysin; pinocembrin; inhibition; CYP3A4; flavonoid-drug interaction

1. Introduction

Food is directly linked to the overall health and well-being of humans. Flavonoids
are secondary plant metabolites that are consumed through vegetables, fruits, teas, wines,
propolis, medicinal plants, and so on. These compounds aid organoleptic characteristics of
foods (e.g., color and taste of tea and wine) and are of interest due to biological properties
affecting human health [1,2]. As non-essential nutrients, they have received much attention
in the last decades. All flavonoids have a similar molecular structure—a phenylbenzo-
γ-pyrone (rings A, B and C)—to which hydroxyl groups are bound, and these hydroxyl
groups can be methylated and glycosylated [3]. Based on different authors and estimations,
there are from 4000 to 8000 currently known flavonoids that can be classified into different
subgroups based on the structure of ring C (such as flavans, flavanones, flavones, and
flavonols) [4]. The consumption of flavonoids from foods varies between societies and
countries, i.e., France has a high consumption rate (1193 mg/day) versus the United
Kingdom (182 mg/day) [5,6].

Acacetin is an O-methylated flavone believed to be connected with the prevention
of heart diseases [7], presenting anti-inflammatory [8], anti-plasmodial [9], and anti-
proliferative [10,11] effects on tumor cells in vitro. Apigenin has a hydroxyl instead of a
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methoxy group in its molecular structure (Figure 1). Apigenin is most abundant in parsley—
up to of 45.035 µg/g in dried plant [12]. Other food sources of apigenin are chamomile,
celery, vine spinach, artichokes, and oregano [13]. Apigenin shows various biological ef-
fects, including anti-oxidative [14], anti-hyperglycemic [14], and anti-inflammatory [15] to
anti-apoptotic [16]. Chrysin is a 5,7-dihydroxy-flavone (Figure 1), a dietary phytochemical
abundantly present in honey and many plant extracts (propolis, blue passion flower) [17].
Chrysin is a potent inhibitor of aromatase (cytochrome P450 19A1 enzyme) [18], showing
anti-inflammatory [19] and anti-oxidant [20] effects, as well as the capability to induce
apoptosis of cancer cells in vitro [17]. Pinocembrin is a 5,7-dihydroxy-flavanone (Figure 1),
which can be mostly found in fruits, vegetables, nuts, seeds, honey, herbs, spices, flowers,
tea, and red wine [18–20].
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Overall, the consumption of flavonoids and foods rich in flavonoids is linked with
beneficial effects on human health [21]. However, there is a potential risk that flavonoids
can cause interactions with various drugs. A food–drug interaction is a serious safety issue
that happens when the pharmacologic effect of a drug is changed by the action of food
and/or dietary supplements causing unexpected clinical effects [22]. Drug interactions are
responsible for more than 30% of all adverse drug events [23] and about 0.57% of hospital
admissions in the United States of America [24]. Flavonoids can cause interactions with
certain medications. One of the ways in which flavonoids cause interactions is by inhibiting
the enzymes responsible for drug metabolism such as cytochrome P450 enzymes (CYP
enzymes), the most significant of which is the CYP3A4 enzyme.

The CYP3A4 enzyme is responsible for the metabolism of 33% of drugs [25]. Besides
this, CYP3A4 is involved in the metabolism of many xenobiotics, several of which can act as
inhibitors or inducers of its activity. Interactions with other drugs used in therapy and even
clinically significant interactions can occur [26]. For example, one of the significant possible
interactions is the use of St. John’s wort and oral contraceptives, where the reduced efficacy
of oral contraceptives and resulting pregnancies have been noticed [27]. Thus, it is very
important to know which compounds can inhibit or induce the activity of the CYP3A4
enzyme. As it has been previously shown, acacetin, apigenin, chrysin, and pinocembrin
can cause a statistically significant inhibition of CYP3A4 at 1 µM concentration, using
testosterone as a marker substrate of residual enzyme activity [28]. These data suggest
that flavonoids have a potential of causing food–drug interactions when foods rich in
flavonoids (honey, propolis) are used [29]. As CYP3A4 has a large active site, it is suggested
that all inhibition assays are conducted using at least two marker substrates [30].

The aim of this study was to investigate the inhibition kinetic of acacetin, apigenin,
chrysin, and pinocembrin using nifedipine as a marker substrate of CYP3A4 enzyme
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activity. Furthermore, the aim of this study was to investigate the possible covalent binding
of flavonoids to the heme part of CYP3A4, as well as to test their possible role in pseudo-
irreversible inhibition.

2. Results
2.1. Enzyme Kinetics

Of all the tested flavonoids, chrysin was the most potent inhibitor of CYP3A4 with a
IC50 value of 2.5 ± 0.6 µM (Figure 2). Pinocembrin, acacetin, and apigenin had IC50 values
of 4.3 ± 1.1, 7.5 ± 2.7, and 8.4 ± 1.1 µM, respectively (Table 1).
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Table 1. Basic kinetic parameters of CYP3A4 inhibition by individual flavonoids (nifedipine (NIF), used as marker substrate,
and the results expressed as mean values of triplicates). The results are compared with the assays in which testosterone
(TSN) was used as marker substrate (taken from reference [29]).

Acacetin Apigenin Chrysin Pinocembrin

Parameter NIF TSN NIF TSN NIF TSN NIF TSN

IC50 (µM) 7.5 ± 2.7 10.9 ± 0.3 8.4 ± 1.1 11.4 ± 0.4 2.5 ± 0.6 0.6 ± 0.5 4.3 ± 1.1 5.0 ± 0.6

Ki (µM) 12.1 ± 5.6 6 ± 3 20.2 ± 12.7 1.5 ± 0.8 2.4 ± 1.0 0.6 ± 0.3 5.1 ± 1.6 1.2 ± 0.3

kinact (min−1) 0.10 ± 0.02 0.036 ± 0.006 0.11 ± 0.04 0.11 ± 0.01 0.07 ± 0.01 0.065 ± 0.005 0.04 ± 0.01 0.018 ± 0.001

kinact/Ki (min−1 µM−1) 0.008 0.006 0.005 0.073 0.029 0.108 0.008 0.015

IC50 values are dependent on experimental setup; thus, a complete inhibition kinetic
was determined for individual flavonoids using different concentrations of flavonoid
incubated for different time periods (vide infra). Chrysin also showed the lowest inhibition
constant—Ki value. The inhibition constants of individual flavonoids were tested using
nifedipine as a marker substrate, and for acacetin, apigenin, chrysin, and pinocembrin, the
following Ki values were determined: 12.1 ± 5.6, 20.2 ± 12.7, 2.4 ± 1.0, and 5.1 ± 1.6 µM,
respectively. The corresponding inactivation rate constants were: 0.10 ± 0.02 min−1,
0.11 ± 0.04 min−1, 0.07± 0.01 min−1, and 0.04± 0.01 min−1, respectively. The inactivation
efficiency was determined for each flavonoid as the ratio of the inactivation rate constant
and the inhibition constant. Out of all the tested flavonoids, chrysin had the highest
inhibition efficiency, which was 0.029 min−1 µM−1 (Table 1).
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2.2. Hemochrome-Pyridine Assay

The hemochrome pyridine assay is used to determine the covalent binding of reactive
intermediates to the protoporphyrin portion of heme. Under reduced, basic conditions,
ferrous forms a complex with pyridine. The absorption maxima of the complex were
observed at 531 nm and 570 nm. Incubations containing flavonoids as inhibitors (acacetin,
apigenin, chrysin, and pinocembrin) showed a decrease in heme concentration (Figure 3).
The assays were then confirmed by additional incubation with catalase (CAT) and superox-
ide dismutase (SOD) to prevent the possible destruction of heme by reactive oxygen species
formed in nonproductive cytochrome P450 cycles. A reduction of heme concentration was
also confirmed (Figure 3). Incubation with acacetin reduced heme by 51.12%, apigenin by
54.95%, chrysin by 94.5%, and pinocembrin by 74.73%.
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Figure 3. Spectra showing a decrease in heme absorbance in incubations with flavonoids (25 µM) without the addition of
SOD and CAT (A) and with the addition of SOD and CAT (B). Heme concentration determined in the control sample was
0.53 µM (A) and 0.60 µM (B).

All flavonoids reduced the heme concentration in the assay with and without the
addition of SOD and CAT. The residual heme concentration after incubation with acacetin
was 48.88%, and, on retesting with the addition of SOD and CAT, was 63.33%. The residual
heme concentration after incubation with apigenin was 45.05%, and, on repeated testing
with the addition of SOD and CAT, was 55.11%. The residual heme concentration after
incubation with chrysin was 2.9%, while after incubation with the addition of SOD and CAT
was 5.5%. The second largest reduction of heme concentration was observed in incubations
with pinocembrin, which were at 25.3% and 35.5%, without and with the addition of SOD
and CAT, respectively (Table 2).

Table 2. Heme concentration after flavonoid incubations expressed as percentage to the control incubation without
an inhibitor.

Flavonoid Heme Concentration (%) Heme Concentration with the Addition of SOD and CAT

acacetin 48.8 ± 0.4 63.3 ± 0.5

apigenin 45.1 ± 1.7 55.1 ± 2.9

chrysin 2.9 ± 0.1 5.5 ± 0.5

pinocembrin 25.3 ± 0.4 35.3 ± 1.2

These results indicate that the inactivation of the cytochrome P450 3A4 enzyme is
achieved through the adduct formation of reactive flavonoid intermediate with the heme
portion of the enzyme. As the results were confirmed with the use of CAT and SOD, it can
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be concluded that heme destruction was not caused by reactive oxygen species generated
in non-productive cycles of cytochrome P450.

2.3. Pseudo-Irreversible Inhibition Assay

In the pseudo-irreversible inhibition assay, samples were incubated with flavonoids
and treated with oxidant, after which they were subjected to dialysis. In the case of pseudo-
irreversible inhibition, the enzyme activity should be recuperated. In the incubations
with all of the tested flavonoids, there was a significant inhibition of enzyme activity after
dialysis with and without treatment with an oxidant (Figure 4). In all of the cases, the
difference in residual enzyme activity between the flavonoid sample and the potassium
hexacyanoferrate sample was statistically insignificant (p ≤ 0.05).
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Figure 4. Residual activity of the CYP3A4 enzyme after incubation and dialysis with flavonoid or
after incubation and dialysis with flavonoid treated with potassium hexacyanoferrate (CON—control,
FLA—flavonoid only, FLA + PCF—flavonoid, and potassium hexacyanoferrate).

As in the previous experiments, the highest reduction of enzyme activity was observed
when chrysin was used as an inhibitor. The residual activity of the enzyme after incubation
and dialysis with chrysin was 0.57%, and after incubation and dialysis with prior treatment
with potassium hexacyanoferrate, it was 1.31% (Figure 4).

In case of direct (reversible) inhibition, this type of experiment would show enzyme
activity recovery after dialysis. In case of pseudo-irreversible inhibition, enzyme activity
would be recovered after treatment with an oxidant and dialysis. As these were not the
case with any of the analyzed flavonoids, it can be concluded that all flavonoids show
irreversible inhibition of cytochrome P450 3A4.

3. Discussion

It has been shown that some flavonoids can inhibit the activity of the cytochrome P450
enzymes. Šarić-Mustapić et al. [28] and Kondža et al. [29] showed that acacetin, apigenin,
chrysin, and pinocembrin inhibit the CYP3A4 enzyme in the assay with testosterone
as a marker substrate. As the CYP3A4 enzyme possesses a large active site that can
accommodate substrates differently, it is advised to conduct activity assays with another
marker substrate such as nifedipine and midazolam [30]. Consequently, we used nifedipine
oxidation as the marker reaction of CYP3A4 activity and determined the inactivation
kinetic parameters. The values of inhibition efficacy obtained using nifedipine as a marker
substrate are of the same order of magnitude when compared to the testosterone assay
for apigenin, acacetin, and pinocembrin. Only chrysin showed a fourfold higher value
in testosterone [29] when compared with nifedipine assay, i.e., 0.108 min−1 µM−1 vs.
0.029 min−1 µM−1. The observed similarities in the inactivation kinetics are in accordance
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with literature data confirming that nifedipine and testosterone have different binding
sites that overlap [31]. Cytochrome P450 3A4 has one of the largest active sites and can
accommodate the substrate and the inhibitor at the same time, with one influencing the
binding of the other, which could explain the observed differences between nifedipine and
testosterone assays.

The clinical implications of reversible inhibitors (i.e., food–drug interactions) can be
avoided if the inhibitor is discontinued from the treatment. More important interactions are
those that are irreversible, whereas simply discontinuing the use of the inhibitor will not
resolve the interaction issues. In this study, chrysin showed the highest inhibition potential,
with the lowest IC50 and Ki values. The molecular docking study of flavonoids binding to
cytochrome P450 3A4 has shown a higher binding affinity of chrysin by exposing the B ring
to the iron in the active center of the enzyme [28]. Structure-inhibition relationship study
has shown that hydroxyl groups at the A ring contribute to the inhibitory effect probably
due to ion–ion interactions, while B ring can be non-substituted (pinocembrin, chrysin) or
monosubstituted (acacetin, apigenin) for the inhibitory effect to be observed (Figure 1) [28].
Non-substituted flavonoids (pinocembrin, chrysin) are more susceptible to the epoxidation
and generation of reactive intermediates that inactivate CYP3A4. The stronger inhibitory
effect observed with chrysin is probably due to the rigidity of the structure and the presence
of the C2=C3 double bond when compared with pinocembrin.

The importance of these described enzyme kinetics can be observed in the context
of food–drug interactions, where the administration of chrysin (20–100 µM) significantly
increased the AUC and peak serum concentration (Cmax) of nitrofurantoin in rats [32].
For instance, the relatively weak mechanism-based inhibitor of the CYP3A4/5 enzyme,
erythromycin [33], has been reported to cause a moderate interaction with cerivastatin in
healthy volunteers (21% increase in AUC of cerivastatin) [34]. Chrysin also has a larger
inhibition potential than mibefradil, an antihypertensive drug that was withdrawn due to
significant interactions with other medicines. The results of this study suggest that chrysin
can be a potent inhibitor and possibly interact with other used medications, changing the
AUC and Cmax of these medications. Chrysin is abundant in propolis (28 g/L), and it is the
third main flavonoid in honey 5.3 mg/kg [35]; therefore, a diet rich in these foods has a
potential to interact with medicines that are CYP3A4 substrates.

Pinocembrin, a proven irreversible inhibitor of the CYP3A4 enzyme, showed the
lowest kinact value of 0.04 ± 0.01 min−1. Its inactivation efficacy was similar to that of
acacetin and apigenin (0.01 min−1 µM−1). Pinocembrin is mostly found in foods such as
honey and beverages (tea and red wine), presenting a rich source of this flavonoid [29].
According to these kinetic parameters, caution should be exercised in consuming these
pinocembrin sources along with medicines that act as CYP3A4 substrates.

Acacetin showed three times higher IC50 value than chrysin and five times higher
Ki value, while maintaining similar kinact values as other flavonoids, indicating a lower
inhibitory efficacy. Acacetin can mainly be found in plant species such as Turnera diffusa,
Robinia pseudoacacia, and Betula pendula [36], but certain foods also present a source of
this flavonoid. For instance, kumquat juice is a rich source of acacetin, and acacetin can
be found in concentrations of 0.1 mg/100 g of fresh juice [37]. The parent compound of
acacetin, apigenin showed the highest IC50 value and the highest Ki value among the four
tested flavonoids. The inhibitory potential of apigenin was confirmed in vivo when the
combination treatment of apigenin and paclitaxel led to the increase in oral bioavailability of
paclitaxel, which was mainly attributed to enhanced absorption in the gastrointestinal tract
through the inhibition of P-glycoprotein and reduced first-pass metabolism of paclitaxel
through the inhibition of the CYP3A subfamily in the small intestine and/or in the liver
by apigenin [38]. Apigenin is a dominant flavonoid in celery, parsley, and chamomile.
Dried parsley has been reported to have the maximum quantity of apigenin, at 45035 µg/g.
Additional sources of apigenin are found in herbs such as the dried flower of chamomile,
which contain 3000 to 5000 µg/g, and celery seeds, which contain 786.5 µg/g [39].
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The reversible inhibition of cytochromes P450 3A4 is related to the first step of the
cytochrome P450 catalytic cycle (Figure 5). Most often, the competition between the
substrate and the inhibitor in binding to the active site (ferric iron) is observed. In that
case, it is advisable to conduct binding experiments (enzyme titrations) and to test it with
more than one substrate, as CYP3A4 has a large active site that can accommodate more
than one molecule of substrate/inhibitor [26,30]. In this study, we have used nifedipine as
a substrate, and the results of inhibition efficiency were of a comparable magnitude with
the previously reported assays conducted with testosterone as marker substrate (Table 1).
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However, as we have previously shown [28,29] and confirmed here in our conducted
experiments, all studied flavonoids show an irreversible inhibition. Irrespective of the
type of the irreversible inhibition (pseudo-irreversible or covalent binding of intermediate
to heme or apoprotein), inhibition will be most prominent if preincubation, before the
addition of a marker substrate, is conducted [26]. In a preincubation, a catalytic cycle is
activated by the addition of the generating system for the production of the coenzyme
(NADPH), and sufficient time is permitted to observe enzyme inactivation. Thus, all of
the irreversible types of inhibition require the reduction of the enzyme to the ferrous form
(Figure 5).

As cytochromes P450 are hemoproteins, we have studied the binding of flavonoids
to the ferrous form of the active site and the binding of a possible reactive intermediate
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to the heme [26]. To assess the possible heme adduct formation, a hemochromopyridine
assay was conducted. All the tested flavonoids significantly reduced heme concentration
in both assays, by more than 50%. Chrysin was, again, the most potent inhibitor, matching
the inhibition kinetic values observed in this study. Heme concentration with pinocembrin
was five times higher, and, with apigenin, it was almost ten times higher than the one with
chrysin (25.3 ± 0.4 and 45.1 ± 1.7%, respectively). This reduction in heme concentrations
indicates that the irreversible inhibition of CYP3A4 by the studied flavonoids can be
attributed to the covalent binding of a reactive intermediate to the heme. It should be
noted that hemes can be destroyed by reactive oxygen species, lowering the results of
hemochromopyridine assay. To eliminate this possibility, incubations were conducted in
the presence of SOD and CAT (Table 2), confirming the aforementioned conclusion.

The first step in the catalytic cycle of the cytochrome P450 enzyme is the binding of a
substrate to a ferric ion. If the inhibitor shows competitive inhibition to the substate, the
enzyme activity can be retrieved by dialysis, as the elimination of the inhibitor enables
the complete recovery of the enzyme activity [26]. However, if the inhibitor binds to the
ferrous iron, the use of an oxidant, such as PCF, preceding dialysis is needed in order to
retrieve enzyme activity. If enzyme activity is recovered, inhibition is characterized as
pseudo-irreversible [26]. As the enzyme activity could not be recovered after dialysis with
or without PCF, none of the tested flavonoids (at 25 µM concentration) act as reversible
or pseudo-irreversible inhibitors of the CYP3A4 enzyme. This also confirms that an
irreversible inhibition by a covalent binding to either heme or apoprotein is the probable
cause of enzyme inactivation.

It should be noted that chrysin caused nearly a complete reduction of heme in the
incubation: 97.1% without and 94.5% with SOD and CAT (Table 2); while the results of
residual enzyme activity under similar conditions showed the reduction of enzyme activity
by approximately 99% (Figure 4). The hemochromopyridine assay registers hemes from all
sources in the incubation, i.e., cytochrome P450, as well as cytochrome b5. The results for
chrysin indicate that a reactive intermediate generated by cytochrome P450 reacted with
heme from cytochrome P450 as well as cytochrome b5.

Further LC-MS analysis was conducted to determine possible reactive flavonoid in-
termediates either in a form of heme adduct or trapped using glutathione as a radical
scavenger (data not shown). However, we were not able to isolate any of the predicted
adducts probably due to the instability of the reactive flavonoid intermediate and/or
heme/glutathione adduct. A similar behavior was observed with mibefradil, an antihyper-
tensive, withdrawn from the marker due to drug/drug interactions. Although mibefradil
caused the reduction of heme, a reactive intermediate was not established [40].

4. Materials and Methods
4.1. Materials

Four flavonoids (acacetin, apigenin, chrysin, and pinocembrin) were used in this study
(Sigma-Aldrich, St. Louis, MO, USA). Recombinant cytochromes P450 3A4 coexpressed
with nicotinamide-adenine-dinucleotide phosphate (NADPH) reductase and cytochrome
b5 in baculosomes were purchased from Thermo Fisher Scientific (Waltham, MA, USA).
Based on cytochrome P450 carbon monoxide assay [41], the content of CYP3A4 enzyme
declared by the manufacturer was confirmed to be 1 µM. Glucose-6-phosphate (G6P),
glucose-6-phosphate dehydrogenase (G6PDH), and β-nincotinamide-dinucleotide phos-
phate disodium salt (NADP+) were purchased from Sigma-Aldrich. Potassium phosphate
(p.a.) and dichloromethane (p.a.) were purchased from Kemika d.d. (Zagreb, Croatia),
formic acid (85%, p.a.) from Semikem d.o.o. (Sarajevo, Bosnia and Herzegovina), and
methanol used for reagent dissolution and chromatography from Merck KGaA (Darmstadt,
Germany). Ultrapure water was used in the incubation mixtures and chromatography.
Potassium dihydrogen phosphate (Kemika d.d.) was used to prepare potassium phosphate
buffer pH 7.85; pH was adjusted using sodium hydroxide purchased from Semikem d.o.o.
Nifedipine (Sigma-Aldrich) and oxidized nifedipine (European Directorate for Quality of
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Medicines, Pharmacopoeia, 10th edition, Strasbourg, France) were used in the study of
residual enzyme activity, as well as in inactivation kinetics. Testosterone (Sigma-Aldrich)
and 6β-hydroxytestosterone (Cayman Europe, Tallinn, Estonia) were used for assays in
pseudo-irreversible inhibition. Troleandomycin and diltiazem were obtained from the
Agency for Medicinal Products and Medical Devices (Zagreb, Croatia). Pyridine (p.a.)
(Semikem d.o.o.), bovine hemin (Sigma-Aldrich), and dimethylsulfoxide (Semikem d.o.o.)
were used in the hemochromopyridine assay. Potassium hexacyanoferrate (Siegfried AG,
Zofingen, Switzerland) was used in the study of reversible and pseudo-reversible inhibi-
tion. Superoxide dismutase (SOD) (Sigma-Aldrich), catalase (CAT) (Sigma-Aldrich), and
hydrochloric acid (36%, p.a.) (Semikem d.o.o.) were used in the binding specificity assay.
Enzyme incubations were performed in a water bath (Inkolab, Zagreb, Croatia). Assay of
residual enzyme activity and flavonoid inactivation kinetics were performed using high
performance liquid chromatography coupled with UV-Vis detection (HPLC UV-Vis, Agi-
lent 1100, Agilent Technologies, Santa Clara, CA, USA). Residual activity calculations and
inhibition kinetics parameters were made using the program R (The R Project for Statistical
Computing, Vienna, Austria) and Microsoft Excel (Microsoft, Redmond, WA, USA).

4.2. Methods
4.2.1. Determination of Enzyme Kinetics and Residual Activity

Enzyme incubations were performed in triplicate, with mechanical stirring in a water
bath at 37 ◦C. Aliquots of flavonoids with a final concentration of 1 µM were dissolved in
methanol, transferred to glass tubes, and evaporated to dryness, except in control samples
without the inhibitor (flavonoid). After the evaporation of the solvent, an incubation
mixture was prepared to a volume of 100 µL, consisting of 5 pmol CYP3A4 enzyme, 50 mM
potassium phosphate buffer (pH 7.4), and ultrapure water. An NADPH generating system
composed of 0.1 M G6P: 10 mg/mL NADP+: 1000 IU/mL G6PDH = 50:25:1 (v/v/v) was
prepared immediately before use. This generating system contains glucose-6-phosphate
dehydrogenase that regenerates NADP+ into NADPH, keeping the concentration of the
cytochrome P450 coenzyme (NADPH) constant in the incubation. The addition of the
generating system (15% of the volume in the final incubation, v/v) started the reaction.
Nifedipine was used to test out the residual enzyme activity at a final concentration of
200 µM. The reaction was stopped using 1 mL of ice-cold 1% solution of formic acid
in dichloromethane. The samples were mixed, then centrifuged for 10 min on 1900g
(Rotofix 32, Westfalia, Germany). After centrifugation, two layers were formed (water and
organic layer). 850 µL of the organic layer was transferred to cuvettes and evaporated.
The analyte was then dissolved in 30 µL of methanol. An Agilent Zorbax SB C18 column
(4.6 × 250 mm, 3 µm, Agilent Technologies, Santa Clara, CA, USA) was used to analyze
the samples by HPLC. The mobile phase was composed of methanol and water in a ratio of
64:36. The analysis was isocratic. The flow was set at 1.0 mL min−1. The injection volume
was set at 10 µL. Nifedipine was used as a marker substrate. The reaction observed was
the oxidation of nifedipine. Chromatograms were recorded at 254 nm. The duration of
the analysis was set at 25 min. The retention time of nifedipine is 7.1 min and that of
oxidized nifedipine is 10.8 min [42]. In both cases, the amount of product obtained was
observed as the amount of area under the curve (AUC) relative to the control sample. For
all the flavonoids, half maximal inhibitory concentration (IC50), constant of inhibition (Ki),
constant of inactivation speed (kinact), and inactivation efficacy (kinact/Ki) were determined.
Troleandomycin was used as a positive control—irreversible inhibitor of cytochrome P450
3A4. 25 µM concentration of troleandomycin reduced enzyme activity to 35 ± 5%.
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4.2.2. Hemochromopyridine Assay

The hemochromopyridine assay was used to assess possible heme destruction by
reactive intermediate form in cytochrome P450 cycle and was performed according to the
method described by Flink and Watson [43] and Paul et al. [44], with some modifications.
A calibration curve was established using hemin dissolved in dimethylsulfoxide (0.6 to
0.1 µM). Spectra were recorded at a wavelength of 500 to 600 nm. Incubation mixtures with
25 µM inhibitor (flavonoid) were prepared to a volume of 200 µL. The reaction was started
by the addition of an NADPH generating system (for composition, see Section 4.2.1), and
the incubations lasted for 30 min. The reaction was stopped after half an hour by the
addition of pyridine (final concentration 0.83 M) and sodium hydroxide (final concentra-
tion 0.06 M). The samples were recorded on a spectrophotometer (UV-1280, Shimadzu
Corporation, Kyoto, Japan) within 1 min of the addition of an alkaline solution, due to the
instability of pyridine hemochromogen under basic conditions [44]. Heme concentration
in the samples was calculate based on the prepared calibration curve. This assay was
performed in triplicate. The incubations were repeated using catalase and superoxide
dismutase (5 IU each) in the incubation mixture to prevent the generation of hydrogen
peroxide through futile catalytic cycle.

4.2.3. Pseudo-Irreversible Inhibition Assay

The aim of this assay is to test out the formation of covalent complexes with ferrous
iron (Fe2+), by assessing a recovery of enzyme activity after dialysis with or without the
addition of an oxidant. Three types of experiments were performed for each flavonoid:
incubation mixture without flavonoids (control), incubation mixture with flavonoid, and
incubation mixture with flavonoid to which oxidant was added after incubation. Each
incubation with the inhibitor was performed for 30 min using the same experimental
settings as described above (Section 4.2.1). After incubation, the samples were transferred
to dialysis cartridges. Aa oxidant—20 mM solution of potassium hexacyanoferrate was
added to one of the incubations before dialysis [45]. The cassettes (Slide-A-Lyzer Dialysis
Cassettes, Thermo Fisher Scientific, Waltham, MA, USA) were immersed in 50 mM potas-
sium phosphate buffer solution (pH 7.4) for 30 min (dialysis solution was exchanged three
times). After dialysis, the samples were transferred from the cassette back to the glass tube,
and the residual enzyme activity was assessed using testosterone as a marker substrate
(200 µM final concentration). As the NADPH generating system was also dialyzed, it was
again added to the incubations to initiate enzyme reaction. The samples were incubated for
30 min with the same settings (described under Section 4.2.1). The reaction was terminated
by the addition of an ice-cold solution of formic acid in dichloromethane. The samples
were analyzed by HPLC. Diltiazem, a known pseudo-irreversible inhibitor of cytochrome
P450 3A4, was used as a positive control to evaluate oxidation to a ferric form (a complete
enzyme activity recovery was observed).

4.2.4. Results Processing

A one-sided t-test would be used to assess the statistical significance in the differences
between samples and controls, based on measurements of residual activity. A nonlinear
equation was used to calculate the IC50 value. The Michaelis-Menten equation was used
to determine the inactivation constant and the inactivation rate of the inhibitor. Statistical
processing and graph preparations were done using Program R (The R Project for Statistical
Computing, Vienna, Austria) and Microsoft Excel (Microsoft, Redmond, WA, USA).

5. Conclusions

Acacetin, apigenin, chrysin, and pinocembrin inhibit the CYP3A4 enzyme activity
in vitro. Chrysin is the most potent enzyme inhibitor, with the lowest IC50, Ki, kinact values
and the highest inactivation efficacy. All flavonoids reduced the heme concentration of
the enzyme, confirming that this is an irreversible inhibition by reactive intermediate that
cannot be prevented by the addition of SOD and CAT. None of the tested flavonoids act as
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reversible or pseudo-irreversible inhibitors of the CYP3A4 enzyme at 25 µM concentration,
as the enzyme activity could not be recovered with dialysis with and without the addition
of potassium hexacyanoferrate. As these flavonoids can abundantly be found in various
foods such as fruits, vegetables, spices, teas, and red wine, there is a possibility that they
can interfere with various xenobiotics that are CYP3A4 substrates. Further in vivo studies
are needed to completely investigate the possibilities of such food–drug interactions, as
well as the possible contribution of other enzymes and transporters in the interactions.

Author Contributions: This study was conducted as a part of a PhD thesis by M.K.; M.B. designed
the study; M.K., I.T., and V.R. performed incubation assays, spectrometry and HPLC analysis; M.K.,
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