Tena Cupar

Analiza N-glikana lizosomalnih membranskih glikoproteina modela Niemann-Pickove bolesti tip C1

DIPLOMSKI RAD
Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2016.
Ovaj diplomski rad prijavljen je na kolegiju Molekularna biologija s genetičkim inženjerstvom Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta, a izrađen je na Zavodu za biokemiju i molekularnu biologiju pod stručnim vodstvom prof. dr. sc. Gordana Lauca.

Zahvaljujem se prof. dr. sc. Gordanu Laucu na pružanju prilike za rad i usvajanje novih znanja. Također se zahvaljujem i Ivanu Gudelju, mag. pharm. na pomoći i vodstvu u eksperimentalnom radu, kao i u pisanju diplomskog rada. I na kraju, zahvaljujem se prijateljima i obitelji na moralnoj podršci tijekom studija.
Sadržaj

1. **UVOD** .. 1

1.1. Glikoproteini ... 1
 1.1.1. N-glikozilacija ... 2

1.2. Lizosomi ... 4
 1.2.1. Lizosomske bolesti odlaganja ... 5

1.3. Niemann-Pickova bolest tip C ... 6
 1.3.1. Niemann-Pickova bolest tip C kao model za Alzheimerovu bolest ... 8

1.4. Analiza N-glikana glikoproteina lizosomalne membrane .. 9
 1.4.1. Odjeljivanje membranskih proteina principom fazne separacije .. 9
 1.4.2. Deglikozilacija i obilježavanje glikana .. 10
 1.4.3. HILIC-UPLC metoda za analizu glikana ... 12
 1.4.4. MALDI-TOF-MS analiza ... 13

2. **OBRAZLOŽENJE TEME** ... 14

3. **MATERIJALI I METODE** .. 15

3.1. Materijali ... 15
 3.1.1. Kemikalije i enzimi ... 15
 3.1.2. Uređaji i pribor .. 16
 3.1.3. Priprema pufera i otopina ... 16
 3.1.4. Uzorci lizosoma ... 18

3.2. Metode ... 19
 3.2.1. Izolacija membranskih glikoproteina lizosoma .. 19
 3.2.2. *In solution* deglikozilacija ... 20
 3.2.3. *In solution* fluorescentno obilježavanje N-glikana .. 20
 3.2.4. Pročišćavanje fluorescentno obilježenih N-glikana .. 21
 3.2.5. UPLC-HILIC analiza 2-AB obilježenih N-glikana ... 22
 3.2.6. Statistička analiza ... 22

4. **REZULTATI I RASPRAVA** ... 23

4.1. Analiza N-glikana glikoproteina Tritonske faze ... 23
 4.1.1. Asignacija kromatografskih vršaka .. 28

4.2. Analiza N-glikana glikoproteina vodene faze .. 30

4.3. Pomak prema složenijim strukturama ... 32

4.4. Promjene u oligomanoznim glikanima ... 32
 4.4.1. Porast M5 struktura ... 32

4.4.2. Smanjen broj manoza u oligomanoznim strukturama N-glikana iz CHO-NPC1 - /-uzoraka ... 33

4.5. Moguć utjecaj promjene proteinskih stava lizosomalne membrane
na njen N-glikom.. 33

4.5.1. Promjena u recikliranju membranskih proteina .. 33
4.5.2. Promjena ekspresije LAMP-2 ... 34
4.5.3. NPC1 je membranski lizosomalni glikoprotein ... 34

4.6. Utjecaj kolesterola na glikozilaciju .. 34

5. ZAKLJUČCI .. 35

6. LITERATURA .. 36

7. SAŽETAK/ SUMMARY .. 45
POPIS KRATICA

2-AB 2-aminobenzamid
2-PB 2-pikolinboran
ACN acetonitril
AD Alzheimerovala bolest (eng. Alzheimer's disease)
ApoE apolipoprotein E
APP prekuror amiloidnog proteina (eng. Amyloid precursor protein)
CHO ovari kineskog hrčka (eng. Chinese hamster ovary)
CHOwt divljii tip CHO stanica
CNS središnji živčani sustav (eng. Central nervous system)
DMSO dimetilsulfoskid
DPM dolikol-fosfat manoza
DPM1 katalitička podjedinica dolikol-fosfat manozil transferaze
DPM2 regulatorni protein biosinteze dolikol-fosfat manoze
EDTA etilendiamintetraoctena kiselina
ER endoplazmatski retikulum
Fuc, F fukoza
Gal, G galaktoza
Glc glukoza
GlcNAc N-acetilglukoamin
GlcNAcT N-acetilglukoamin transferaza
GP kromatografski vršak (eng. Glycan peak)
GU glukozne jednice (eng. Glucose units)
HILIC tekućinska kromatografija temeljena na hidrofilnim interakcijama (eng. Hydrophilic interaction chromatography)
ILV intraluminalna vezikula
LAMP membranski protein povezan s lizosomom (eng. Lysosomal-associated membrane protein)
LBPA lizo-bis-fosfatidna kiselina (eng. Lysobispshosphatidic acid)
LSDs lizosomske bolesti odlaganja (eng. Lysosomal storage diseases)
M6-P manoza-6-fosfat
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALDI</td>
<td>matriksom potpomognuta ionizacija laserskom desorpcijom (eng. Matrix-assisted laser desorption/ionization)</td>
</tr>
<tr>
<td>Man, M</td>
<td>manova</td>
</tr>
<tr>
<td>MS</td>
<td>masena spektrometrija</td>
</tr>
<tr>
<td>MS/MS</td>
<td>tandemska masena spektrometrija</td>
</tr>
<tr>
<td>Neu5Ac, S</td>
<td>N-acetilneuraminska kiselina</td>
</tr>
<tr>
<td>Neu5Gc, S*</td>
<td>N-glikolneuraminska kiselina</td>
</tr>
<tr>
<td>NFT</td>
<td>neurofibrilarni snopići (eng. Neurofibrillary tangles)</td>
</tr>
<tr>
<td>NP</td>
<td>kromatografija normalnih faza (eng. Normal phase chromatography)</td>
</tr>
<tr>
<td>NPC</td>
<td>Niemann-Pickova bolest tip C</td>
</tr>
<tr>
<td>NPC1</td>
<td>protein Niemann-Pick C1</td>
</tr>
<tr>
<td>NPC1 -/-</td>
<td>homozigotni mutant za NPC1 protein</td>
</tr>
<tr>
<td>NPC2</td>
<td>protein Niemann-Pick C2</td>
</tr>
<tr>
<td>PBS</td>
<td>fosfatom puferirana otopina soli (eng. Phosohate buffered saline)</td>
</tr>
<tr>
<td>PNGaza</td>
<td>peptid–N–glikozidaza F</td>
</tr>
<tr>
<td>RP</td>
<td>kromatografija obrnutih faza (eng. Reverse phase chromatography)</td>
</tr>
<tr>
<td>SDS</td>
<td>natrijev dodecil sulfat (eng. Sodium dodecyl sulfate)</td>
</tr>
<tr>
<td>ST6Gal</td>
<td>beta-galaktozid alfa-2,6-sijaliltransferaza</td>
</tr>
<tr>
<td>TOF</td>
<td>analizator vremena leta (eng. Time of flight analyzer)</td>
</tr>
<tr>
<td>TPPI</td>
<td>tripeptidil peptidaza I</td>
</tr>
<tr>
<td>UPLC</td>
<td>tekućinska kromatografija ultrvisoke djelotvornosti (eng. Ultra performance liquid chromatography)</td>
</tr>
</tbody>
</table>
1. UVOD

1.1. Glikoproteini

Glikoproteini su proteini s kovalentno vezanim ugljikohidratima (Varki i Sharon, 2009). Takvi proteini se uglavnom izlučuju van stanica ili smještaju na njihovu površinu. Ugljikohidratni dijelovi proteina imaju važnu ulogu u usmjeravanju proteina u odgovarajuće stanične odjeljke, njihovom smatanju u endoplazmatskom retikulumu (ER) te kao mjesta prepoznavanja u interakcijama između stanica (Cooper i Hausman, 2004a). Sinteza i dorada glikoproteina odvija se u ER-u i Golgijevom tijelu, ali također u citoplazmi i na vanjskoj strani plazmatske membrane (Varki i sur., 2009).

Glikani se dijele na N-vezane i O-vezane, ovisno o mjestu vezanja. N-vezani oligosaharidi vezani su na dušikov atom bočnog ogranka asparagina, dok su O-vezani oligosaharidi vezani na kisikov atom bočnog ogranka serina ili treonina (Cooper i Hausman, 2004a). Za razliku od N-vezanih, O-vezani oligosaharidi nastaju dodavanjem jednog po jednog monosaharida i najčešće se sastoje od samo nekoliko ostataka (Cooper i Hausman, 2004b).
1.1.1. N-glikozilacija

Otkriveno je pet vrsta N-glikanskih veza, od kojih je ona između N-acetilglukozamina i asparagina najčešća, stoga je ona jedina ovdje opisana (Stanley i sur., 2009). Glikozilacija kojom nastaju glikoproteini s N-vezanim glikanima započinje u ER-u još za vrijeme trajanja sinteze ciljnog proteina. Prvi korak je prijenos osnovnog oligosaharida građenog od 14 šećernih ostataka (dva N-acetilglukozamina, tri glukoze i devet manoza) na asparagin ciljnog proteina (Slika 1.). Da bi Asn bio kandidat za N-glikozilaciju, mora se nalaziti unutar slijeđa Asn-X-Ser/Thr (gdje je X bilo koja aminokiselina osim prolina) (Cooper i Hausman, 2004c).

Prva reakcija u slijedu modifikacija osnovnog oligosaharida je uklanjanje 3 glukozna ostatka (Glc) katalizirano α-glukozidazama I i II. Uklanjanje i ponovno dodavanje Glc bitan je faktor u vremenu zadržavanja proteina u ER-u. Smatra se da je ovaj korak ključan za pravilno smatanje proteina. Posljednji enzim koji može djelovati na glikoproteine u ER-u je α-manozidaza I koja uklanja još jednu manozu (Man) s osnovnog oligosaharida (Stanley i sur., 2009).

Većina glikana koja pristige u Golgijevo tijelo iz ER-a ima 8 ili 9 Man ostataka, ovisno o tome je li na njih djelovala α-manozidaza I. Neki zadrže i Glc koja se ipak može kasnije ukloniti u Golgijevu tijelu zajedno s jednim Man ostatkom posredstvom endo-α-manozidaze. Da bi glikan imao šanse za daljnju obradu u kompleksni ili hibridni tip, treba proći kroz još reakcija kataliziranih Golgijevim α1-2 manozidazama tako da nastane Man5GlcNAc2, intermedijer u putu prema nastanku kompleksnih i hibridnih glikana. U suprotnom nastaje oligomanozni tip N-glikana (Slika 2.) (Stanley i sur., 2009).

U medijalnom Golgijevo tijelu inicira se sinteza kompleksnih i hibridnih tipova glikana tako da se na α1-3 Man u srži N-acetilglukozamintransferazom I (GlcNAcT-I) doda N-acetilglukozamin (GlcNAc). Ovim postupkom stvaraju se antene na koje se dalje može
dodati još mnoštvo monosaharida. Nakon tog koraka, na većinu glikana će djelovati α-manozidaza II koja kida terminalne α1-3 i α1-6 Man ostatke. Ako na glikan ne djeluje α-manozidaza II nastat će hibridni tip oligosaharida (Slika 2.). Nakon djelovanja α-manozidaze II, na glikan može djelovati GlcNAcT-II koja na upravo oslobоđeni Man α1-6 ostatak dodaje GlcNAc te tako nastaje kompleksni tip oligosaharida (Slika 2.) (Stanley i sur., 2009).

\[
\text{Slika 2. Prikaz tri osnovna tipa N-vezanih oligosaharida. Piktogrami se čitaju po ključu sa Slike 1. (preuzeto i izmijenjeno iz Stanley i sur., 2009).}
\]

Kako glikani dalje zašrijevaju u prolasku kroz Golgijevo tijelo, mogućnosti njihove modifikacije postaju sve brojниje i složenije. Tako sisavci mogu imati i do 6 antena nastalih posredstvom N-acetilglukozamin transferaza (Stanley i sur., 2009).

U trans-Golgijevom tijelu se može odviti još mnoštvo modifikacija koje se mogu podijeliti na tri tipa: modifikacije srži, elongacija antena dodavanjem oligosaharida na GlcNAc i „capping“ reakcije. Od modifikacija srži, u sisavaca je najčešća dodavanje fukoze na prvi N-acetilglukozamin vezan na Asn. Elongacija antena se uglavnom postiže dodavanjem β-vezane galaktoze na GlcNAc te tako nastaje tzv. LacNac sekvenca koja je vrlo česta u prirodi. „Capping reakcije“ su zapravo reakcije u kojima se dodaju i/ili modificiraju monosaharidi na krajevima antena. Najčešće su reakcije dodavanja sijalinske kiseline, galaktoze, N-acetilgalaktozamina, fukoze i sulfatacije (Stanley i sur., 2009).
1.2. Lizosomi

Osim vanjske membrane, lizosomi imaju i brojne unutrašnje membrane koje tvore intraluminalne vezikule (ILV), gdje se odvija glavnina enzimske aktivnosti. Za razliku od vanjske membrane, ILV nemaju glikokaliks te sadrže nešto više kolesterolа и lizo-bis-fosfatidnu kiselinу (LBPA), koja se nalazi isključivo u sastavu lizosoma i kasnih endosoma. (Kobayashi i sur., 1998; Fürst i Sandhoff, 1992).

Lizosomi nastaju stapanjem transportnih vezikula koje pupaju iz trans-Golgijeve mreže i endosoma, koji sadržavaju molekule unesene endocitozom sa stanične površine. Vezikule koje sadrže tvari unesene endocitozom se najprije stapanju s ranim endosomom, gdje njegov blago kiseli pH (6,0-6,2) dovodi do otpuštanja mnogih liganda s njihovih receptora. Rani endosomi služe kao odjeljak za sortiranje, pa se tako endocitrirane tvari mogu reciklirati i vratiti na staničnu površinu ili se transportirati u lizosome za razgradnju. Tvari predodređene za razgradnju u lizosomima se transportiraju do kasnog endosoma u velikim vezikulama endocitzoznih nosača duž mikrotubula. Kasni endosomi su kiseli od ranih (pH=5,5-6,0) i stapaju se s transportnim vezikulama koje nose kisele hidrolaze iz Golgijskog tijela (Cooper i
Hausman, 2004e). U vezikulama koje pristizu iz Golgijevog tijela kisele hidrolaze su vezane za M6-P receptore. Kada se transportne vezikule stope s kasnim endosomom, zbog kiselog pH dolazi do otpuštanja kiselih hidrolaza sa M6-P receptora. M6-P receptori se recikliraju i vraćaju u Golgijev aparat. Nakon što se nadopune kiselim hidrolazama i dodatno zakisele (do pH 5), kasni endosomi sazriju u lizosome s punim spektrom hidrolaza, gdje se endocitirani sadržaj razgradi njihovom aktivnošću (Cooper i Hausman, 2004f).

1.2.1. Lizosomske bolesti odlaganja

LSDs se po uzroku mogu podijeliti na one uzrokovane deficijencijom lizosomalnih enzima (Fabry, Gaucher, mukopolisaharidoze), greškom u transportu lizosomalnih enzima (mukolipidoza tip II i IIIa), defektom u topljivim neenzimskim proteinima (Niemann-Pickova bolest tip C2), defektom u lizosomalnim membranskim proteinima (Niemann-Pickova bolest tip C1, mukolipidoza IV...) i na enigmatske lizosomalne poremećaje (skupina bolesti s mutacijama u naoko nepovezanim genima, od kojih neki nemaju veze s lizosomalnim sustavom) (Platt i sur., 2012).

Dob u kojoj se javlja prvi simptomi varira i ovisi o vrsti supstrata koji se nakuplja, vrsti stanica gdje se isti nakuplja te o obimu promjene proteina pogođenog mutacijom. Novorodenčad pogođena ovim bolestima pri rođenju izgleda normalno, uz par iznimaka (npr. mukopolisaharidoze). Ove bolesti najčešće pogađaju i središnji živčani sustav (CNS) i uzrokuju neurodegenerativne promjene (Platt i sur., 2012).
1.3. Niemann-Pickova bolest tip C

Sistemske simptome

Niemann-Pickova bolest tip C (NPC) je rijetka, nasljedna, autosomno recesivna, neurovisceralna bolest. Klinička prezentacija je vrlo heterogena, no većina bolesnika će na kraju razviti tešku i fatalnu neurološku bolest. Iznimku od tog pravila čine rijetki slučajevi odraslih pacijenata te manji dio oboljelih koji umire do 6 mjeseci nakon rođenja zbog respiratorne ili jetrene insuficijencije. Sistemska bolest se javlja u 85% oboljelih i uvijek prethodi neurološkim simptomima. Sistemske simptome mogu biti kolestatska žutica u neonatalnom periodu te izolirana splenomegalija ili hepatomegalija u djetinjstvu. Prvi neurološki simptomi variraju ovisno o dobi pacijenta, kao što je vidljivo na Slici 3. Neurološki poremećaj čini cerebelarna ataksija, dizartrija, disfagija i progresivna demencija (Vanier, 2010).

Od svih neurona, najviše su pogodeće Purkinjeove stanice, no do gubitka neurona dolazi u talamusu i prefrontalnom kortexu. Također dolazi do gubitka glija stanica u žuljevitom tijelu (German i sur., 2001; Tanaka i sur., 1998). Smrt Purkinjeovih neurona zaslužna je za ataksiju karakterističnu za ovu bolest (Elrick i sur., 2010). Na neuronima su vidljive brojne morfološke promjene, kao što su nateknuće aksonskog brežuljka, demijelinizacija i pojava ektopične dendritogeneze i aksonskih sferoida (March i sur., 1997; Hahn i sur., 1995). Primijećeno je i stvaranje neurofibrilarnih snopića (NFT) i pojačana amiloidogena razgradnja amiloidogenog prekursorског proteina (APP) u lipidnim splavima membrane ranog endosoma (Kosicek i sur., 2010; Suzuki i sur., 1995).

Točan mehanizam kojim mutacije u NPC1 ili NPC2 proteinu dovode do nakupljanja lipida u lizosomima i kasnim endosomima i karakterističnog NPC fenotipa je još uvijek nepoznat. Generalni konsenzus je da defekt NPC1 ili NPC2 proteina interferira sa izlaskom kolesterolola iz kasnih endosoma/ lizosoma što dovodi do nakupljanja kolesterolala i drugih lipida i generalnog zastoja u prometu vezikula (Karten i sur., 2009). Istraživanje koje su proveli Lloyd-Evans i sur. (2008), ukazuje na to da je prva promjena u stanici nakon prestanka funkcije NPC1 proteina nakupljanje sfingozina, nakon čega slijedi smanjenje količine kalcijevih iona u lizosomu. Posljedica toga je nedovoljna koncentracija kalcija za procese fuzije i/ili prometa vezikula u endocitoznom putu.

Mutacija proteina NPC1 je u pozadini 95% slučajeva NPC (Millat i sur., 2001). Protein NPC1 je veliki transmembranski glikoprotein koji se nalazi u lizosomalnoj membrani (Schröder i sur., 2007). NPC2 je puno manji, topljivi glikoprotein koji se također nalazi u lizosomima (Vanier i Millat, 2004). NPC2 ekstrahira kolesterol iz fosfolipidnog dvosloja i transportira ga do akceptorskih vezikula (Babalola i sur., 2007). Jedna od pretpostavki je da NPC1 i NPC2 zajedno sudjeluju u prijenosu kolesterolola izvan endosomalnog sistema, tako da
NPC2 veže slobodni kolesterol te ga потом prenosi do NPC1 na vanjskoj membrani (Infante i sur., 2008). Uloga NPC1 proteina je posebno upitna zbog činjenice da se kolesterol može sam razdjeļivati između membrana (Maxfield i van Meer, 2010). Li i sur. (2015) u svojem radu ukazuju na to da je NPC1 bitan za transport kolesterol zra glikokaliksa koji okružuje vanjsku membranu lizosoma.

1.3.1. Niemann-Pickova bolest tipa C kao model za Alzheimerovu bolest

Alzheimerova bolest (AD) je posljedica progresivnog neurodegenerativnog oštećenja koje dovodi do propadanja neurona hipokampilne regije i njihovih glavnih aferentnih i eferentnih putova. Početni simptomi AD su poremećaj pamćenja i prostorna dezorijentacija (Demarin i sur., 1998a). Kako bolest napreduje, javlja se i gubitak socijalne inhibicije, emocionalna inkontinencija i bezvoljnost. Tijek bolesti je progresivan, a smrt nastupa obično 4-10 godina nakon postavljenije dijagnoze (Demarin i sur., 1998b).

Na temelju ovih sličnosti kasnih stadija bolesti, NPC se koristi kao model za istraživanje AD. Kao model NPC koriste se eksperimentalne životinje (mačke i miševi), kulture fibroblasta i stanicove ovarijske kineskog hrčka (CHO) s mutacijom (Loftus i sur., 1997; March i sur., 1997; Cadigan i sur., 1990; Liscum i sur., 1989). Osim toga, NPC fenotip se može izazvati sa U18666A, amphipatskim steroidom (Cenedella, 2009).

Budući da NPC ima monogenski uzrok, to je čini posebno privlačnom za razjašnjenje kompleksne poligenske bolesti, kao što je to Alzheimerova bolest (Bekris i sur, 2010).
1.4. Analiza N-glikana glikoproteina lisosomalne membrane

1.4.1. Odjeljivanje membranskih proteina principom fazne separacije

Za ekstrakciju membranskih proteina koriste se detergenti. Detergenti su amfipatske molekule koje se sastoje od polarne glave i hidrofobnog repa. Imaju jedinstveno svojstvo da u vodenim otopinama spontano tvore micelarne strukture. Membranske proteine je moguće solubilizirati u detergentima upravo zato što oni stvaranjem micela oponašaju lipidini dvosloj u kojem se nalaze ti proteini (Seddon i sur., 2004). Za daljnje pročišćavanje obično se koriste kromatografske metode koje se uobičajeno koriste za solubilne proteine (Arnold i Linke, 2007).

Kao alternativa ili dodatak klasičnim kromatografskim metodama pročišćavanja može se koristiti fazna separacija. Prednosti fazne separacije su jednostavna izvedba te učinkovito odvajanje hidrofilnih proteina. U otopinama detergenta, fazna separacija se događa pri dostizanju točke zamućenja u kojoj otopina postaje mutna i miješaju s vodom. Razdvajanje faza se javlja zbog temperaturno zavisne razlike u entropiji između jednofaznog i dvofoznog sustava. Micele detergenta tvore agregate koji formiraju zasebnu fazu u kojoj manje vode prekriva njihovu površinu. Na agregaciju utječe temperatura, prisustvo soli i polimera. Ovisno o detergentu te vrsti i koncentraciji pufera faza bogata detergentom se nalazi iznad ili ispod faze siromašne detergentom. Na temperaturu točke zamućenja utječu i aditivi kao što su urea i glicerol te prisustvo lipida u miješanim micelama (Arnold i Linke, 2007).

Za pročišćavanje proteina od detergenta i fosfolipida može se koristiti kvantitativna precipitacija smjesom kloroforma, metanola i vode slična protokolu koji su razvili Wessel i Flügge (1984). Opisana metoda djelotvorna je za precipitaciju hidrofobnih i solubilnih proteina u razrijeđenim otopinama. Prisustvo detergenta i soli u otopini ne smanjuje učinkovitost precipitacije. Postupak započinje dodatkom kloroforma i metanola uz orku. Separacija faza se postiže dodatkom vode, nakon čega se proteini precipitiraju na međufazi. Dodatak suviška metanola i centirufiguranje rezultira stvaranjem peleta čistih proteina. Odstranjivanjem supernatanta i sušenjem dobivaju se čisti, dehidrirani proteini.

1.4.2. Deglikozilacija i obilježavanje glikana

PNGaza F kida sve oligosaharide vezane za asparaginski ostatak, kao što je prikazano na Slici 5. Iznimku čine glikani čija srž sadrži α(1→3)-fukozu. Takvi oligosaharidini su uobičajeno prisutni u glikoproteinima parazitskih oblića i biljaka. Steričke smetnje usporavaju ili inhibiraju aktivnost PNGaze F, stoga denaturacija glikoproteina povećava učinkovitost deglikozilacije (www.sigmaaldrich.com a).
Budući da glikani ne posjeduju kromofore u svojoj strukturi, nemoguće ih je detektirati spektrofotometrijskim metodama bez obilježavanja. Glikani sa slobodnim reducirajućim krajem mogu se obilježiti sa fluorescentnim oznakama kao što su 2-aminopiridin, 2-aminobenzamid (2-AB), 2,6-diaminopiridin, ili biotinilirani 2,6-diaminopiridin (Mulloy i sur., 2009).

Amino skupina 2-AB reagira s aldehidnom skupinom reducirajućeg kraja glikana i daje imin. U smjesi za obilježavanje nalazi se i reducens koji reducira imin u sekundarni amin koje je stabilan u vodenim otopinama. Shema reakcije prikazna je na Slici 6.

Slika 5. Shematski prikaz deglikozilacije katalizirane PNGazom F (preuzeto i izmijenjeno iz www.sigmaaldrich.com b)

Slika 6. Shema reakcije korištene za obilježavanje glikana (preuzeto i izmijenjeno iz www.sigmaaldrich.com b)
1.4.3. HILIC-UPLC metoda za analizu glikana

Kromatografija obrnutih faza (RP) je općenito najčešće korištena metoda separacije. RP kromatografija koristi nepolarni stacionarni faze i polarnе mobilne faze. Problemi se javljaju pri analizi vrlo polarnih supstancija zbog potrebe za visokim udjelom vode u mobilnoj fazi te posljedičnom izobličenja kromatografskih vršaka. Konkretna prednost HILIC kolona u odnosu na RP-kolone u analizi N-glikana je u analizi nabijenih i sijaliniziranih glikana koji se u RP načinu eluiraju zajedno s mrtvim volumenom. Također, u RP načinu teže je povezati strukturu glikana sa kromatografskim vršcima (Adamczyk i sur., 2014).

Kromatografija normalnih faza (NP) koristi polarnе stacionarne faze i organska otapala kao mobilnu fazu. Odvajanje polarnih supstancija je niske djelotvornosti uz pojavu asimetričnih kromatografskih vršaka (Gama i sur., 2012).

Za ovaj rad korištena je HILIC-UPLC analiza zbog svoje superiornosti u analizi polarnih analita. Tukućinska kromatografija ultravisoke djelotvornosti (UPLC) je kromatografska tehnika u kojoj su kolone punjene česticama manjeg od 2 μm što omogućuje bolju osjetljivost i razlučivost te veću brzinu odjeljivanja od tekućinske kromatografije (Kaštelan-Macan, ured., 2014). Osim toga, HILIC kolone imaju sposobnost razdvajanja strukturnih izomera iste mase, što nije moguće postići običnom masenom spektrometrijom (Ahn i sur., 2010).

HILIC (tekućinska kromatografija koja se temelji na hidrofilnim interakcijama) je način separacije koji kombinira stacionarnе faze korištene u kromatografiji normalnih faza i mobilne faze korištene u kromatografiji obrnutih faza. Stacionarne faze su visoko hidrofilni polimeri, a mobilnu fazu uglavnom čine polarna organska otapala (najčešće acetoniitril, ponekad metanol) s do 30% vode (Gama i sur., 2012).

Mehanizam separacije analita u HILIC analizi nije sasvim razjašnjen, no najvjerojatnije je posljedica više različitih načina odjeljivanja (Gama i sur., 2012). Polarna skupine na stacionarnoj fazi privlače molekule vode iz mobilne faze te tako stvaraju pseudostacionarnu fazu. Polarni analiti otopljen u mobilnoj fazi se razdjeljuje između mobilne faze i pseudostacionarne faze. Polarni analiti imaju veći afinitet za vodenu pseudostacionarnu fazu i zbog toga dolazi do retencije analita (Alpert, 1990). Osim razdiobe, na separaciju utječe i adsorpcija koja se javlja kao posljedica intermolekularnih sila između analita i stacionarne faze (Gama i sur., 2012). Dakle, u HILIC kolonama glikani se odjeljuju na temelju svoje hidrofilnosti, pri čemu vrijeme zadržavanja raste s kompleksnosti strukture, tj., brojem monomera i nabijenošću (Adamczyk i sur., 2014).
Identifikacija glikana u pojedinom kromatografskom vršku moguća je na više načina. Određivanjem vrijednosti glukoznih jedinica (GU) kromatografskih vršaka i usporedbom s bazama podataka moguće je dobiti informaciju o strukturi glikana u pojedinim kromatografskim vršcima. Digestija glikana iz pojedinih kromatografskih vršaka egzoglikozidazama daje točniju informaciju (Campbell i sur., 2008). Metode tandemske masene spektrometrije i primjena derivatizacije omogućuju razlikovanje izomera i određivanje pozicija glikozidnih veza (Ahn i sur., 2010; Maslen i sur., 2006; Morelle i sur., 2004).

1.4.4. MALDI-TOF-MS analiza

2. OBRAZLOŽENJE TEME

Mutacija proteina NPC1 je u pozadini 95% slučajeva NPC (Millat i sur., 2001). Defekt NPC1 ili NPC2 proteina interferira s izlaskom kolesterola iz kasnih endosoma/ lizosoma što dovodi do nakupljanja kolesterola i drugih lipida i generalnog zastoja u prometu vezikula (Karten i sur., 2009). Posljedica toga je Niemann-Pickova bolest tip C (NPC) - rijetka, nasljedna, autosomno recesivna, neurovisceralna bolest (Vanier, 2010).

NPC pokazuje sličnosti s još jednom neurodegenerativnom bolesti, Alzheimerovom bolešću. U obje bolesti stvaraju se neurofibrilarni snopići i dolazi do amiloidogene razgradnje proteina APP (Kosicek i sur., 2010; Cataldo i sur., 2000; Auer i sur., 1995). Rani endosomi u stanicama pogođenim ovim bolestima su abnormnalno povećani i sadrže povećanu količinu kiselih hidrolaza (Nixon, 2004). U AD također dolazi do disfunkcije lizosoma, a povrat njihove funkcije ima terapeutski učinak (Caccamo i sur., 2010; Cataldo i sur., 2000). Na temelju sličnosti kasnih stadija bolesti, NPC se koristi kao model za istraživanje AD.

Postoje dokazi o promijenjenoj glikozilaciji proteina u NPC, a u jednom istraživanju se utjecajem na glikozilaciju lizosomalnih membranskih proteina uspio ublažiti fenotip bolesti (Li i sur., 2015; Dixit i sur., 2011). Također, primijećen je i utjecaj kolesterola na glikozilaciju APP-a (Galbete i sur., 2000).

Zbog gore navedenih istraživanja, kao i zbog želje da se pogleda na NPC iz nove perspektive, analizirani su N-glikani glikoproteina lizosomalne membrane modela NPC.

Kao model NPC korištena je CHO-NPC1 -/- kultura stanica i CHOwt kao kontrolna skupina. Lizosomi su izolirani po principu magnetske kromatografije, a membranski proteini faznom separacijom s detergentom Triton X-114 i kloroform-metanol ekstrakcijom. Ovako dobiveni proteini zatim su deglikozilirani, a dobiveni N-glikani su obilježeni 2-aminobenzamidom i analizirani HILIC-UPLC metodom. Za asignaciju kromatografskih vršaka korištena je masena spektrometrija i usporedba s bazom podataka GlycoBase.
3. MATERIJALI I METODE

3.1. Materijali

3.1.1. Kemikalije i enzimi

<table>
<thead>
<tr>
<th>Kemikalije</th>
<th>Proizvođač</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-aminobenzamid (2-AB)</td>
<td>Sigma-Aldrich, SAD</td>
</tr>
<tr>
<td>2-pikolinboran (2-PB)</td>
<td>Sigma-Aldrich, SAD</td>
</tr>
<tr>
<td>Acetonitril (ACN)</td>
<td>Scharlau, Španjolska</td>
</tr>
<tr>
<td>Dimetilsulfoksid (DMSO)</td>
<td>Sigma-Aldrich, SAD</td>
</tr>
<tr>
<td>EDTA</td>
<td>Invitrogen, SAD</td>
</tr>
<tr>
<td>Etanol (bezvodni)</td>
<td>Carlo Erba Reagents, Italija</td>
</tr>
<tr>
<td>HCl</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Igepal</td>
<td>Sigma-Aldrich, SAD</td>
</tr>
<tr>
<td>Kalijev dihidrogenfosfat</td>
<td>Sigma-Aldrich, SAD</td>
</tr>
<tr>
<td>Kalijev klorid</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Kloroform</td>
<td>Carlo Erba Reagents, Italija</td>
</tr>
<tr>
<td>Metanol</td>
<td>J.T.Baker, SAD</td>
</tr>
<tr>
<td>Natrijev hidrogenfosfat</td>
<td>Acros, Belgija</td>
</tr>
<tr>
<td>Natrijev hidroksid</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Natrijev klorid</td>
<td>Carlo Erba Reagents, Italija</td>
</tr>
<tr>
<td>Octena kiselina</td>
<td>Merck, Njemačka</td>
</tr>
<tr>
<td>Proteaza inhibitor</td>
<td>Roche Diagnostics GmbH, Njemačka</td>
</tr>
<tr>
<td>Saharoza</td>
<td>Sigma-Aldrich, SAD</td>
</tr>
<tr>
<td>SDS</td>
<td>Invitrogen, SAD</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>Acros Organics, Belgija</td>
</tr>
<tr>
<td>Triton X-114</td>
<td>Sigma-Aldrich, SAD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enzimi</th>
<th>Proizvođač</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNGaza F</td>
<td>Promega, SAD</td>
</tr>
</tbody>
</table>
3.1.2. Uredaji i pribor

<table>
<thead>
<tr>
<th>Uredaji i pribor</th>
<th>Proizvođač</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mL AcroPrep GHP 0,2 μm filter pločica</td>
<td>Pall Corporation, SAD</td>
</tr>
<tr>
<td>Acquity UPLC uređaj</td>
<td>Waters, SAD</td>
</tr>
<tr>
<td>Centrifuga 5424R</td>
<td>Eppendorf, Njemačka</td>
</tr>
<tr>
<td>Centrifuga 5804</td>
<td>Eppendorf, Njemačka</td>
</tr>
<tr>
<td>Filteri za pufere</td>
<td>Nalgene, SAD</td>
</tr>
<tr>
<td>Mikropipete</td>
<td>Rainin, SAD</td>
</tr>
<tr>
<td>Minicentrifuga Minispin</td>
<td>Eppendorf, Njemačka</td>
</tr>
<tr>
<td>Rotacijski vakuum koncentrator Savant</td>
<td>Thermo Scientific, SAD</td>
</tr>
<tr>
<td>Speedvac SC210A</td>
<td></td>
</tr>
<tr>
<td>Vakuumska pumpa OFP400</td>
<td></td>
</tr>
<tr>
<td>Zamka za otapalo Savant RVT400</td>
<td></td>
</tr>
<tr>
<td>Tresilica 3023</td>
<td>GFL, Njemačka</td>
</tr>
<tr>
<td>Ultrazvučni homogenizator UP100H</td>
<td>Hielscher Ultrasonics, Njemačka</td>
</tr>
<tr>
<td>Vaga (analitička)</td>
<td>Ohaus Explorer, SAD</td>
</tr>
<tr>
<td>Vakuum manifold</td>
<td>Pall Corporation, SAD</td>
</tr>
<tr>
<td>Vakuumska pumpa</td>
<td>Pall Life Sciences, SAD</td>
</tr>
<tr>
<td>Vorteks uređaj, Vortex–Genie 2</td>
<td>Scientific Industries, Inc., SAD</td>
</tr>
</tbody>
</table>

3.1.3. Priprema pufera i otopina

3.1.3.1. 11,4 % otopina Tritona X-114

Priprema: 20 g Tritona X-114 se otopi u 980 mL otopine Tris-HCL (10 mM, pH 7,4) i NaCl (150 mM) pri 0°C. Otopina se потом inkubira na 37°C preko noći. Pri istoj temperaturi odbaci se gornja faza te se потом na 0°C nadomjesti s istom količinom Tris-HCl te ponovo inkubira na 37°C preko noći. Nakon ponavljanja posljednjeg koraka dobije se pročišćeni 11,4 % Triton X-114.

Čuvanje: na 4°C

3.1.3.2. 10x PBS

Priprema 1 L otopine: Otopina se priprema tako da se odvaže 80,0669 g NaCl, 14,1960 g Na₂HPO₄, 2,4496 g KH₂PO₄ i 2,0129 g KCl i otopi u 800 mL ultra čiste vode. Potom se pH otopine podesi na 7,4 s NaOH i nadopuni do 1L ultra čistom vodom.

Čuvanje: na 4°C
3.1.3.3. 5x PBS

Priprema: 5x PBS se priprema razrijeđivanjem 10x PBS ultra čistom vodom u omjeru 1:2 (v/v), filtrira i čuva u boci.
Čuvanje: na 4°C

3.1.3.4. PBS

Priprema: PBS se priprema razrijeđivanjem 10x PBS ultra čistom vodom u omjeru 1:10 (v/v), filtrira i čuva u boci.
Čuvanje: na 4°C

3.1.3.5. Tritonski pufer za lizu

Priprema 100 mL otopine: Odvaže se 157,60 mg Tris-HCl (pH = 7,4), 876,6 mg NaCl i 29,22 mg EDTA i odmjeri 8,77 mL 11,4% Tritona X-114 i nadopuni PBSom do 100 mL.
Čuvanje: na 4°C

3.1.3.6. Otopina saharoze

Priprema 100 mL otopine: Odvaže se 6 g saharoze, 876,6 mg NaCl i 157,6 mg Tris-HCl (pH=7,4) i odmjeri 0,526 mL 11,4% Tritona X-114. Zatim se doda PBS do volumena od 100 mL.
Čuvanje: na 4°C

3.1.3.7. Otopina za obilježavanje

Priprema otopine za 1 uzorak: Priprema se provodi u digestoru. Prije vaganja, 2-PB mora biti na sobnoj temperaturi. 30% (v/v) octena kiselina u DMSO priprema se svježa. 25 μL dobivene otopine doda se u Eppendorf epruvetu s otprije izvaganih 0,48 mg 2-AB i vorteksiranjem pomiješa. Dobivena otopina se u cijelosti prebaci u Eppendorf epruvetu sa 1,12 mg 2-PB i ponovo pomiješa vorteksiranjem.
Čuvanje: Otopina se uvijek priprema svježa.

3.1.3.8. 1,33% SDS

Priprema 100 mL otopine: 1,33 g SDS-a se otopi u 100 mL miliQ vode.
Čuvanje: na 37°C
3.1.3.9. 4% Igepal
Priprema 100 mL otopine: 4 g Igepala se otopi u 100 mL miliQ vode.
Čuvanje: na 4°C

3.1.3.10. Otopina proteaza inhibitora
Priprema: 1 tableta iz pakiranja otopi se u 10 mL miliQ vode.
Čuvanje: Otopina se uvijek priprema svježa.

3.1.3.11. Otopina PNGaze F
Priprema: 5x PBS se izvadi iz hladnjaka i ostavi 30 minuta na sobnoj temperaturi. Smjesa za 1 uzorak sadrži 0,12 μL PNGaze F i 10 μL 5x PBS.
Čuvanje: Otopina se uvijek priprema svježa.

3.1.3.12. 70% (v/v) etanol
Priprema 100 mL otopine: U 70 mL bezvodnog etanola doda se miliQ vode do volumena od 100 mL.
Čuvanje: Otopina se uvijek priprema svježa.

3.1.3.13. 96% (v/v) acetonitril (ACN)
Priprema 50 mL otopine: U 48 mL ACN-a doda se miliQ vode do volumena od 50 mL.
Čuvanje: Otopina se uvijek priprema svježa.

3.1.4. Uzorci lizosoma
Uzorci lizosoma su dobiveni od Instituta Ruđer Bošković. Lizosomi su izolirani iz kultura CHOwt i CHO-NPC1 -/- stanica po principu magnetske kromatografije, koji su opisali Diettrich i sur. (1998). Ovaj način separacije se smatra boljim od gradijentne centrifuge budući da promjena gustoće lizosoma, česta u LSDs, neće utjecati na učinkovitost odjeljivanja (Diettrich i sur., 1998).
3.2. Metode

3.2.1. Izolacija membranskih glikoproteina lizosoma

3.2.1.1. Odjeljivanje hidrofobnih membranskih od hidrofilnih proteina

Uzorci lizosoma se peletiraju centrifugiranjem na 20000 g 30 min pri 4°C nakon čega se dobiveni supernatant odbaci. Ovaj korak proveden je da se odvoje eventualni ostaci citosola od lizosoma.

Nakon toga se u svaki uzorak doda 1 mL Tritonskog pufera za lizu i 10 μL otopine proteaza inhibitora. Uzorci se potom homogeniziraju soniciranjem 3 puta po 30 sekundi i ostave 15 minuta na ledu. Potom se uzorci ostave inkubirati preko noći pri 4°C. U ovom koraku dolazi do solubilizacije membranskih proteina u detergentu.

Nakon inkubacije, nehomogenizirani dijelovi peletiraju se centrifugiranjem na 20000 g pri 4°C. Nakon što se odvoji supernatant, peleti se isperu malim volumenom Tritonskog pufera za lizu.

Supernatant i otopina kojom su se ispirali peleti se zajedno prebacuju na sloj otopine saharoze (100 μL) i inkubiraju na 37°C 5 minuta. Slijedi centrifugiranje na 400 g 3 minute pri 37°C. Pri toj temperaturi u otopini Tritona X–114 vidljiva je separacija faza. U donjoj fazi bogatoj detergentom solubilizirani su hidrofobni membranski proteini, a u gornjoj, vodenoj fazi ostaju pretežno hidrofilni proteini. Sloj otopine saharoze odvaja dvije faze.

Vodena faza se nakon centrifugiranja prenese u novu Eppendorf epruvetu i inkubira na ledu. Donja faza (detergent + otopina saharoze) resuspendira se u 500 μL hladnog PBS-a. Odvajanje faza se ponovi – nakon 5 min inkubacije na 37°C i centrifugiranja na 400 g 3 minute pri istoj temperaturi, gornja vodena faza se spaja s vodenom fazom od prijašnjeg odjeljivanja. Donja faza s detergentom i hidrofilnim proteinima (Tritonska faza) se potom podvrgava kloroform-metanol ekstrakciji opisanoj nadalje.

U vodene faze doda se 50 μL 11,4% otopine Tritona i inkubiraju se na 37°C 3 minute u inkubatoru te se potom centrifugiraju na 400 g 3 minute pri istoj temperaturi. Gornja faza sadrži hidrofilne proteine, a donja Tritonska faza se nakon odvajanja baca. Gornja, vodena faza se podvrgava kloroform metanol ekstrakciji.

3.2.1.2. Kloroform – metanol ekstrakcija

100 μL Tritonske faze pomiješa se s 400 μL hladnog metanola, vorteksira i potom centrifugira 30 sekundi na 9000 g pri 4°C. Potom se doda 200 μL kloroforma, vorteksira i
centrifugira 30 sekundi na 9000 g pri 4°C. U uzorak se potom doda 300 μL vode, vorteksira i centrifugira 1 minutu na 9000 g pri 4°C.

U uzorku se proteini sada nalaze između vodene i kloroformske faze. Gornja, vodena faza se odstrani. U ostatak uzorka doda se 300 μL hladnog metanola, vorteksira i centrifugira 2 minute na 9000 g pri 4°C. Supernatant se odstrani, a proteini se osuše u rotacijskom vakuum koncentratoru čime su dobiveni dehidrirani, denaturirani proteini.

Za solubilnu fazu postupak je bio isti, ali su volumeni svih dodanih otopina bili deset puta veći budući da je volumen solubilnih faza bio 1 000 μL, tj. deset puta veći od volumena Tritonske faze.

3.2.2. In solution deglikozilacija

3.2.2.1. Denaturacija proteina

SDS i Igepal trebaju biti na sobnoj temperaturi. U svaki od uzoraka dehidriranih proteina dobivenih prethodnim korakom doda se 30 μL 1,33% SDS, pomiješa pomoću pipete i vorteksira. Eppendorf epruvete s uzorcima se potom zatvore i inkubiraju 10 minuta na 65 °C. Zatim se Eppendorf epruvete s uzorcima izvade i ostave hladiti na sobnoj temperaturi 30 minuta na tresilici. Potom se u svaki uzorak doda 10 μL 4% Igepala i pomiješa pipetom. Uzorci se nakon toga ostave na tresilici na sobnoj temperaturi 15 minuta.

SDS se dodaje da denaturira glikoproteine te da se tako poboljša djelovanje enzima PNGaze F u sljedećem koraku. Igepal se dodaje da neutralizira denaturirajući učinak SDS-a na isti enzim.

3.2.2.2. Deglikozilacija

Po 10 μL otopine enzima PNGaze F se doda u svaki uzorak i resuspendira pipetom. Eppendorf epruvete s uzorcima se zatvore i inkubiraju 18 sati na 37 °C.

3.2.3. In solution fluorescentno obilježavanje N-glikana

Svi postupci ovog koraka obavljaju se u digestoru.

U svaki uzorak doda se 25 μL otopine za obilježavanje i pomiješa pipetom. Eppendorf epruvete s uzorcima se zatvore i stave na tresilicu 10 minuta, a potom se inkubiraju 2 sata na 65 °C. Nakon toga uzorci se ostave hladiti na sobnoj temperaturi minimalno 30 minuta prije nanošenja na AcroPrep GHP pločicu.
3.2.4. Pročišćavanje fluorescentno obilježenih N-glikana

Tijekom svakog od nadalje opisanih koraka vakuum nije bio veći od 2 inHg. 70% etanol i 96% ACN su bili svježe pripremljeni.

3.2.4.1. Priprema AcroPrep GHP pločice

AcroPrep GHP pločica stavi se na vakuum manifold priključen na vakuum-pumpu. Ispod AcroPrep GHP pločice mora stajati i pločica za skupljanje otpada.

U svaku jažicu pločice otpipetira se 200 μL 70% etanola i odsiše vakuumom. Zatim se doda 200 μL ultra-čiste vode i odsiše. Potom se u svaku jažicu doda 200 μL hladnog 96% acetonitrila i odsiše.

Ovim postupcima aktivirane su skupine u pločici.

3.2.4.2. Nanošenje i pročišćavanje 2-AB obilježenih N-glikana

Ispod AcroPrep GHP pločice mora stajati i pločica za skupljanje otpada.

U svaki uzorak 2-AB-obilježenih glikoproteina doda se 700 μL hladnog 100% ACN, promiješa pipetom i zatim se resuspendiran uzorak u potpunosti prenese na AcroPrep GHP pločicu. Nakon inkubacije na sobnoj temperaturi u trajanju od 2 minute, uključi se vakuum-pumpa i eluat odsiše u pločicu za skupljanje otpada.

U svaku jažicu AcroPrep GHP pločice doda se 200 μL hladnog 96% ACN-a i eluat se odsiše u pločicu za otpad. Isto se postupak ponovi još tri puta.

Nakon toga se AcroPrep GHP pločica stavi na stalak te se u svaku jažicu otpipetira 200 μL hladnog 96% ACN-a. AcroPrep GHP pločica i stalak se centrifugiraju na 1000 rpm 5 minuta.

Ovim postupkom uzorci su pročišćeni od ostataka otopine za obilježavanje.

3.2.4.3. Eluacija 2-AB obilježenih N-glikana

AcroPrep GHP pločica se sada postavi direktno na ABgene PCR pločicu. U svaku jažicu AcroPrep pločice se doda 80 μL ultra čiste vode, nakon čega se AcroPrep GHP pločica zajedno s ABgene PCR pločicom postavi na tresilicu 15 minuta. Nakon toga se AcroPrep GHP pločica i ABgene PCR pločica zajedno centrifugiraju na 1000 rpm 5 minuta pri sobnoj temperaturi.

Identični postupak se ponovi još jednom, pritom se ne mijenja ABgene pločica ispod AcroPrep GHP pločice.
Nakon toga provjeri se je li eluirao čitav sadržaj iz AcroPrep GHP pločice u ABgene PCR pločicu. ABgene PCR pločica se poklopi i čuva pri -20°C do sljedećeg koraka.

Ovim postupkom dobivena je vodena otopina 2-AB-obilježenih N-glikana. Proteini s kojih su ovi glikani uklonjeni zaostaju na Acroprep GHP pločici.

3.2.5. HILIC-UPLC analiza 2-AB obilježenih N-glikana

Fluorescentno obilježeni N-glikani razdvojeni su kromatografijom koja se temelji na hidrofilnim interakcijama na Waters Acquity UPLC instrumentu (Milford, MA, USA). Uređaj se sastoji od kvaternarne jedinice za pripravu mobilne faze, automatskog injektora uzoraka i fluorescentnog detektora koji je namješten na valnu duljinu ekscitacije od 330nm i valnu duljinu emisije od 420nm. Uređaj je kontroliran programom Empower 2, 2145 verzija (Waters, Milford, MA, USA). Korištena je Waters BEH kolona za kromatografiju glikana dimenzija 150 x 2,1mm, punjena česticama veličine 1,7 μm. Mobilna faza dobivena je miješanjem 100mM formijatne kiseline podešene na pH 4,4, koja je upotrijebljena kao otapalo A, i acetonitrila, upotrijebljenim kao otapalo B. Uvjeti analize bili su sljedeći: linearni gradijent acetonitrila od 75% do 62% s brzinom protoka 0,56 ml/min, tijekom 32 min. Temperatura na kojoj se analiza odvijala bila je 25°C. Sustav je kalibriran upotrebom vanjskog standarda plazme. Glikani su analizirani na temelju njihovih vremena ispiranja.

Kromatogrami dobiveni analizom N-glikana iz membranskih lizosomalnih glikoproteina podijeljeni su na 37 kromatografskih vršaka po rastućem vremenu zadržavanja. Svaku kromatografsku vršku je integriranjem određena površina i izražena kao postotak od ukupnog zbroja površina svih kromatografskih vršaka u kromatogramu.

3.2.6. Statistička analiza

Za statističku obradu podataka korišten je računalni program R® (https://www.r-project.org/).

Da bi se odredila statistička značajnost eventualnih razlika u površini kromatografskih vršaka, izračunate su p-vrijednosti, korigirane p vrijednosti, te Eff. Eff je mjera koja govori o tome koliko je površina kromatografskih vršaka CHO-NPC1 +/- veća ili manja u odnosu na isti kromatografski vršak dobiven analizom CHOWt stanica. U tom slučaju, Eff veći od 1 znači da je površina određenog kromatografskog vrška veća u CHOWt uzorcima nego u CHO-NPC1 +/- i obratno.
4. REZULTATI I RASPRAVA

4.1. Analiza N-glikana glikoproteina Tritonske faze

Analizirano je sveukupno 15 uzoraka Tritonske faze. 8 uzoraka je dobiveno iz CHO-NPC1 -/- stanica. 7 uzoraka je dobiveno iz CHOwt stanica, koje su kontrola u ovom radu. Postotak površine svakog pojedinog kromatografskog vrška za svaki uzorak prikazan je na Slici 7. Površina kromatografskih vršaka je izražena kao postotak od ukupne površine svih kromatografskih vršaka u tom kromatogramu.

Prikaz rezultata statističke obrade postotka površine kromatografskih vršaka je u Tablici 1.

Korigirana p-vrijednost manja od 0,04 predstavlja statistički značajnu razliku; - statistički značajna razlika postotka površine pojavila se u 6 od 37 analiziranih kromatografskih vršaka. Ovaj rezultat ukazuje na pojavu značajne razlike u N-glikomu proteina lizosomalne membrane CHO-NPC1 -/- stanica.
<table>
<thead>
<tr>
<th>Kromatografski vršak</th>
<th>Eff</th>
<th>p-vrijednost</th>
<th>Korigirana p-vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP1</td>
<td>0,2090405</td>
<td>0,0002137146</td>
<td>0,0077907441</td>
</tr>
<tr>
<td>GP2</td>
<td>0,2516758</td>
<td>0,0024560243</td>
<td>0,026213551</td>
</tr>
<tr>
<td>GP3</td>
<td>0,4265342</td>
<td>0,0977649647</td>
<td>0,17225255</td>
</tr>
<tr>
<td>GP4</td>
<td>0,3786868</td>
<td>0,0534939755</td>
<td>0,109962888</td>
</tr>
<tr>
<td>GP5</td>
<td>0,5498178</td>
<td>0,2586674070</td>
<td>0,368103618</td>
</tr>
<tr>
<td>GP6</td>
<td>0,2844337</td>
<td>0,0080758199</td>
<td>0,042674863</td>
</tr>
<tr>
<td>GP7</td>
<td>1,2334506</td>
<td>0,6979961242</td>
<td>0,759584018</td>
</tr>
<tr>
<td>GP8</td>
<td>0,3019220</td>
<td>0,0129737860</td>
<td>0,046658580</td>
</tr>
<tr>
<td>GP9</td>
<td>0,5781678</td>
<td>0,3029056040</td>
<td>0,415092865</td>
</tr>
<tr>
<td>GP10</td>
<td>2,6510726</td>
<td>0,0534954592</td>
<td>0,109962888</td>
</tr>
<tr>
<td>GP11</td>
<td>0,4503390</td>
<td>0,1237868005</td>
<td>0,199135288</td>
</tr>
<tr>
<td>GP12</td>
<td>3,9366268</td>
<td>0,0028338974</td>
<td>0,026213551</td>
</tr>
<tr>
<td>GP13</td>
<td>0,3414861</td>
<td>0,0302059700</td>
<td>0,079830064</td>
</tr>
<tr>
<td>GP14</td>
<td>2,3031772</td>
<td>0,1054087430</td>
<td>0,177278341</td>
</tr>
<tr>
<td>GP15</td>
<td>0,3398109</td>
<td>0,0291969274</td>
<td>0,079830064</td>
</tr>
<tr>
<td>GP16</td>
<td>3,3717072</td>
<td>0,0112677579</td>
<td>0,046323005</td>
</tr>
<tr>
<td>GP17</td>
<td>1,2997858</td>
<td>0,6485736336</td>
<td>0,749913204</td>
</tr>
<tr>
<td>GP18</td>
<td>0,2237626</td>
<td>0,0006087133</td>
<td>0,011261197</td>
</tr>
<tr>
<td>GP19</td>
<td>0,8968064</td>
<td>0,8407959213</td>
<td>0,864151304</td>
</tr>
<tr>
<td>GP20</td>
<td>0,7120951</td>
<td>0,5259587275</td>
<td>0,648682431</td>
</tr>
<tr>
<td>GP21</td>
<td>1,8963253</td>
<td>0,2251072446</td>
<td>0,333158722</td>
</tr>
<tr>
<td>GP22</td>
<td>0,4632672</td>
<td>0,1387586112</td>
<td>0,213919520</td>
</tr>
<tr>
<td>GP23</td>
<td>10154306</td>
<td>0,9774574975</td>
<td>0,977457497</td>
</tr>
<tr>
<td>GP24</td>
<td>1,2419974</td>
<td>0,688820634</td>
<td>0,759584018</td>
</tr>
<tr>
<td>GP25</td>
<td>2,3939729</td>
<td>0,0888645370</td>
<td>0,164399394</td>
</tr>
<tr>
<td>GP26</td>
<td>0,7397473</td>
<td>0,5749987420</td>
<td>0,686288821</td>
</tr>
<tr>
<td>GP27</td>
<td>0,3852076</td>
<td>0,0585561873</td>
<td>0,114030470</td>
</tr>
<tr>
<td>GP28</td>
<td>3,4527301</td>
<td>0,0092269974</td>
<td>0,042674863</td>
</tr>
<tr>
<td>GP29</td>
<td>0,3087622</td>
<td>0,0150891997</td>
<td>0,046658580</td>
</tr>
<tr>
<td>GP30</td>
<td>2,7905639</td>
<td>0,4001532132</td>
<td>0,092535431</td>
</tr>
<tr>
<td>GP31</td>
<td>3,2440412</td>
<td>0,015321545</td>
<td>0,046658580</td>
</tr>
<tr>
<td>GP32</td>
<td>0,2756544</td>
<td>0,0062049054</td>
<td>0,038263584</td>
</tr>
<tr>
<td>GP33</td>
<td>1,1616275</td>
<td>0,7943645056</td>
<td>0,839756703</td>
</tr>
<tr>
<td>GP34</td>
<td>0,5900289</td>
<td>0,3190190337</td>
<td>0,421560865</td>
</tr>
<tr>
<td>GP35</td>
<td>0,2663386</td>
<td>0,0043282601</td>
<td>0,032029125</td>
</tr>
<tr>
<td>GP36</td>
<td>0,3577342</td>
<td>0,0394456398</td>
<td>0,092535431</td>
</tr>
</tbody>
</table>

Tablica 1. Tablica s prikazom glavnih rezultata istraživanja. Obojeni nazivi kromatografskih vršaka (GP) označavaju kromatografske vrške kod kojih se pojavila statistički značajna razlika. Crveno označeni kromatografski vršci označavaju kromatografske vrške čiji je postotak površine značajno veći u CHO-NPC1 /-/ uzorcima. Zeleno označeni kromatografski vršci označavaju kromatografske vrške čiji je postotak površine značajno veći u CHOwt uzorcima.
Slika 9. Usporedba reprezentativnih kromatograma N-glikana glikoproteina lizosomalne membrane CHO-NPC -/- stanica (plava linija) i CHOwt stanica (zelena linija).
4.1.1. Asignacija kromatografskih vršaka

Informacija o strukturi N-glikana iz pojedinih kromatografskih vršaka dobivena je MALDI-TOF-MS i MALDI-TOF/TOF-MS/MS analizom i usporedbom s bazom podataka GlycoBase (https://glycobase.nibrt.ie/). Na Slici 10. prikazani su najzastupljeniji glikani za pojedini kromatografski vršak.

Sve sijalinske kiseline su vezane α(2→3) vezom zbog nedostatka ekspresije za beta-galaktozid alfa-2,6-sijaliltransferazu (ST6Gal) u CHO stanicama (Xu i sur., 2011). Također, sve fukoze su sržne, tj. vezane α(1→6) glikozidnom vezom za prvi N-acetilglukozamin vezan za proteinski dio glikoproteina. Osim toga, u CHO stanicama ne dolazi do ekspresije enzima za fukozilaciju antena (Xu i sur., 2011).

Još jedna od značajnih razlika glikozilacije u dvije vrste vidljiva je na primjeru pojave N-glikolilneuraminske kiseline u strukturi glikana. Ovaj hidroksilirani derivat N-acetilneuraminske kiseline javlja se u glikanima mnogih sisavaca, no ne i u ljudi (Chou i sur., 1998).

Nekim glikanima veće mase nije bilo moguće točno odrediti strukturu, stoga su oni prikazani kraticama koje označavaju njihov sastav.

Kromatografskom vršku GP16 se nije uspjela asignirati struktura zbog male površine i lošeg razdvajanja od kromatografskih vršaka GP15 i GP17 koji ga okružuju, kao što je vidljivo na Slici 8.

Zbog korištenih metoda za analizu glikana, glikani u nekim kromatografskim vršcima imaju isti sastav monosaharida, ali ne nužno i strukturu. To je zbog toga što HILIC kolone imaju mogućnost razdvajanja strukturnih izomera, čak i ako oni imaju istu masu (Ahn i sur., 2010).
Slika 10. Tablica s prikazom najzastupljenijih struktura pridruženih pojedinim kromatografskim vršcima. Svi N-glikani sastoje se od srži koju čine dva N-acetilglukozamina (GlcNAc) i tri manoze (M). F označava postojanje fukoze u strukturi; Mx – broj (x) manoza vezanih na GlcNAc srži glikana; Ax – broj (x) antena GlcNAc na srži; G(x) broj (x) galaktoza vezanih na antene; S(x) broj (x) N-acetilneuraminskih kiselina vezanih za G; S*(x) označava broj (x) N-glikolneuraminskih kiselina vezanih za galaktozu. Kratice glikana bez pridružene strukture u vidu piktograma čitaju se na sljedeći način: Hx – broj (x) heksoza; Nx – broj (x) N-acetiliranih heksoza; Fx – broj (x) fukoza; S(x) broj (x) N-acetilneuraminskih kiselina
4.2. Analiza N-glikana glikoproteina vodene faze

Slika 11. Prikaz reprezentativnih kromatograma N-glikana glikoproteina Tritonske faze (plava linija) i vodene faze (zelena linija).
4.3. Pomak prema složenijim strukturama

Među N-glikanima glikoproteina lizosomalne membrane CHO-NPC1 -/- stanica zamijećen je općenit pomak prema složenijim strukturama. Ovo je bilo primijećeno i u drugim istraživanjima, kao što je i ono koje su proveli Dixit i sur. (2011). Istraživanje koje su oni proveli ukazuje na promijenjenu glikozilaciju nekih lizosomalnih glikoproteina, kao što su sam NPC2 i lizosomalni enzim, tripeptidil peptidaza I (TPPI). Kao i u ovom radu, zamijećen je pomak glikoproteina na SDS-PAGE gelu prema većim masama zbog promijenjene glikozilacije.

4.4. Promjene u oligomanoznim glikanima

4.4.1. Porast M5 struktura

4.4.2. Smanjen broj manoza u oligomanoznim strukturama N-glikana iz CHO-NPC1 -/- uzoraka

4.5. Moguć utjecaj promjene proteinskih sastava lizosomalne membrane na njen N-glikom

4.5.1. Promjena u recikliranju membranskih proteina

4.5.2. Promjena ekspresije LAMP-2

4.5.3. NPC1 je membranski lizosomalni glikoprotein

Iako sam NPC1 protein nije jedan od najzastupljenijih membranskih proteina lizosoma, on je sam također N-glikoziliran na više mjesta i može se pretpostaviti da postoji mogućnost da je njegovo odsutvo u membrani također doprinielo razlici u sastavu N-glikoma (Saftig i sur., 2010; Davies i Ioannou, 2000).

4.6. Utjecaj kolesterola na glikozilaciju

5. ZAKLJUČCI

U ovom radu provedena je analiza N-glikana glikoproteina lizosomalne membrane modela NPC i CHOwt stanica i na temelju uočenih promjena može se zaključiti sljedeće:

1. N-glikani glikoproteina lizosomalne membrane NPC modela su općenito kompleksniji u usporedbi s N-glikanima CHOwt stanica.
2. Povećana je razina M5 glikana glikoproteina lizosomalne membrane NPC modela.
3. Glikani s većim brojem manoza su brojniji u CHOwt stanicama nego u modelu NPC.
4. N-glikom lizosomalne membrane modela NPC se značajno razlikuje od onog u CHOwt stanicama.

Cooper GM, Hausman RE. Stanica, Zagreb, Medicinska Naklada, 2004a, str. 305.

Cooper GM, Hausman RE. Stanica, Zagreb, Medicinska Naklada, 2004b, str. 306.

Cooper GM, Hausman RE. Stanica, Zagreb, Medicinska Naklada, 2004e, str. 515-517.

Cooper GM, Hausman RE. Stanica, Zagreb, Medicinska Naklada, 2004f, str. 393.

Dixit SS, Jadot M, Sohar I, Sleat DE, Stock AM, Lobel P. Loss of Niemann-Pick C1 or C2 protein results in similar biochemical changes suggesting that these proteins function in a common lysosomal pathway. *PLOS ONE*, 2011, 6, e23677.

Vanier MT. Review Niemann-Pick disease type C. Orphanet J Rare Dis, 2010, 5, 16.

7. SAŽETAK/ SUMMARY

7.1. Sažetak

Niemann-Pickova bolest tip C1 je rijetka, nasljedna i zasad neizlječiva lizosomska bolest nakupljanja. Glavna odlika bolesti je nakupljanje kolesterolja u endolizosomalnom susutavu. Uzrok bolesti je mutacija proteina NPC1 koji je potreban za izlazak kolesterolja iz lizosoma. Bolest je teška i progresivna i uključuje neurološke simptome kao što su ataksija, disfagija i demencija. U većini slučajeva javlja se i (hepato)splenomegalija. Osim toga, Niemann-Pickova bolest tip C je slična Alzheimerovoj budući da se u obje bolesti javljaju neurofibrilarni snopići i amiloidogeno procesiranje APP.

Istraživanjem N-glikana membranskih lizosomalnih glikoproteinima pokušalo se pogledati na ovu bolest iz nove perspektive. U tu svrhu korišene su CHO-NPC1 -/- i CHOwt stanice kao kontrola, te principi magnetske kromatografije i fazne separacije detergentom Triton X-114 za izolaciju glikoproteina. N-glikani odvojeni sa glikoproteina i obilježeni sa 2-aminobenzamidom bili su analizirani HILIC-UPLC metodom. Za asignaciju pojedinih kromatografskih vršaka korištena je masena spektrometrija i usporedba s bazom podataka GlycoBase.

Otkrivene su statistički značajne razlike u N-glikomu lizosomalne membrane između CHO NPC-/- i CHOwt. Primijećen je porast kompleksnih struktura N-glikana, kao i povećana količina M5 glikana na lizosomalnim membranskim proteinima NPC modela. Također je primijećena razlika u broju manoza na oligomanoznim glikanima. Ova otkrića potvrdila su neka od otprije provedenih istraživanja na temu NPC.
7.2. Summary

Niemann-Pick's disease type C1 is a rare, inheritable and currently untreatable lysosomal storage disease. The main characteristic of this disease is accumulation of cholesterol in the endo-lysosomal system. The cause of the disease is a mutation in the NPC1 protein, which is necessary for egress of cholesterol from lysosomes. The disease is severe and progressive and includes neurological symptoms such as ataxia, dysphagia and dementia. In most cases, (hepato)splenomegaly is also present. Besides, Niemann-Pick's disease type C is similar to Alzheimer's disease. Neurofibrillary tangles and amyloidogenic processing of APP are present in both of these conditions.

An effort was made to see this disease in a new light by investigating the N-glycans of lysosomal membrane glycoproteins. CHO-NPC1 -/- cell culture was used for this purpose, as well as CHOwt cells as a control group. In order to isolate the lysosomal membrane glycoproteins, magnetic chromatography and Triton x-114 mediated phase separation were used. The N-glycans were separated from the proteins and labeled with 2-aminobenzamide and then analysed with HILIC-UPLC. Peak assignment was made with mass spectrometry and GlycoBase database.

Statistically significant differences were discovered in the N-glycome of the lysosomal membrane. There was a significant increase in complex glycan structures, as well as an increase of M5 type glycans. There was also a difference mannose residues number of oligomannose glycans. M8 glycan was more abundant in CHOwt cells. Those discoveries were in line with some of the previous work done on the subject.
ANALIZA N-GLIKANA LIZOSOMALNIH MEMBRANSKIH GLIKOPROTEINA MODELJA NIEMANN-PICKOVE BOLESTI TIP C1

Tena Cupar

SAŽETAK

Niemann-Pickova bolest tip C1 je rijetka, nasljedna i zasad neizlječiva lizosomska bolest nakupljanja. Glavna odlika bolesti je nakupljanje kolesterola u endolizosomalnom susutavu. Uzrok bolesti je mutacija proteina NPC1 koji je potreban za izlazak kolesterola iz lizosoma. Bolest je teška i progresivna i uključuje neurološke simptome kao što su ataksija, disfagija i demencija. U većini slučajeva javlja se i (hepato)splenomegalija. Osim toga, Niemann-Pickova bolest tip C je slična Alzheimerovoj budući da se u obje bolesti javljaju neurofibrilarni snopici i amiloidogeno procesiranje APP.

Istraživanjem N-glikana membranskih lizosomalnih glikoproteinima pokušalo se pogledati na ovu bolest iz nove perspektive. U tu svrhu korišćene su CHO-NPC1-/- i CHOwt stanice kao kontrola, te principi magnetske kromatografije i fazne separacije detergentom Triton X-114 za izolaciju glikoproteina. N-glikani odvojeni sa glikoproteina i obilježeni sa 2-aminobenzamidom bili su analizirani HILIC-UPLC metodom. Za asignaciju pojedinih kromatografskih vršaka korišćena je masena spektrometrija i usporedba s bazom podataka GlycoBase.

Otkrivena su statistički značajne razlike u N-glikomu lizosomalne membrane između CHO NPC-/- i CHOwt. Primijećen je porast kompleksnih struktura N-glikana, kao i povećana količina M5 glikana na lizosomalnim membranskim proteinima NPC modela. Također je primijećena razlika u broju manoza na oligomanoznim glikanima. Ova otkrića potvrdila su neka od otprije provedenih istraživanja na temu NPC.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži: 48 stranica, 11 grafičkih prikaza, 1 tablicu i 104 literaturnih navoda. Izvornik je na hrvatskom jeziku.

Ključne riječi: N-glikan, lizosom, lizosomalna membrana, UPLC-HILIC, Niemann-Pickova bolest tip C1, NPC1

Mentor: Dr. sc. Gordan Lauc, redoviti profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Ocjenjivači: Dr. sc. Gordan Lauc, redoviti profesor Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Miranda Sertić, docentica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Olga Gornik, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

ANALYSIS OF N-GLYCANS FROM LYososomal MEMBRANE GLYCOPROTEINS OF NIEMANN-PICK TYPE C1 MODEL

Tena Cupar

SUMMARY

Niemann-Pick’s disease type C1 is a rare, inheritable and currently untreatable lysosomal storage disease. The main characteristic of this disease is accumulation of cholesterol in the endo-lysosomal system. The cause of the disease is a mutation in the NPC1 protein, which is necessary for egress of cholesterol from lysosomes. The disease is severe and progressive and includes neurological symptoms such as ataxia, dysphagia and dementia. In most cases, (hepato)splenomegaly is also present. Besides, Niemann-Pick’s disease type C is simmilar to Alzheimer's disease. Neurofibrillary tangles and amyloidogenic processing of APP are present in both of these conditions.

An effort was made to see this disease in a new light by investigating the N-glycans of lysosomal membrane glycoproteins. CHO-NPC1 -/- cell culture was used for this purpose, as well as CHOwt cells as a control group. In order to isolate the lysosomal membrane glycoproteins, magnetic chromatography and Triton x-114 mediated phase separation were used. The N-glycans were separated from the proteins and labeled with 2-aminobenzamide and then analysed with HILIC-UPLC. Peak assignment was made with mass spectrometry and GlycoBase database. Statistically significant differences were discovered in the N-glycome of the lysosomal membrane. There was a significant increase in complex glycan structures, as well as an increase of M5 type glycans. There was also a difference mannose residues number of oligomannose glycans. M8 glycan was more abundant in CHOwt cells. Those discoveries were in line with some of the previous work done on the subject.

The thesis is deposited in the Central Library of the University of Zagreb Faculty of Pharmacy and Biochemistry.

Thesis includes: 48 pages, 11 figures, 1 table and 104 references. Original is in Croatian language.

Keywords: N-glycans, lysosome, lysosomal membrane, UPLC-HILIC, Niemann-picks’ disease type C1, NPC1

Mentor: Gordan Lauc, Ph.D. Full Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

Reviewers: Gordan Lauc, Ph.D. Full Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Miranda Sertić, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Olga Gornik, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

The thesis was accepted: August 2016.