Sinteza i karakterizacija tiolno funkcionaliziranih nanočestica srebra i zlata

Ivanković, Fran

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Pharmacy and Biochemistry / Sveučilište u Zagrebu, Farmaceutskobiokemijski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:829648

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-28

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb

Fran Ivanković

Sinteza i karakterizacija tiolno funkcionaliziranih nanočestica srebra i zlata

DIPLOMSKI RAD

Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2016.

Ovaj diplomski rad je prijavljen na kolegiju Organska kemija Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta i izrađen na Institutu za medicinska istraživanja i medicinu rada u Zagrebu pod neposrednim vodstvom dr. sc. Ivane Vinković Vrček, više znanstv. sur., i voditeljstvom prof. dr. sc. Valerija Vrčeka.

Zahvaljujem se svojim mentorima dr. sc. Ivani Vinković Vrček, višoj znanstv. sur., i prof. dr. sc. Valeriju Vrčeku na podršci, stručnom vodstvu i savjetima tijekom izrade ovog rada. Također se zahvaljujem Ivoni Capjak, mag. pharm. iz Hrvatskog zavoda za transfuzijsku medicinu čija mi je pomoć bila neophodna tijekom ekperimentalnog dijela istraživanja.

SADRŽAJ

1.	Uvod				
	1.1. Nanočestice	1			
	1.2. Primjena nanočestica srebra i zlata	2			
	1.2.1. Nanočestice srebra	2			
	1.2.2. Nanočestice zlata	2			
	1.2.3. Potencijalna toksičnost nanočestica srebra i zlata	3			
2.	Obrazloženje teme	7			
3.	Materijali i metode	8			
	3.1. Metode sinteze	8			
	3.1.1. Priprava nanočestica srebra i zlata	8			
	3.1.2. Reaktanti	9			
	3.1.3. Postupci priprave nanočestica srebra i zlata	10			
	3.2. Metode karakterizacije	11			
4.	Rezultati i rasprava	15			
	4.1. Ispitivanje eksperimentalnih uvjeta priprave nanočestica srebra i zlata	15			
	4.2. Karakterizacija i evaluacija stabilnosti nanočestica srebra i zlata	17			
	4.3. Analiza pripravljenih nanočestica UV-vis spektrofotometrijom	23			
	4.4. Ispitivanje vezanja tiolnih biomolekula primjenom ¹ H NMR spektroskopije	24			
5.	Zaključak	27			
6.	Literatura	28			
7.	Sažetak/summary	32			
	7.1. Sažetak	32			
	7.2. Summary	33			
8.	Prilozi	34			
	8.1. UV-vis grafovi	34			
	8.2. DLS distribucija veličine nanočestica				

POPIS SLIKA

Slika 1. Model koji objašnjava odnos površine i volumena nanočestica (preuzeto iz Goesmann i Feldman, 2010).

Slika 2.: Prednosti i nedostatci različitih putova primjene nanočestica

Slika 3. Top-down i bottom-up pristup sintezi nanočestica (Ju-Nam Y. i sur., 2008.)

Slika 4.: Grafički prikaz zeta (ζ)-potencijala nanočestica srebra u Milli-Q vodi

Slika 5.: Grafički prikaz zeta (ζ)-potencijala nanočestica zlata u Milli-Q vodi

Slika 6.: TEM prikaz CYSnanoAu 2 na povećanju od 85000, skala 100 nm

Slika 7.: TEM prikaz GSHnanoAg 8 na povećanju od 140000, skala 100 nm

Slika 8.: TEM prikaz GSHnanogu 4 na povećanju od 85000k, skala 100 nm

Slika 9.: TEM prikaz GSHnanoAg 3 na povećanju od 85000, skala 100 nm

Slika 10.: TEM prikaz GSHnanoAu 7 na povećanju od 140000, skala 100 nm

Slika 11.: TEM prikaz CYSnanoAg 10 na povećanju od 85000, skala 100 nm

Slika 12.: ¹H NMR spektri glutationa (crvena spektralna linija) i njegova kompleksa s nanosrebrom (crna spektralna linija)

Slika 13.: Omjer slobodnog i vezanog glutationa

Slika 8.1.1. UV-vis spektar CYSnanoAu 1

Slika 8.1.2. UV-vis spektar CYSnanoAu 2

Slika 8.1.3. UV-vis spektar CYSnanoAu 3

Slika 8.1.4. UV-vis spektar CYSnanoAu 4

Slika 8.1.5. UV-vis spektar CYSnanoAu 5

Slika 8.1.6. UV-vis spektar GSHnanoAu 1

Slika 8.1.7. UV-vis spektar GSHnanoAu 3

Slika 8.1.8. UV-vis spektar GSHnanoAu 6

Slika 8.1.9. UV-vis spektar GSHnanoAu 7

- Slika 8.1.10. UV-vis spektar CYSnanoAg 1
- Slika 8.1.11. UV-vis spektar CYSnanoAg 2
- Slika 8.1.12. UV-vis spektar CYSnanoAg 3
- Slika 8.1.13. UV-vis spektar CYSnanoAg 4
- Slika 8.1.14. UV-vis spektar CYSnanoAg 7
- Slika 8.1.15. UV-vis spektar CYSnanoAg 8
- Slika 8.1.16. UV-vis spektar CYSnanoAg 11
- Slika 8.1.17. UV-vis spektar CYSnanoAg 12
- Slika 8.1.18. UV-vis spektar GSHnanoAg 2
- Slika 8.1.19. UV-vis spektar GSHnanoAg 4
- Slika 8.1.20. UV-vis spektar GSHnanoAg 6
- Slika 8.1.21. UV-vis spektar GSHnanoAg 7
- Slika 8.1.22. UV-vis spektar GSHnanoAg 8
- Slika 8.2.1. Dijagram distribucije veličina GSHnanoAg 2
- Slika 8.2.3. Dijagram distribucije GSHnanoAg 4
- Slika 8.2.4. Dijagram distribucije GSHnanoAg 8
- Slika 8.2.5. Dijagram distribucije CYSnanoAg 10
- Slika 8.2.6. Dijagram distribucije CYSnanoAg 11
- Slika 8.2.7. Dijagram distribucije CYSnanoAg 12
- Slika 8.2.8. Dijagram distribucije GSHnanoAu 1
- Slika 8.2.9. Dijagram distribucije CYSnanoAu 2
- Slika 8.2.10. Dijagram distribucije CYSnanoAu 3
- Slika 8.2.11. Dijagram distribucije CYSnanoAu 4
- Slika 8.2.12. Dijagram distribucije CYSnanoAu 6
- Slika 8.2.13. Dijagram distribucije GSHnanoAu 7
- Slika 8.2.14. Dijagram distribucije CYSnanoAu 10

POPIS TABLICA

Tablica 1.: Utjecaj nanoAg na različite organe
Tablica 2.: Utjecaj nanoAu na različite organe
Tablica 3. Popis reaktanata u sintezi nanočestica srebra i zlata
Tablica 4. Sinteze nanočestica srebra uz funkcionalizaciju s cisteinom ili glutationom
Tablica 5. Sinteze nanočestica zlata uz funkcionalizaciju s cisteinom ili glutationom
Tablica 6. Hidrodinamički promjer (d_H) nanočestica srebra u Milli-Q vodi dobiven iz distribucije
veličine prema volumenu
Tablica 7. Hidrodinamički promjer (d_H) nanočestica zlata u Milli-Q vodi dobiven iz distribucije
veličine prema volumenu
Tablica 8.: Optički parametri nanočestica srebra

Tablica 9.: Optički parametri nanočestica zlata

1. Uvod

1.1. Nanočestice

Prefiks "nano" označava čestice veličine u rasponu 1-100 nm (Jingfang Zhou i sur., 2009.). Glavno obilježje nanočestica je veliki omjer površine u odnosu navolumen česticaModel kocke dslikovito opisuje površinu koju nanočestice imaju (Slika 1). Ukoliko kocka ima duljinu brida 1 cm, njezin volumen jest 1 cm³ i površina 0.0006 m². Dijeljenjem kocke na manje kocke duljine bridova 1 nm ostaje jednak volumen, međutim površina izrazito poraste čak 10⁷ puta.

Slika 1. Model koji objašnjava odnos površine i volumena nanočestica (preuzeto iz Goesmann i Feldman, 2010).

Zbog velikog broja nezasićenih veznih i koordinacijskih mjesta te slabo vezanih atoma na površini nanočestica, njihova fizikalno-kemijska svojstva se uvelike razlikuju od makro- i mikroskopskih materijala. Primjeri ovog fenomena su sniženje ledišta i povećanje kemijske reaktivnosti (Goesmann i Feldman, 2010.). Nanočestice također pokazuju fenomen površinske plazmonske rezonancije (SPR, od engl. Surface Plasmon Resonance) koji je posljedica kolektivnih oscilacija i fluktuacija u elektronskoj gustoći s interaktivnim električnim poljem, a koje su izrazito osjetljive na adsorpciju molekula na metalne površine.

Takva svojstva omogućuju široku primjenu nanočestica u različitim tehnologijama (Klaine i sur., 2012.).

1.2. Primjena nanočestica srebra i zlata

Nanočestice srebra (nanoAg), zlata (nanoAu) kao i nanočestice ostalih metala imaju drugačija fizikalna, kemijska, biološka i optička svojstva u odnosu na iste metale većih veličina. Drugačija svojstva omogućuju primjenu u mnogim područjima, od potrošačkih proizvoda, do biomedicine, elektronike i agronomije (Height, 2011.).

1.2.1. Nanočestice srebra

U biomedicini se pokazalo da nanočestice srebra osim vlastitog antibakterijskog djelovanja, u kombinaciji sa penicilinom G, amoksicilinom, eritromicinom, klindamicinom ili vankomicinom pojačavaju djelovanje tih antibiotika u tretiranju rezistentnih Staphylococcus aureus i Escherichia Coli infekcija (Wijnhoven i sur., 2009.). Zbog svojih biocidnih svojstava, danas se nanoAgkoriste u biomedicini kao prevlake na kirurškim instrumentima, za impregnaciju katetera, za impregnaciju maski za disanje u anesteziologiji, u stomatologiji kao aditivi u dentalnim materijalima, u ortopediji kao aditivi u cementima za kost, u dijagnostici za povećanje osjetljivosti biodetekcije te ultraosjetljive kliničke testove za dijagnozu infarkta miokarda i fluorescentno detektiranje RNA (El-Badawy i sur., 2010).

Osim toga, nanoAg u industriji nalaze primjenu kao katalizatori, nanokonektori i nanoelektrode za elektroničke uređaje, u optici, memorijskim uređajima, kao kapacitatori (Tolaymat i sur., 2010.), a u svakodnevnim proizvodima ih nalazimo u tekstilu s antibakterijskim svojstvima, šamponima, filterima za zrak, spremnicima za hranu, premazima za hladnjake, itd. (Klaine i sur., 2012.).

1.2.2. Nanočestice zlata

Nanočestice zlata (nanoAu) su zbog svojih svojstava pogodna platforma za funkcionalizaciju različitim organskim ili biološkim ligandima, što je temelj uporabe nanoAu kao detekcijskih sredstava (Daniel MC i sur., 2004.; Zayats M i sur., 2005.).

Osim toga, nanoAu imaju primjenu u elektronici, Raman spektroskopiji (Fang Chai i sur., 2009.), terapiji tumora (Weibo Cai i sur., 2008.), kao kalibracijski standard u fluorescencijskoj detekciji raznih bioloških specija (Alexander Gaiduk i sur., 2010.), za

detekciju membranskih proteina (L. Cognet i sur., 2003.), kao nosači za ciljanu dostavu lijeka ili DNA u ciljana tkiva (Parta Ghosh i sur., 2008.), u različitim molekularno ciljanim biološkim primjenama poput multifotonske i korelativne mikroskopije (Ewa M. Goldys i sur., 2012.), itd.

1.2.3. Potencijalna toksičnost AgNP i AuNP

Unatoč širokoj primjeni i korisnosti, još uvijek nisu istraženi svi posredni ili neposredni biološki učinci koje nanoAg i nanoAu mogu imati na žive organizme, na ljudsko zdravlje i okoliš. Prilikom primjene, do ulaska nanočestica u organizam može doći preko pluća inhalacijom, intravenozno, dermalnom primjenom te oralnim putem (Slika 2). Generalno, toksičnost se može povećati ili smanjiti ovisno o veličini nanočestica jer ona utječe na prolazak kroz biološke membrane te funkcionalizacijom površine nanočestica koja ima utjecaja na reaktivnost i imunološki odgovor stanica.

Tako je pokazano da dermalna primjena nanoAg u previsokim koncentracijama može uzrokovati mitohondrijima uvjetovanu apoptozu, a primjenom na kožu oštećenu opeklinama uzrokuju promjene boje kože, kao i povišene koncentracije srebra u plazmi i urinu. Pokusi na životinjama su pokazali da dolaskom nanoAg u jetru dolazi do povišenja jetrenih enzima, indukcije proapoptotičke kaskade i produkcije medijatora oksidativnog stresa, što kao posljedicu ima hepatotoksičnost. Hepatotoksičnost potvrđuju i povišene razine kolesterola kod primjene viših doza nanoAg. Ukoliko nanoAg dospiju u mozak, uzrokuju, ovisno o vremenu i dozi, povišenje proupalnih citokina, povećanu permeabilnost membrana stanica, promjenjenu funkciju sinapsi, povećano lučenje dopamina i serotonina te u konačnici citotoksičnost. Distribucija nanoAg po organima pokazuje ovisnost o veličini, pri čemu se čestice manje od 100 nm najviše nakupljaju u jetri, dok se one veće od 100 nm nakupljaju u slezeni.

I za nanoAu je pokazano da primijenjene na kožu uzrokuju citotoksičnost ovisnu o veličini čestica; veće čestice pokazuju citotoksičnost već pri nižim dozama, dok manje čestice pokazuju citotoksičnost u relativno visokim dozama. Manje čestice nanoAu također pokazuju dublje penetriranje u tkivo od većih nanočestica. Ulaskom nanoAu u jetru dolazi do njihovog nakupljanja, lučenja proupalnih citokina te u konačnici do apoptoze i

hepatotoksičnosti. Kao i kod nanoAg, veće čestice se nakupljaju u slezeni (Yildrimer i sur., 2011.).

Slika 2.: Prednosti i nedostatci različitih putova primjene nanočestica

Organ	Koncentracija/put primjene	Meta	Zapažanje
	50 i 100 µg/mL	NIH3T3 (mišji fibroblast)	Apoptoza uzrokovana mitohondrijima povezana sa ROS u koncentraciji ≥50 µg/mL
Коžа	0.76-50 µg/mL	A431 (ljudski karcinom kože)	Nema dokaza o toksičnosti do koncentracije od 6.25 µg/mL. Morfološke promjene poput porasta GSH, lipidne peroksidacije, fragmentaije DNA pri koncentracijama između 6.25 and 50 µg/mL
	0.34-34.0 µg/mL (14 dana zaredom)	Koža svinje	Bez makroskopskih iritacija, mikroskopske upale i lokalizacija AgNP u stratum corneum
	AgNP-om prevučena "Acticoat" gaza za opekotine	Pacijent sa opekotinama	Reverzibilna hepatotoksičnost, promjena boje kože, povišene koncentracije srebra u plazmi i urinu
	30 ili 120 µg/mL raspršeno u akvariju (24h)	Zebrasta ribica	Toksičnost uzrokovana oksidativnim stresom zbog oslobađanja Ag+. Indukcija proapoptotičke kaskade u jetri
Jetra	6.25-100 µg/mL za fibroblaste, 12.5-200 g/mL za hepatocite	Mišji fibroblasti, hepatocite	Lučenje medijatora oksidativnog stresa
	23.8, 26.4 or 27.6 µg/mL, jednokratna ili višekratna primjena	Wistar štakor	Akumulacija nakon višekratne primjene
	6.25-50 µg/mL (25, 40, 80 nm) (24h)	rBMEC (endotelne stanice mozga štakora)	O vremenu i dozi ovisno povečanje proupalnih citokina, povećana permeabilnost i apoptoza.
Mozak	10, 25 or 50 µg/mL (1h)	Tkivo i homogenat tkiva Wistar štakora	Snižena in vitro aktivnost mitohondrijskog respiratornog lanca, povećan potencijal oštećenja oksidativnim stresom
Dluás	750 µg/m3 (4h/dan, 2 tjedna), inhalacija	Sprague-Dawley štakor	Bez promjena funkcije pluća u usporedbi sa skupinom izloženom čistom zraku
Piùca	61 µg/m3 (6h/dan, 4 tjedna), inhalacija	Sprague-Dawley štakor	Bez značajnih kliničkih promjena vrijednostima krvnih parametara

Tablica 1.: Toksični učincinanoAg na različite organe

Organ	Koncentracija/put primjene	Meta	Zapažanje
Koža	95, 142 i 190 μg/mL (13 nm), 13, 20 and 26 μg/mL (45 nm) (3-6 dana)	CF-31 (humani dermalni fibroblast)	Citotoksičnost ovisna o dozi i veličini. Veće čestice (45 nm) pokazuju veću citotoksičnost pri nižim dozama (10 Mg/mL) u usporedbi sa manjim česticama koje pokazuju toksičnost samo pri 75 μg/mL.
	0-0.8 µg/mL (14nm) (2, 4, 6 dana)	CF-31 (humani dermalni fibroblast)	Smanjenje proliferacije ovisno o dozi
later	0.17, 0.85 i 4.26 mg/kg tjelesne mase, intravenozno	BALB/C miš	Akumulacija u jetri i slezeni. Signifikantno lučenje upalnih citokina(IL- 1, 6, 10) uz posljedičnu apoptozu pri 4.26 mg/kg. Pri nižim dozama bez promjena.
Jetra	0.4-2.2 mg/kg tjelesne mase (13.5 nm) (14-28 dana), peroralno, intravenozno, intraperitonealno	BALB/C miš	Najveća toksičnost oralno i intraperitonealno, najmanja intravenozno
Marrah	0.8-50 µg/mL (3, 5, 7, 10, 30 i 60 nm) (24h)	rBMEC (endotelne stanice mozga štakora)	Bez morfoloških promjena nakon 24 h
WOZAK	40, 200 ili 400 µg/kg tjelesne mase/dan (8 dana)	C57/BL6 miš	Mala količina nanočestica prošla krvno- moždanu barijeru, bez neurotoksičnosti

Tablica 2.: To	oksični uči	nci nanoAu	na različite	organe
----------------	-------------	------------	--------------	--------

2. Obrazloženje teme

Racionalni dizajn nanočestica za industrijsku i biomedicinsku primjenu temelji se na optimiranju parametara veličine, oblika te odabiru liganda vezanih na površinu nanočestica. Kontrolom veličine i oblika reguliraju se optička, elektronska i magnetska svojstva, dok se odabirom liganda regulira biokompatibilnost, stabilnost u otapalima te funkcionalnost (M.E. i sur., 2002.; Tkachenko A.G. i sur., 2003.). Ligandi, međutim, mogu imati i negativne osobine poput neželjene agregacije čestica i toksičnosti (Suresh A.K. i sur., 2012.). Stoga je vrlo važno pažljivo odabrati strategiju adekvatnih uvjeta sinteze i liganda za vezanje na površinu nanočestica.

Specifični cilj ovog istraživanja bio je optimirati metode priprave stabilnih nanočestica srebra i zlata koje su funkcionalizirane tiolnim biomolekulama – cisteinom i glutationom. Sintetizirane su četiri vrste nanočestica: nanočestice srebra funkcionalizirane cisteinom (CYSnanoAg) ili glutationom (GSHnanoAg),te nanočestice zlata funkcionalizirane cisteinom (CYSnanoAu) ili glutationom (GSHnanoAu). Primjenjene su dvije osnovne metode priprave nanoAu i nanoAg u kojima je ispitan utjecaj primjenjene koncentracije reaktanata, te omjera reaktanata u odnosu na funkcionalni ligand (CYS ili GSH) na stabilnost i fizikalno-kemijska svojstva dobivenih nanoAg i nanoAu. Karakterizacija i procjena stabilnost dobivenih nanočestica provedena je primjenom različitih eksperimentalnih tehnika: atomske apsorpcijske spektroskopije (AAS), dinamičke metode raspršenja svjetlosti, elektroforetske metode raspršenja svjetlosti, transmisijske elektronske mikroskopije, te metode nuklearne magnetne rezonance.

3. Materijali i metode

3.1. Metode sinteze

3.1.1. Priprema nanočestica srebra i zlata

Za pripravu nanočestica može se primijeniti ili "top-down" ili "bottom-up" strategija (Slika 3).

Slika 3. Top-down i bottom-up pristup sintezi nanočestica (Ju-Nam Y. i sur., 2008.)

"Top-down" strategije putem različitih distribucijskih tehnika stvaraju izolirane atome iz većih količina materijala. Te tehnike uključuju mljevenje, rezanje ili fotolitografiju. Iako se mogu dobiti male čestice veličine 10-100 nm, nedostatak je nepravilnost strukture površine čestica koja značajno utječe na osobine dobivenih nanočestica (El-Badawy i sur., 2010.).

"Bottom-up" strategije ili strategije vlažne sinteze kao prekursor koriste sol otopljenu u otapalu koje se potom reducira kemijskom reakcijom sa reducensom, a nanočestice nastaju kroz fazu nukleacije i fazu rasta. Nedostatci ove strategije su kompliciranost proizvodnje nanočestica na industrijskoj razini (Tolaymat i sur., 2010.), potencijalno zaostajanje rezidualnih kemikalija i/ili otapala u konačnom proizvodu, kao i ionsko srebro koje može zaostati s obzirom da efektivnost redukcije nije 100% (El-Badawy i sur., 2010.). Nanošestice zlata su bile sintetizirane istim postupkom kao prethodno opisani postupak sinteze nanočestica srebra.

3.1.2. Reaktanti

U Tablici 3. Popisani su svi reagensi koji su korišteni u sintezi nanoAg i nanoAu.

ReaktantinanoAgnanoAuPrekursor metalnih ionaAgNO3HAuCl4ReducensNaBH4NaBH4StabilizatorCistein, glutationCistein, glutationOtapaloMilli-Q H2OMilli-Q H2O

Tablica 3. Popis reaktanata u sintezi AgNP i AuNP

AgNO₃

Srebrov nitrat (Mr 169.87) je korišten kao prekursor za nanoAg. Za razliku od ostalih srebrovih soli, srebrov nitrat je kemijski stabilan, a nitratni ion (NO_3^-) je dominantni anion u reakcijskoj smjesi.

HAuCl₄

Kloraurinska kiselina (Mr 339.78) je korištena kao prekursor za AuNP. Dolazi u obliku trihidrata (HAuCl₄ x $3H_2O$) i tetrahidrata (HAuCl₄ x $4H_2O$). Dominantni anion u reakcijskoj smjesi je Cl⁻.

NaBH₄

Natrijev borohidrid (Mr 37.83) je snažni anorganski reducens.

Na⁺
$$\begin{bmatrix} H \\ I \\ H → B → H \\ H → H \end{bmatrix}^{-}$$

Cistein

Cistein (Cys, C₃H₇NO₂S , Mr 121.15) je aminokiselina koji sadrži tiolnu skupinu u postraničnom lancu.

Glutation

Glutation ($C_{10}H_{17}N_3O_6S$, Mr 307.32) je tripeptid sastavljen od glutamata, cisteina i glicina. U ljudskom organizmu sudjeluje u brojnim metaboličkim reakcijama kao jedan od glavnih antioksidansa. Sa tiolnom (-SH) skupinom se lako može apsorbirati na površinu nanočestica, a poznato je da veže teške metale, otapala te pesticide i time ih prevodi u oblik koji se može izlučiti putem urina ili žuči (I.S.Lim i sur., 2008.).

Milli-Q H₂O

Milli-Q H₂O je zaštitni znak Millipore korporacije koji označava ultračistu vodu tipa 1. Sukcesivnim koracima filtracije i deionizacije se dobiva čistoća karakterizirana električnom provodljivošću od 18.2 M Ω cm pri 25 °C.

3.1.3. Sintetski postupci pripreme nanočestica srebra i zlata

Nanočestice srebra i zlata su sintetizirane dvjema metodama koje se temelje na modifikaciji ranije objavljenog sintetskog postupka (I. V. Anambiga i sur., 2013.; Haibing Li i sur., 2009.). Ukupni volumen reakcijske smjese je bio 25 mL, a količine reaktanata su za svaku sintezu mijenjane i izračunavane u skladu sa omjerima reaktanata prikazanima u Tablicama 1. i 2.

Metoda I: U 25 mL Milli-Q vode se dokapava prekursor nanočestica (AgNO₃ ili HAuCl₄). Potom se uz žestoko miješanje dokapava reducens (NaBH₄), reakcijska smjesa se miješa tijekom20 minuta na sobnoj temperaturi, te se dokapava vodena otopina stabilizatora (glutation ili cistein). Cijeli postupak se odvija u staklenoj tikvici uz konstantno miješanje na magnetskoj mješalici.

Metoda II: U Milli-Q vodu se dokapava prekursor nanočestica (AgNO₃ ili HAuCl₄). Potom se dokapava stabilizator (glutation ili cistein), te nakon 20 minuta miješanja na sobnoj temperaturi, pažljivo se dokapa reducens (NaBH₄). Cijeli postupak se odvija u staklenoj tikvici uz konstantno miješanje na magnetskoj mješalici.

3.2. Metode karakterizacije

Atomska apsorpcijska spektroskopija

Atomi imaju valentne elektrone koji se nalaze u vanjskoj ljusci. Zračenjem se elektroni ekscitiraju, što stvara apsorpcijski spektar te elektroni prelaze u više energetsko stanje. Atomska apsorpcijska spektroskopija mjeri apsorbiranu svjetlost nakon prolaska kroz oblak atoma. Ta svjetlost je obično u vidljivom ili ultraljubičastom dijelu elektromagnetskog spektra, a svaki atom ima jedinstveni spektar koji apsorbira što omogućuje specifičnu i osjetljivu detekciju. Što je više atomiziranih čestica, proporcionalno se povećava količina apsorbirane svjetlosti (Allen i sur., 2012).

Korišten je atomski apsorpcijski spektrofotometar Analyst 600 (Perkin Elmer, SAD). Koncentracija pojedinih otopina AgNP i AuNP određena je izradom kalibracijske krivulje pomoću standarda Ag i Au čije su koncentracije bile u rasponu između 0.5 i 20 µg/L.

UV-vis spektroskopija

Apsorpcija elektromagnetskog zračenja u UV i vidljivom spektru rezultira promjenama u energiji elektrona ispitivanih molekula. Ekscitirani elektroni se nakon pobuđivanja vraćaju u osnovno energetsko stanje, pri čemu se oslobađa energija. Fenomen apsorpcije se može opisati Beer-Lambertovim zakonom:

$$\log \frac{I_0}{I} = \varepsilon \cdot c \cdot l$$

I₀ je intenzitet ulazne svjetlosti, I je intenzitet izlazne svjetlosti, c je molarna koncentracija, l je duljina puta svjetlosti, a ε je molarni ekstinkcijski koeficjent. Lijeva strana jednadžbe (log I₀/I) označava apsorbanciju A_λ na određenoj valnoj duljini λ .

Spektrofotometar je uređaj kojim se mjeri apsorpcijski spektar. Glavni dijelovi spektrofotometra su izvor svjetlosti, monokromator, fotodetektor i kiveta. Kao izvor svjetlosti se najviše koriste deuterijeva (210-370 nm) i volfram-halogena (290-900 nm) žarulja. Monokromator služi da svjetlost iz žarulje, koja je različitih valnih duljina, razloži na pojedine valne duljine. Svjetlost koja je prošla kroz uzorak se detektira fotodetektorom koji može biti fotomultiplikatorska cijev ili fotodioda. Uzorak se nalazi u staklenoj, plastičnoj ili najčešće u kvarcnoj kiveti (Sheehan, 2009).

Mjerenje UV-Vis spektara otopina nanočestica srebra i zlata provodilo se u Milli-Q vodi. Za mjerenja je korišten spektrofotometar Cary 50 UV-Vis (Varian, Agilent Technologies, SAD) u rasponu valnih duljina od 200 do 800 nm.

Dinamičko rapršenje svjetlosti

Dinamičko rapršenje svjetlosti (DLS, od eng. Dynamic Light Scattering) je fizikalna metoda koja mjeri Brown-ovo gibanje čestica i povezuje ga s veličinom čestica putem Stokes-Einstein-ove jednadžbe. Brown-ovo gibanje je gibanje čestica s obzirom na nasumične sudare sa otapalom te ima bitno svojstvo da se male čestice gibaju brže, dok se velike čestice gibaju sporije.

Uređaj funkcionira tako da laserski snop obasjava čestice te potom raspršeno zračenje pada na detektor. Detektor analizira intezitet fluktuacija raspršenog zračenja koje pokazuje specifičan uzorak s obzirom na konstruktivnu i destruktivnu interferenciju raspršenog zračenja različitih čestica. S obzirom da se čestice u otopini gibaju, dio uređaja koji se zove digitalni korelator mjeri stupnjeve sličnosti između dva signala u određenom vremenskom intervalu (Malvern Instruments Ltd., 1997).

Veličina čestica i distribucija veličine određeni su korištenjem Zetasizer Nano ZS instrumenta (Malvern, UK) opremljenog zelenim laserom (532 nm). Pripremljene otopine nanočestica su bile 1 mg/L. Intenzitet raspršenog svjetla detektiran je pod kutem od 173°. Hidrodinamički promjer (d_H) i distribucija veličina nanočestica dobivene su iz distribucije volumena i intenziteta da bi se usporedile dobivene vrijednosti iz te dvije distribucije.

Rezultati su prikazani kao prosječna vrijednost 6 mjerenja. Mjerenja su provedena na 25 °C i podaci su obrađeni u Zetasizer softwareu 6.32 (Malvern Instruments Ltd., 1997).

Elektroforetsko raspršenje svjetlosti

Elektroforetsko raspršenje svjetlosti (ELS, od eng. Electrophoretic Light Scattering) je analitička metoda koja mjeri elektroforetsku pokretljivost suspenzije čestica ili makromolekula. Izvor svjetlosti, najčešće laser valnih duljina od 400 do 800 nm, osvjetljava suspenziju. Optički sustav spojen na fotodetektor detektira raspršenu svjetlost, a sustav za obradu signala mjeri mobilnost čestica koristeći Dopplerov efekt. ELS se razlikuje od DLS-a u tome što se umjesto nasumičnih Brownianovih kretnji suspendiranih čestica prate usmjerene kretnje izazvane električnim poljem. Kretnje su ovisne o ζ (zeta)potencijalu suspendiranih čestica koje se kreću određenom brzinom opisanom kao elektroforetska pokretljivost prema suprotno nabijenoj elektrodi (McNeil-Watson, 2013).

Površinski naboj nanočestica određen je mjerenjem elektroforetskog zeta (ζ)-potencijala korištenjem Zetasizer Nano ZS instrumenta (Malvern, UK) instrumenta i koji je izračunat iz izmjerene elektroforetske pokretljivosti prema Henryjevoj jednadžbi koristeći Smoluchowskijevu aproksimaciju (f(Ka) = 1.5). Rezultati su prikazani kao prosječna vrijednost 3 mjerenja. Mjerenja su provedena na 25 °C i podaci su obrađeni u Zetasizer softwareu 6.32 (Malvern Instruments Ltd., 1997).

Transmisijska elektronska mikroskopija Transmisijska elektronska mikroskopija (TEM) je tehnika kod koje se koristi elektronski mikroskop koji putem snopa elektrona omogućuje vizualizaciju jako sitnih čestica. Mala valna duljina elektrona omogućuje elektronskim mikroskopima veću razlučivost i veće optičko povećanje. Elektronski mikroskopi se dijele na transmisijske i pretražne, ovisno o tome stvara li sliku snop elektrona koji je prošao kroz uzorak ili se odbio od njegove površine. Kod transmisijske elektronske mikroskopije prolaskom snopa elektrona kroz uzorak dolazi do interakcije s uzorkom pri čemu nastaje slika. Slika se povećava i fokusira na fluorescentnom zaslonu, na sloju fotografskog filma ili se detektira kamerom.

Nanočestice su prikazane u ovom radu korištenjem TEM mikroskopa (Zeiss 902A). Mikroskop je radio u svjetlom polju pri naponu ubrzanja od 80 kV. Slike su snimljene Canon PowerShot S50 kamerom spojenom na mikroskop. TEM uzorci pripremljeni su stavljanjem kapi suspenzije uzorka na bakrenu rešetku obloženu Formavarom. Uzorak je osušen na zraku na sobnoj temperaturi.

Nuklearna magnetska rezonancija Nuklearna magnetska rezonancija (NMR) je fizikalna metoda koja je bazirana na magnetskim svojstvima jezgara atoma. Pruža informacije o strukturi i kemijskoj okolini atoma i molekula te se upravo zato mnogo koristi u organskoj kemiji za potvrdu identiteta i definiranje strukture molekula.

Uzorak za analizu, koji je najčešće u otapalu bez protona (npr. CCl₄ i CDCl₃), se stavlja u staklenu cjevčicu između polova snažnog magneta. NMR se može primijeniti na jezgre koje imaju magnetski moment, poput ¹H i ¹³C. Proton se može promatrati kao pozitivno nabijena čestica koja rotira oko svoje osi, pri čemu stvara slabo magnetsko polje H' u smjeru osi vrtnje (spina). Kada se proton nađe u vanjskom magnetnom polju H₀, on će se usmjeriti paralelno ili antiparalelno prema smjeru tog polja, gdje paralelna orijentacija ima nižu energiju, međutim riječ je o vrlo malim razlikama. Energija se apsorbira kad jezgra prijeđe iz jednog stanja spina u drugo. Apsorpciju i emisiju energije vezanu uz zakretanje spina detektira radiofrekvencijski prijemnik, što se naposlijetku bilježi kao signal u NMR-spektru. Razlika energija dvaju stanja spina određena je pojedinim vrstama jezgara i jakošću magnetskog polja koje djeluje na te jezgre (Stanley H. Pine, 1994.).

4. Rezultati i rasprava

4.1. Ispitivanje eksperimentalnih uvjeta priprave nanočestica srebra i zlata

U *Tablici 2*. i *Tablici 3*. sistematizirano su prikazana imena nanočestica koja odgovaraju primjenjenim parametrima tijekom sinteze, te opažanja o stabilnosti i obojenju dobivene kolodine suspenzije.

Ime nanočestice	c(Ag), mM	Molarni omjer Ag : NaBH4 : Stabilizator	Metoda	Stabilnost	Obojenje
CYSnanoAg 1	1	1:10:0.2	Ι	Nestabilno, agregacija	Smeđi koloid
CYSnanoAg 2	1	1:10:0.2	II	Nestabilno, agregacija	Smeđi koloid
CYSnanoAg 3	1	1:2:0.2	Ι	Stabilno	Smeđi koloid
CYSnanoAg 4	1	1:2:0.2	II	Stabilno	Tamno smeđe
CYSnanoAg 5	1	1:2:1	II	Stabilno	Tamno smeđe
CYSnanoAg 6	1	1:2:2	II	Nestabilno, agregacija	Žuto, bijeli precipitat
CYSnanoAg 7	1	1:2:0.5	Ι	Stabilno	Sivo-smeđe
CYSnanoAg 8	1	1:2:0.5	II	Nestabilno, agregacija	Tamno sivo, crni precipitat
CYSnanoAg 9	5.6	1:10:0.2	Ι	Nestabilno, agregacija	Crno
CYSnanoAg 10	5.6	1:10:0.2	II	Stabilno, ali precipitira	Tamno sivo
CYSnanoAg 11	5.6	1:10:1	II	Stabilno, ali precipitira	Tamno zeleno- sivo
CYSnanoAg 12	5.6	1:10:0.5	II	Stabilno, ali precipitira	Tamno sivo- smeđe
GSHnanoAg 1	1	1:10:10	I, II	Nestabilno, agregacija	Smeđe
GSHnanoAg 2	1	1:10:0.2	Ι	Stabilno	Smeđi koloid
GSHnanoAg 3	1	1:2:0.2	II	Stabilno	Tamno smeđe
GSHnanoAg 4	1	1:2:0.2	Ι	Stabilno	Smeđi koloid
GSHnanoAg 5	1	1:2:2	II	Stabilno	Crvenkasto- smeđe
GSHnanoAg 6	1	1:2:0.5	Ι	Stabilno	Sivo-smeđe
GSHnanoAg 7	1	1:2:0.5	II	Nestabilno, agregacija	Tamno sivo, crni precipitat
GSHnanoAg 8	5.6	1:10:1	II	Stabilno	Smeđe

Tablica 4. Sinte	ze nanoAg uz	funkcionaliza	ciju s GSH/CYS
------------------	--------------	---------------	----------------

U postupcima u kojima je molarni omjer NaBH₄ i stabilizatora jednak ili veći od 10:1, nanoAg su generalno pokazale nestabilnost, podložnost agregaciji i precipitaciji. Primjena

glutationa za funckionalizaciju nanoAg pokazala je bolje stabilizacijske osobine zbog veće prostorne strukture što je umanjilo agregaciju i precipitaciju nanočestica srebra.

Ime nanočestice	C(Ag), mM	Molarni omjer Ag : NaBH4 : Stabilizator	Metoda	Stabilnost	Obojenje
CYSnanoAu1	1	1:2:0.2	I	Nestabilno,	Tamno crveno,
CYSnanoAu 2	1	1:2:0.2	II	Stabilno, ali precipitira	Tamno crveno, prelazi ljubičasto
CYSnanoAu 3	1	1:10:0.2	II	Stabilno	Žuto, prelazi u ljubičasto prelazi, prozirno
CYSnanoAu 4	1	1:5:2	II	Nestabilno, agregacija	Žuto, prelazi u ljubičasto
CYSnanoAu 5	1	1:5:1	II	Nestabilno, agregacija	Žuto, prelazi u ljubičasto
CYSnanoAu 6	1	1:2:0.2	II	Nestabilno, agregacija	
CYSnanoAu 7	1	1:2:1	II	Nestabilno, agregacija	Crno
CYSnanoAu 8	1	1:2:1	Ι	Nestabilno, agregacija	Ljubičasto
CYSnanoAu 9	3	1:10:0.5	Ι	Nestabilno, precipitacija	Žuto, prelazi u ljubičasto prelazi, prozirno
CYSnanoAu 10	3	1:10:1	II	Stabilno, djelomična precipitacija	Žuto, prelazi u ljubičasto prelazi u prozirno
GSHnanoAu 3	1	1:10:0.2	II	Nestabilno, precipitacija	Tamno sivo
GSHnanoAu4	1	1:2:1	II	Nestabilno, precipitacija	Smeđe
GSHnanoAu5	1	1:2:1	Ι	Nestabilno, precipitacija	Crveno
GSHnanoAu6	1	1:5:1	II	Nestabilno, precipitacija	
GSHnanoAu7	3	1:10:1	II	Stabilno	Žuto, prelazi u crveno

Tablica 5. Sinteze nanoAu uz funkcionalizaciju s GSH/Cys

Stabilne nanoAu su dobivene pri omjeru NaBH₄ i stabilizatora od najmanje 10:1. Nisu primjećene razlike u učinku glutationa u odnosu na cistein na stabilizaciju nanoAu.

4.2. Karakterizacija i evaluacija stabilnosti nanočestica srebra i zlata

Primjenom DLS, ELS i TEM metoda, dobivenim stabilnim nanoAg i nanoAu određena je distribucija veličina obzirom na volumen, površinski naboj mjerenjem ζ potencijala, te izgled i oblik dobivenih nanočestica.

Stabilizator	Тір	Molarni omjer Ag : NaBH₄: Stabilizator	d _H , nm	Prosječni volumen, %
	CYSnanoAg3	1:2:0.2	1.89 ± 1.19	99.2%
	CYSnanoAg9	1:10:0.2	5.57 ± 3.93	93.0%
CVS	CYSnanoAg11	1:10:1	3.61 ± 1.72	98.2%
Cys	CYSnanoAg12	1:10:0.5	0.39 ± 0.11	32.5%
			1.32 ± 0.47	30.5%
			5.41 ± 2.14	30.7%
	GSHnanoAg2	1:10:0.2	22.15 ± 17.24	96.3%
CCL	GSHnanoAg4	1:2:0.2	2.42 ± 1.34	96.9%
030	GSHnanoAg8	1:10:1	1.19 ± 0.27	19.5%
	Community 1g0	1.10.1	3.49 ± 1.38	79.3%

Tablica 6. Hidrodinamički promjer (dH) nanočestica srebra u Milli-Q vodi dobiven iz distribucije veličine prema volumenu

Tablica 7. Hidrodinamički promjer (dH) nanočestica zlata u Milli-Q vodi dobiven iz distribucije veličine prema volumenu

Stabilizator	Тір	Molarni omjer Au : NaBH₄ : Stabilizator	d _H , nm	Prosječni volumen, %
	CYSnanoAu1	1.2.0.2	30.94 ± 15.95	30.2%
	CISHANOMUT	1.2.0.2	240.29 ±171.73	64.2%
	CVSnono Au2	1.10.0.2	5.32 ± 2.74	39.2%
	C I SnanoAu3	1:10:0.2	34.02 ± 18.87	58.6%
Cure	CYSnanoAu4	1:5:2	18.15 ± 8.64	59.8%
Cys			330.12 ± 130.68	37.3%
	CYSnanoAu6	1:2:0.2	28.19 ± 13.42	37.2%
			229.25 ± 127.18	59.9%
	CYSnanoAu10	1:10:1	14.31 ± 6.24	56.5%
			82.07 ± 45.53	38.1%
	CSIInono Au2	1 1 0 0 0	4.42 ± 1.92	46.9%
COL	USHIIalioAu5	1:10:0.2	17.53 ± 6.94	36.5%
USH	CSIInono Au7	1.10.1	3.19 ± 1.13	61.5%
	GSHnanoAu/ 1:10:1	28.19 ± 13.43	29.4%	

Sve stabilne nanoAg stabilizirane cisteinom ili glutationom pokazale su monomodalnu distribuciju veličina prema volumenu. Iznimke su jedino GSHnanoAg8 i CYSnanoAg12 koje su bile karakterizirane bimodalnom, odnosno trimodalnom raspodjelom veličina. Zanimljivo je da su te dvije vrste nanoAg bile pripravljene metodom u kojoj je primjenjena povećana koncentracija AgNO₃ (5.6 mM).

Sve stabilne nanoAu stabilizirane cisteinom ili glutationom bile su karakterizirane bimodalnom raspodjelom veličine po volumenu, i to pri svim ispitivanim omjerima reaktanata i metodama pripreme. Te distribucije su bile homogenije u slučaju kada je primjenjena veća količina reducensa (kod omjera prekursora u odnosu na reducens 1:10), dok su se kod nižih koncentracija reducensa dobili koloidi koji su sadržavali i čestice veće od 200 nm.

Grafički prikazi distribucije veličina AgNP i AuNP prikazani su u Prilogu 8.1.

Rezultati mjerenja zeta potencijala nanočestica srebra i nanočestica zlata prikazane su u Slikama 4. i 5. Mjerenjem ζ potencijala pripravljenih koloida potvrđeno je da se radi o izrazito stabilnim kolodima koji su karakterizirani površinskim nabojem nižim od -40 mV. Naime, što je apsolutni iznos površinskog naboja nanočestica veći (> 20 mV, odnosno < -20 mV), to su te nanočestice stabilnije uslijed značajnih elektrostatskih odbojnih sila.

Slika 4.: Grafički prikaz zeta (ζ)-potencijala nanočestica srebra u Milli-Q vodi

Slika 5.: Grafički prikaz zeta (ζ)-potencijala nanočestica zlata u Milli-Q vodi

Oblik i izgled nanoAg i nanoAu ispitan je primjenom TEM tehnike (Slike 8-11.), koja je pokazala da su sve dobivene nanočestice uglavnom sfernog oblika.

Slika 6.: CYSnanoAg2 na povećanju x85k, skala 100 nm

Slika 7.: GSHnanoAg 8 na povećanju x140k, skala 100 nm

Slika 8.: GSHnanoAg 4 na povećanju x85k, skala 100 nm

Slika 9.: GSHnanoAg 3 na povećanju x85k, skala 100 nm

Slika 10.: GSHnanoAu 7 na povećanju x140k, skala 100 nm

Slika 11.: CYSnanoAu 10 na povećanju x85k, skala 100 nm

4.3. Uv-vis rezultati

Spektrofotometrijskom karakterizacijom dodatno je potvrđeno nastajanje nanočestica srebra i zlata za koje je utvrđeno da, ovisno o veličini, imaju površinski plazmonski rezonantni pik u području od 382 do 580 nm, kako je prikazano u Tablicama 8. i 9.

Ime	λ _{max} , nm	Amor
CYSnanoAg 1	383,9226	0.6449
CYSnanoAg 2	383.9226	0.3559
CYSnanoAg 3	385.0439	0.6677
CYSnanoAg 4	394.9587	0.3592
CYSnanoAg 7	385.0439	0.7878
CYSnanoAg 8	365.0138	0.3896
CYSnanoAg 11	382.0612	0.1906
CYSnanoAg 12	382.0612	0.3259
GSHnanoAg 2	387.9536	0.9784
GSHnanoAg 4	554.9620	0.2647
GSHnanoAg 6	385.0439	0.7663
GSHnanoAg 7	385.0439	0.4660
GSHnanoAg 8	431.9682	0.2534

Tablica 8.: Optički parametri nanočestica srebra

Tablica 9.: Optički parametri nanočestica zlata

Ime	λ _{max} , nm	A _{max}
CYSnanoAu 1	579.9350	0.1133
CYSnanoAu 2	539.9363	0.0256
CYSnanoAu 3	529.9769	0.0940
CYSnanoAu 4	373.9895	0.1048
CYSnanoAu 5	360.0359	1.0583
GSHnanoAu 1	506.0746	0.0779
GSHnanoAu 3	569.9342	0.1604
GSHnanoAu 6	500.0222	1.0293
GSHnanoAu 7	491.9482	0.0737

4.4. Analiza ¹H NMR spektara

Slika 12.: ¹H NMR spektri glutationa (crvena spektralna linija) i njegova kompleksa s nanosrebrom (crna spektralna linija)

Slika 13.: Omjer slobodnog i vezanog glutationa

¹H NMR spektri glutationa (crvena spektralna linija) i njegova kompleksa s nanosrebrom (crna spektralna linija) snimljeni su u D_2O (*Slika 12.*). Svi protonski signali koji odgovaraju strukturi glutationa (2, 3, 4, 6, 7 i 9 u donjem spektru) nalaze se i u spektru njegova kompleksa s nanosrebrom. To znači da prilikom interakcije glutationa i nanosrebra dio glutationa ostaje u otopini u nevezanom obliku.

U¹H NMR spektru kompleksa (gornji spektar), osim signala koji odgovaraju slobodnom glutationu, nalaze se i signali čiji se kemijski pomaci razlikuju od prethodnih. U gornjem spektru ti su signali označeni apostrofom. Promjena kemijskog pomaka se posebno odnosi na signal 7 koji se u donjem spektru nalazi na 2.8 ppm i odgovara metilenskoj skupini na koju je vezan tiol, te na signal 9 koji se nalazi na 3.8 ppm i odgovara metilenskoj skupini na koju je vezana terminalna karboksilna skupina. U gornjem se spektru nalaze dva protonska signala za položaj 7 u strukturi glutationa: signal 7 na 2.8 ppm (slobodni nevezani glutation) i signal 7' na 3.3 ppm (vezani kompleksirani glutation). Ovaj relativni pomak od 0.5 ppm u niže magnetsko polje ukazuje da u interakciji glutationa i nanosrebra dolazi do kompleksacije, odnosno pojavljuje se nova vezana forma glutationa. Isto vrijedi za protonski signal za položaj 9 u strukturi glutationa: u oba se spektra signal 9 nalazi na 3.8 ppm (slobodni oblik glutationa). No, u gornjem se spektru ojavljuje novi signal 9' u višem magnetskom polju i nalazi se na 3.6 ppm. Prema analogiji sa studijom koju su objavili Schaaff i suradnici 1998., u interakciji glutationa i nanozlata protonski signal 9 u ¹H NMR spektru kompleksa pomiče se u niže magnetsko polje za 0.2 ppm. Taj relativni kemijski pomak odgovara našim rezultatima i ukazuje na interakciju, odnosno vezanje glutationa za nanosrebro.

Svi ostali protonski signali glutationa (2, 3, 4 i 6 u donjem spektru) pomaknuti su u gornjem spektru za manje od 0.1 ppm u više magnetsko polje. Signali za položaj 6 u slobodnom i vezanom glutationu u gornjem spektru nisu dovoljno razlučeni zbog smetnje širokog signala koji potječe od otapala D₂O. Vrlo mali relativni kemijski pomaci upućuju na zaključak da položaji 2, 3, 4 i 6 u strukturi glutationa ne sudjeluju znatnije u interakciji glutationa i nanosrebra, odnosno da kompleksacija ne dovodi do značajnije promjene njihova elektronskog i strukturnog okoliša. Naprotiv, relativni kemijski pomaci uočeni za signale 7 (Δ ppm = 0.5) i 9 (Δ ppm = 0.2), kao posljedica interakcije glutationa i nanosrebra, sugeriraju da su metilenske skupine 7 i 9 znatnije uključene u procesu kompleksacije. To zapravo znači da su tiolna skupina (vezana za metilensku skupinu 7) i

karboksilna skupina (vezana za metilensku skupinu 9) funkcionalne skupine preko kojih glutation ostvaruje strukturni kontakt s površinom nanosrebra.

Iz relativnih omjera površina signala 7 i 7' u spektru moguće je odrediti omjer slobodnog i vezanog glutationa (*Slika 13.*). Integriranjem signala 7 za slobodni oblik glutationa i signala 7' za vezani oblik glutationa u istom ¹H NMR spektru dobiven je omjer 1 : 4, što znači da se oko 80% glutationa nalazi u kompleksu s nanosrebrom, dok preostali dio (20%) predstavlja nevezana forma glutationa. Budući je bazna linija u spektru prilično kontaminirana pozadinskim šumom, dobiveni omjer vezanog i nevezanog glutationa tek je približne vrijednosti.

5. Zaključak

Istraživanje provedeno tijekom izrade ovog diplomskog rada pokazalo je da funkcionalizacija cisteinom i glutationom rezultira vrlo stabilnim nanočesticama srebra i zlata. Međutim, za dobivanje stabilnih nanočestica željenih svojstava nužno je optimizirati parametre sinteze koji uključuju koncentracije, omjer i redoslijed dodavanja reaktanata u rekacijsku smjesu. Transmisijskom elektronskom mikroskopijom utvrđeno je da se dobivaju sferne nanočestice, a NMR spektroskopija je pokazala da su tiolna i karboksilna skupina funkcionalne skupine preko kojih tiolne biomolekule ostvaruju strukturni kontakt s površinom nanočestica.

6. Literatura

Åkerman, ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting *in vivo*. *PNAS*, 2002, 99, 12617–12621.

Allen JJ, Barron AR, Bott S, Bovet C, Boyd J, Bratt A, Chiang PT, Cisneros B, Conn C. Introduction to Atomic Absorption Spectroscopy. U: Physical Methods in Chemistry and Nano Science. Barron AR, urednik, Houston, Rice University, 2012, str. 3–16.

Anambiga IV, Suganthan V, Arunai Nambi Raj N, Buvaneswari G, Sampath Kumar TS. Colorimetric Detection Of Lead Ions Using Glutathione Stabilized Silver Nanoparticles. *International Journal of Scientific & Engineering Research*, 2013, Volume 4, Issue 5.

Aslan K, Lakowicz JR, Geddes CD. Nanogold-plasmon-resonance-based glucose sensing, *Anal Biochem*,2004, 330, 145–155.

Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. *Nanotechnology Sci Appl.* 2008, 96, 132-140.

Chai F, Wang C, Wang T, Ma Z, Zhongmin Su1. 4L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. *Nanotechnology*, 2010, 54, 149-159.

Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. *Nanoscale Research Letters*, 2009.

Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B. Single metallic nanoparticle imaging for protein detection in cells. *PNAS*, 2003, Lawrence Berkeley National Laboratory, Berkeley, CA.

Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantumsize-related properties, and applications toward biology, catalysis, and nanotechnology. *Chem Rev.* 2004, 104, 293-346.

El-Badawy D, Feldhake R, Venkatapathy R. State of the Science Literature Review: Everything Nanosilver and More. *EPA*, 2010, 600, 72-84.

Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M. Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level. *Physical Chemistry*, 2011, 13, 149–153.

Ghosh P, Han G, De M, Kim CK, Rotello VM. Inorganic Nanoparticles in Drug Delivery Gold nanoparticles in delivery applications. *Advanced Drug Delivery Reviews*, 2008, 60, 11, 1307–1315.

Goldys EM, Sobha MA. Fluorescence of Colloidal Gold Nanoparticles is Controlled by the Surface Adsorbate. *Adv Funct Mater*, 2012, 22, 1906-1913.

Height MJ. Nanosilver in Perspective. Expert Workshop "Nanosilver", "Health Risk Assessment of Nanosilver". Federal Institute for Risk Assessment (BfR), 2011.

Klaine SJ, et al.: Paradigms to Assess the Environmental Impact of Manufactured Nanomaterials. *Environ Toxicol Chem.* 2012, 31, 3-14.

Li H, Cui Z, Han C. Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. *Sensors and Actuators B*, 2009, 143, 87–92.

Lim IS, Mott D, Ip W, Njoki PN, Pan Y, Zhou SQ, Zhong CJ, Interparticle interactions in glutathione mediated assembly of gold nanoparticles. *Langmuir* 24, 2008, 8857–8863.

Marvern Instruments Ltd. Zetasizer Basic, 1997.

McNeil-Watson F. Electrophoretic Light Scattering. U: Encyclopedia of Biophysics. Roberts GCK, urednik, Berlin, Springer, 2013, str. 648–654.

Schaff I. "Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound", *J Phys Chem B*, 1998, 102, 10643-10646.

Sheehan D. Physical Biochemistry: Principles and Applications. 2. izdanje. Irska, Wiley-Blackwell, 2009, str. 58–63.

Shenhar R, Rotello VM. Nanoparticles: scaffolds and building blocks, *Acc Chem Res* 2003, 549–561.

Stanley H. Pine, 1994.: Organska kemija. Zagreb, Školska knjiga, 1994, str. 1065-1095.

Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. *Langmuir*, 2012, 28, 2727–2735.

Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen, S, Feldheim DL. Multifunctional gold nanoparticle–peptide complexes for nuclear targeting. *J Am Chem Soc*, 2003, 125, 4700–4701.

Tolaymat T, El Badawy A, Genaidy A, Scheckel K, Luxton T, Suidan M. An evidencebased environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. *Sci. Tot. Environ.*, 2010, 408, 5,999-1006.

Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, van de Meent D, Dekkers S, de Jong WH, van Zijverden M, Sips AJAM, Geertsma RE. Nanosilver – a review of available data and knowledge gaps in human and environmental risk assessment, *Nanotoxicology*, 2009, 3(2), 109-138.

Yildirimer L, Nguyen TK, Loizidoua M, Seifalian AM. Toxicological considerations of clinically applicable nanoparticles. *Nano Today*, 2011, 6, 585-607.

Zayats M, Baron R, Popov I, Willner I. Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. *Nano Letters*. 2005, 5(1), 21-5.

Zhou J, Ralston J, Sedev R, Beattie DA. Functionalized gold nanoparticles: Synthesis, structure and colloid stability *J. Colloid Interface Sci*, 2009, 331, 251–262.

7.1. Sažetak

Sinteza i karakterizacija tiolno funkcionaliziranih nanočestica srebra i zlata

Fran Ivanković

Za sintezu nanočestica srebra i zlata definiranih fizikalno-kemijskih svojstava ključno je odabrati prikladnu strategiju sinteze. Veličina, oblik i stabilnost nanočestica mogu se podešavati regulacijom molarnih omjera reaktanata te redoslijedom dodavanja reaktanata. U ovom radu su dvjema metodama sintetizirane nanoAg funkcionalizirane cisteinom ili glutationom te nanoAu funkcionalizirane cisteinom i glutationom. Karakterizacija i procjena stabilnosti provedena je primjenom različitih eksperimentalnih tehnika: atomske apsorpcijske spektroskopije (AAS), dinamičke metode raspršenja svjetlosti, elektroforetske metode raspršenja svjetlosti, transmisijske elektronske mikroskopije, te metode nuklearne magnetne rezonance. Otkriveno je da funkcionalizacija glutationom i cisteinom rezultira vrlo stabilnim nanočesticama srebra i zlata, uglavnom sfernoga oblika, čiji promjer i distribucija veličina izravno ovisi o molarnim omjerima reaktanata. Metodom nuklearne magnetske rezonancije zaključeno je da stabilizator ostvaruje strukturni kontakt sa nanočesticom preko tiolne i karboksilne skupine.

7.2. Summary

Synthesis and characterization of thiole functionalized silver and gold nanoparticles

Fran Ivanković

In order to synthesize silver and gold nanoparticles with defined physical-chemical properties it is essential to choose an adequate sythesis strategy. Size, shape and stability of nanoparticles can be adjusted by regulating the molar ratios of reactants and the order of adding the reactants. In this thesis two methods were used to sythesize nanoAg functionalized by cysteine or glutathione and nanoAu functionalized by cysteine or glutathione. Characterization and evaluation of stability was conducted by using various experimental techniques: atomic apsorption spectroscopy (AAS), dynamic light scattering, electroforetic light scattering, transmission electron microscopy and nuclear magnetic resonance. It was discovered that functionalization by glutathione and cysteine results in very stable silver and gold nanoparticles, mostly spheric in shape, whose diameter and size distribution directly depends on the molar ratio of reactants. By using the nuclear magnetic resonance method it was discovered that the stabiliser forms structural contact with the nanoparticle through the thiole and carboxyle group.

8. Prilozi

8.1. UV-vis grafovi

Slika 8.1.1. UV-vis spektar CysnanoAu 1

Slika 8.1.2. UV-vis spektar CysnanoAu 2

Slika 8.1.3. UV-vis spektar CysnanoAu 3

Slika 8.1.4. UV-vis spektar CysnanoAu 4

Slika 8.1.5. UV-vis spektar CysnanoAu 5

Slika 8.1.6. UV-vis spektar GSHnanoAu 1

Slika 8.1.7. UV-vis spektar GSHnanoAu 3

Slika 8.1.8. UV-vis spektar GSHnanoAu 6

Slika 8.1.9. UV-vis spektar GSHnanoAu 7

Slika 8.1.10. UV-vis spektar CYSnanoAg 1

Slika 8.1.11. UV-vis spektar CYSnanoAg 2

Slika 8.1.12. UV-vis spektar CYSnanoAg 3

Slika 8.1.13. UV-vis spektar CYSnanoAg 4

Slika 8.1.14. UV-vis spektar CYSnanoAg 7

Slika 8.1.15. UV-vis spektar CYSnanoAg 8

Slika 8.1.16. UV-vis spektar CYSnanoAg 11

Slika 8.1.17. UV-vis spektar CYSnanoAg 12

Slika 8.1.18. UV-vis spektar GSHnanoAg 2

Slika 8.1.19. UV-vis spektar GSHnanoAg 4

Slika 8.1.20. UV-vis spektar GSHnanoAg 6

Slika 8.1.21. UV-vis spektar GSHnanoAg 7

Slika 8.1.22. UV-vis spektar GSHnanoAg 8

8.2. DLS distribucija veličina nanočestica

Slika 8.2.1. Dijagram distribucije GSHnanoAg 2

Slika 8.2.2. Dijagram distribucije CYSnanoAg 3

Slika 8.2.3. Dijagram distribucije GSHnanoAg 4

Slika 8.2.4. Dijagram distribucije GSHnanoAg 8

Slika 8.2.5. Dijagram distribucije CYSnanoAg 10

Slika 8.2.6. Dijagram distribucije CYSnanoAg 11

Slika 8.2.7. Dijagram distribucije CYSnanoAg 12

Slika 8.2.8. Dijagram distribucije GSHnanoAu 1

Slika 8.2.9. Dijagram distribucije CYSnanoAu 2

Slika 8.2.10. Dijagram distribucije CYSnanoAu 3

Slika 8.2.11. Dijagram distribucije CYSnanoAu 4

Slika 8.2.12. Dijagram distribucije CYSnanoAu 6

Slika 8.2.13. Dijagram distribucije GSHnanoAu 7

Slika 8.2.14. Dijagram distribucije CYSnanoAu 10