Izrada i karakterizacija micela polisorbata 80 s uklopljenim deksametazonom

Perković, Ana

Master's thesis / Diplomski rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Pharmacy and Biochemistry / Sveučilište u Zagrebu, Farmaceutsko-biokemijski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:816787

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-07

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb
Ana Perković

Izrada i karakterizacija micela polisorbata 80 s uklopljenim deksametazonom

DIPLOMSKI RAD

Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2017.
Ovaj diplomski rad je prijavljen na kolegiju Farmaceutika 1 Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta i izrađen na Zavodu za farmaceutsku tehnologiju Farmaceutsko-biokemijskog fakulteta pod stručnim vodstvom doc. dr. sc. Ivana Pepića.

Zahvaljujem se mentoru doc. dr. sc. Ivanu Pepiću pod čijim je stručnim vodstvom izveden i nапisan ovaj diplomski rad.

Također zahvaljujem se svim djelatnicima Zavoda za farmaceutsku tehnologiju, posebno asistentici Marini Juretić na pruženoj pomoći i ugodnoj atmosferi.

Posebno zahvaljujem svojim roditeljima i bratu na njihovu strpljenju i potpori tijekom cijelog studiranja.

I konačno zahvaljujem se svim svojim prijateljicama na potpori i ohrabrenjima da završim ono započeto.
SADRŽAJ

1. UVOD ... 1

1.1. Otapanje i topljivost krutina djelatnih tvari ... 1

1.1.1. Noyes-Whitneyjeva jednadžba otapanja krutine djelatne tvari .. 1

1.1.2. Hixon-Crowellova jednadžba otapanja krutine djelatne tvari .. 2

1.2. Klasifikacija djelatnih tvari prema topljivosti i permeabilnosti ... 3

1.2.1. Biofarmaceutski sustav klasifikacije (BCS) ... 3

1.2.2. Razvojno-formulacijski sustav klasifikacije (DCS) ... 4

1.3. Načini poboljšanja topljivosti djelatnih tvari ... 5

1.3.1. Micelarna solubilizacija ... 5

1.3.2. Ionske i neionske micelae .. 7

1.3.3. Čimbenici koji utječu na cmc i veličinu micela ... 8

1.4. Površinski aktivne tvari (PAT) .. 9

1.4.1. Anionske PAT .. 10

1.4.2. Kationske PAT .. 10

1.4.3. Neionske PAT ... 11

1.5. Uklapanje djelatne tvari u micele ... 12

1.5.1. Čimbenici koji utječu na solubilizaciju .. 12

1.5.2. Primjena solubilizacije u farmaciji ... 13

2. OBRAZLOŽENJE TEME .. 14

3. MATERIJALI I METODE .. 15

3.1. Kemikalije ... 15

3.2. Oprema .. 16

3.3. Priprema ishodnih otopina .. 16

3.3.1. Priprema Krebs-Ringerova pufera .. 16

3.3.2. Priprema otopine polisorbata 80 ... 16

3.4. Priprema mjernih sustava ... 17

3.5. Postupak mjerenja .. 17

3.6. Mjerenje veličine i disperznosti micela .. 18

4. REZULTATI I RASPRAVA .. 20

4.1. Topljivost deksametazona u Krebs-Ringerovom puferu ... 20

4.2. Veličina micela polisorbata 80 .. 20

4.3. Topljivost deksametazona u Krebs-Ringerovom puferu uz dodatak polisorbata 80 21

5. ZAKLJUČAK ... 24
6. LITERATURA ..25

7. SAŽETAK/SUMMARY...28

Temeljna dokumentacijska kartica/Basic information card
1. UVOD

1.1. Otapanje i topljivost krutina djelatnih tvari

Topljivost je jedan od najznačajnijih parametara koji utječe na postizanje željene koncentracije oralnog lijeka u sistemskoj cirkulaciji.

Topljivost se kvantitativno gledajući definira kao koncentracija otopljene tvari u zasićenoj otopini pri određenoj temperaturi, a kvalitativno kao spontana interakcija dviju ili više tvari koje formiraju homogenu molekularnu disperziju (Sinko, 2011).

1.1.1. Noyes-Whitneyjeva jednadžba otapanja krutine djelatne tvari

Brzina otapanja krutina u otapalu dc_x/dt može se opisati Noyes-Whitneyjevom jednadžbom:

$$\frac{dc_x}{dt} = k \times A \times (c_s - c_x)$$

dje k konstanta brzine otapanja (tzv. intrinzička konstanta koja uključuje viskoznost otopine; što je veća viskoznost manja je brzina otapanja), A specifična površina krutine koja se otapa, c_s topljivost krutine, a c_x koncentracija djelatne tvari u otopini u vremenu t. Iz Noyes-Whitneyjeve jednadžbe moguće je opaziti da će se umjereno topljiva tvar otapati sporije od lako topljive te da se pred kraj procesa otapanja značajno usporava otapanje (Jalšenjak i sur., 1998).

Noyes-Whitneyjeva jednadžba predstavlja modificiran 1. Fickov zakon. Izvedena je na osnovu predodžbe da oko čestice krutine postoji tanki stacionarni difuzijski sloj otapala u kojem koncentracija otopljene djelatne tvari linearno opada od najveće na površini čestice c_s do najmanje c_x na udaljenosti h od površine pri čemu je konstanta brzine otapanja k definirana omjerom prividnog koeficijenta difuzije supstancije u otapalu D i debljinom stacionarnog difuzijskog sloja otapala h (slika 1). Prema tome Noyes-Whitneyjevu jednadžbu moguće je pisati i u obliku:

$$\frac{dc_x}{dt} = A \times D \times \left(\frac{c_s - c_x}{h}\right)$$

(Jalšenjak i sur., 1998).
1.1.2. Hixon-Crowellova jednadžba otapanja krutine djelatne tvari

U realnim sustavima tokom otapanja veličina (površina) čestica neće uvijek biti jednaka. Hixon i Crowell izveli su jednadžbu (tzv. „zakon trećeg korijena“) u slučaju otapanja krutih okruglih čestica krutine koje se tokom otapanja smanjuju, ali zadržavaju svoj oblik:

\[m_0^{1/3} - m^{1/3} = K_{HC} \times t \]

\[K_{HC} = m_0^{1/3} \times \left[\frac{2 \times k \times c_s}{\rho \times d_0} \right] \]

gdje su \(m_0 \) i \(m \) masa čestica u vremenu \(t = 0 \), odnosno \(t \), a \(d_0 \) je promjer čestica na početku otapanja, \(\rho \) je gustoća materijala, a \(c_s \) njegova topljivost. Ako se podaci o masi otopljene tvari s vremenom prikažu na dijagramu u obliku ovisnosti \((m_0^{1/3} - m^{1/3}) \) o vremenu, dobit će se pravac ukoliko se čvrste čestice otapaju u skladu s Hixon-Crowellovim mehanizmom otapanja. Tada je Hixon-Crowellova konstanta, \(k_{HC} \) jednaka koeficijentu smjera pravca. Ujedno ovdje je dodatna pretpostavka da su sve čestice jednake veličine (monodisperzne) na početku otapanja (tj. \(t = 0 \)) (Jalšenjak i sur., 1998).
1.2. Klasifikacija djelatnih tvari prema topljivosti i permeabilnosti

1.2.1. Biofarmaceutski sustav klasifikacije (BCS)

Biofarmaceutski sustav klasifikacije djelatnih tvari (engl. Biopharmaceutics Classification System; BCS) omogućio je lakšu regulaciju oralnih lijekova. Smatra se vodičem za predviđanje intestinalne apsorpcije djelatne tvari uz korištenje dvaju parametara, topljivosti i permeabilnosti. U BCS sustavu djelatne tvari su klasificirane u četiri kategorije odnosno četiri biofarmaceutske skupine na temelju njihove permeabilnosti kroz membrane probavnog sustava i topljivosti u vodi: I. BCS skupina (dobro permeabilne i dobro topljive); II. BCS skupina (dobro permeabilne i slabo topljive); III. BCS skupina (slabo permeabilne i dobro topljive); IV. BCS skupina (slabo permeabilne i slabo topljive) (Löbenberg i Amidon, 2000).

Djelatna tvar se smatra dobro topljivom ukoliko se najveća doza djelatne tvari otapa u 250 ml ili manje vodenog medija u pH području 1,2-6,8 pri 37°C. Definicija dobre topljivosti od strane WHO-a zahtijeva smanjenje pH sa 7,5 koje je inače prisutno u FDA smjernicama na 6,8. To smanjenje objašnjava se potrebom za otapanjem djelatne tvari prije sredine jejunuma kako bi se osigurala duljina probavnog sustava koja ostavlja dovoljno vremena za apsorpciju djelatne tvari (www.who.int). Djelatna tvar smatra se dobro permeabilnom ukoliko je opseg intestinalne apsorpcije u ljudi 90% ili veći. U ranoj fazi razvoja za predviđanje permeabilnosti djelatne tvari iz lumena u krvotok, odnosno opsega intestinalne apsorpcije koriste se in vitro modeli poput Caco-2 i MDCK staničnih linija, kao i ex vivo modeli crijevnih barijera (Kawabata i sur., 2011; Löbenberg i Amidon, 2000).

BCS definira tri bezdimenzijska broja koji predstavljaju najosnovniji pogled na apsorpciju djelatne tvari iz probavnog sustava. Jedan od njih je dozni broj \(D_0\) koji označava omjer koncentracije djelatne tvari u 250 ml vodenog medija \(M/V_0\) i topljivosti djelatne tvari u vodi \(C_s\). Djelatna tvar bit će slabo topljiva ukoliko je \(D_0\) veći od 1, odnosno dobro topljiva kada je \(D_0\) manji ili jednak 1. Podjela djelatnih tvari prema permeabilnosti vrši se korištenjem logaritma particijskog koeficijenta, \(\log P\). Metoprolol je primjer djelatne tvari koja pripada prvoj biofarmaceutskoj skupini. Koristi se kao unutarnji referentni standard za određivanje permeabilnosti. Djelatne tvari s vrijednostima \(\log P > \log P\) metoprolola \(\log P 1,72\) smatraju se dobro permeabilnim (Benet i sur., 2008; Kim i sur., 2006; Löbenberg i Amidon, 2000).

BCS je objavljen 1995. (Amidon i sur., 1995) i do danas je prošao kroz brojne promjene u vidu poboljšanja. Regulatorna tijela (EMA, FDA i WHO) prihvaćaju BCS čije korištenje omogućuje zadavanje bioekvivalencijskih standarda za oralne pripravke trenutnog
oslobađanja djelatne tvari bez korištenja in vivo studija bioraspoloživosti i bioekvivalencija tih istih pripravaka. Zahvaljujući tome mogu se koristiti jednostavna relativno jeftina in vitro ispitivanja u svrhu procjene bioekvivalencije odobrenih oralnih pripravaka trenutnog oslobađanja djelatne tvari (Löbenberg i Amidon, 2000; www.fda.gov).

Djelatnim tvarima II. BCS skupine (slabo topljive, slabo permeabilne) potrebno je poboljšati topljivost, a samim time i bioraspoloživost. Pritom se koriste različite tehnike i postupci poput kristalne modifikacije djelatne tvari (priprava metastabilnih polimorfa, kristalnih soli, kokristala), smanjenje veličine čestica (mikronizacija, stvaranje nanokristala), uporaba samoemulgirajućih sustava, uklanjanje djelatne tvari u ciklodekstrinske komplekske, pH modifikacije, prevođenje djelatnih tvari u amorfno stanje (Kawabata i sur., 2011; Florence i Attwood, 2006a).

1.2.2. Razvojno-formulacijski sustav klasifikacije (DCS)

Revidirana verzija BCS-a pokazala se uspješnim načinom kategorizacije tvari određivanjem utjecaja omjera doze i topljivosti, brzine otapanja i permeabilnosti na ograničavanje oralne apsorpcije lijeka u svrhu procjene prikladnosti djelatne tvari za razvoj za oralne pripravke trenutnog oslobađanja. Ona nosi naziv razvojno-formulacijska klasifikacija (engl. Developability Classification System; DCS). Nastala je kako bi se veći fokus stavio na određivanje prikladnosti djelatne tvari za razvoj i pokazala se uspješnijim klasifikacijskim sustavom u predviđanju kritičnih faktora za in vivo djelovanje od BCS-a. Brzina otapanja nekih slabo topljivih djelatnih tvari može biti jako spora. Samim time ne može se postići dostatna apsorpcija. Tu ulazi DCS koji djelatne tvari klasificira u kategorije ovisno o tome je li bioraspoloživost djelatne tvari ograničena topljivošću, permeabilnošću ili brzinom otapanja, a djelatne tvari unutar II. BCS skupine dijeli na DCS IIa. (bioraspoloživost ograničena brzinom otapanja) i DCS IIb. (bioraspoloživost ograničena topljivošću). Za djelatne tvari IIa. DCS skupine bioraspoloživost je u izraznoj korelaciji s brzinom otapanja in vivo, dok se bioraspoloživost djelatnih tvari IIb. DCS skupine može povećati farmaceutsko-tehnološkim
1.3. Načini poboljšanja topljivosti djelatnih tvari

U svrhu poboljšanja loše topljivosti i bioraspoloživosti oralnih djelatnih tvari koriste se različiti farmaceutsko-tehnološki postupci. Te postupke možemo podijeliti na fizikalne modifikacije (mikronizacija, nanosuspenzija, modifikacija kristalnog stanja polimorfa, kokristalizacija, disperzija djelatne tvari u eutektičnim nosačima) te kemijske modifikacije (promjena pH, korištenje pufera, kompleksacija, stvaranje soli). Ostale metode poboljšanja topljivosti uključuju korištenje surfaktanata, sredstava za otapanje, hidrotropni učinak (Savjani i sur., 2012).

1.3.1. Micelarna solubilizacija

Micelarna solubilizacija je dobra alternativa otapanja hidrofobnih djelatnih tvari u vodenom mediju (Rangel-Yagui i sur., 2005).

Micele su čestice koloidnih dimenzija koje su u ravnoteži s molekulama ili ionima otopine iz koje su nastale. Proces stvaranja micela obuhvaća agregaciju površinskih aktivnih tvari (PAT) u micele. Najčešće nastaju sferoidne strukture čiji je hidrofobni dio od vodenog medija u unutrašnjosti zaštićen omotačem sastavljenim od hidrofilnih grupa. Amfifilne molekule u vodenim otopinama orijentiraju se na način da vlastite hidrofobne grupe pozicioniraju od vodenog medija (slika 2) i na taj način postignu stanje najmanje slobodne energije sustava. Posljedica takve orijentacije je zamjena nekih molekula vode onim nepolarnima. Međumolekularne privlačne sile se smanjuju, a samim time i površinska napetost. S porastom koncentracije PAT dolazi do zasićenja površinskog sloja i prestanka smanjenja površinske napetosti. Koncentracija pri kojoj započinje stvaranje micela naziva se kritična micelizacijska koncentracija (slika 3). Kritična micelizacijska koncentracija nije jedna koncentracija pri kojoj dolazi do stvaranja micela već se radi o manjem rasponu koncentracija. Mnoga svojstva
otopina koje sadrže PAT mijenjaju se u tom rasponu i stoga je teško njeno točno utvrđivanje. Taj raspon koncentracija predstavlja granicu gdje se s jedne strane micele još ne formiraju, dok su s druge već formirane (Slomkowski i sur., 2011; Florence i Attwood, 2006b).

Slika 2. Orijentacija amfifilnih molekula PAT na granici a) vodena otopina/zrak, i b) hidrofobna faza/vodena otopina (prilagođeno prema Florence i Attwood, 2006b)

Slika 3. Dijagram ovisnosti površinske napetosti o logaritmu koncentracije PAT (prilagođeno prema Florence i Attwood, 2006b)
Glavni razlog nastanka micela u sustavu je postizanje stanja najmanje slobodne energije. Promjena slobodne energije sustava ovisi o promjenama entalpije i entropije što se vidi iz jednadžbe:

$$\Delta G = \Delta H - T\Delta S$$

1.3.2. Ionske i neionske micele

Neionske micele su u pravilu veće strukture od ionskih, naime kod formiranja neionskih micela ne postoji električni rad kojeg je potrebno utrošiti kada se monomer ionske PAT asociira u ionsku micelu. Posljedica njihove veličine su asimetrične strukture micele. Hidrofobna jezgra neionskih micela okružena je palisadnim slojem, omotačem najčešće građenim od oksietilenskih lanaca. Palisadni omotač micle može vezati veliki broj molekula vode tako da su micle neionskih PAT dobro hidratizirane (Florence i Attwood, 2006b).

1.3.3. Čimbenici koji utječu na cmc i veličinu micela

Čimbenici koji utječu na veličinu micela su struktura hidrofobne grupe, priroda hidrofilne grupe i protuion, dodatak elektrolita te temperatura. PAT s krutom aromatskom ili heteroaromatskom strukturom prstena asociraju se nemicelarnim procesima i takvim sustavima nije moguće odrediti cmc. Proces asocijacije se obično odvija pri vrlo niskim koncentracijama (Florence i Attwood, 2006b).

Priroda hidrofilne grupe ima utjecaj na cmc, kod polioksoetilenskih neionskih PAT postoji ovisnost svojstava o duljini lanca. Porastom duljine lanca raste hidrofilnost molekule i cmc (Florence i Attwood, 2006b).
Priroda protuiona značajno utječe na svojstva micele. Što je protuion slabije hidratiziran nastajat će veće micele. Razlog tomu su slabije hidratizirani protuioni koji se mogu lagano adsorbirati na površinu micele i time smanjiti odbijanje među polarnim grupama. Organski protuioni naspram anorganskih dovest će do stvaranja većih micela i smanjenja cmc (Florence i Attwood, 2006b).

Dodatak elektrolita ionskim PAT smanjuje cmc, a povećava veličinu micele (Liu, 2008).

Temperatura ima relativno mali učinak na micelarna svojstva ionskih PAT, dok se kod vodenih otopina neionskih PAT porastom temperature javlja zamućenje. Pri temperaturama prije zamućenja micele neionskog PAT se povećavaju. Nadalje prije zamućenja dolazi i do smanjenja cmc vrijednosti mnogobrojnih neionskih PAT zbog dehidracije lanaca etilenoksida (Kerwin, 2007; Florence i Attwood 2006b).

1.3.3.1. Lokacija solubilizata

Mjesto solubilizacije unutar micele povezano je s kemijskim značajkama solubilizata. Nepolarni solubilizati poput alifatskih ugljikovodika otapaju se u hidrofobnoj jezgri ionskih i neionskih micela. Vodotopljive tvari koje sadrže polarne skupine se orijentiraju polarnom skupinom prema granici jezgre/površine micele, dok im je hidrofobna skupina položena unutar hidrofobne jezgre micele. Solubilizati locirani unutar micelarne jezgre povećavaju veličinu micele na dva načina. Micele postaju veće zbog prisutnosti solubilizata u jezgri, ali i zbog povećanja broja molekula PAT po miceli (agregacijski broj) kako bi se pokrila nabubrena jezgra. Primjerice, adicija timola u micele polisorbata 80 dovela je do blagog povećanja promjera naspram praznih micela. Takvo povećanje pokazuje da se timol uspješno uklopio u micelu polisorbata 80 što je prouzrokovalo posljedično rastezanje strukture micele (Deng i sur., 2016; Florence i Attwood, 2006b).

1.4. Površinski aktivne tvari (PAT)

Površinski aktivne tvari su amfifiilne molekule koje se sastoje od hidrofobnog (repa) i hidrofilnog (glave) dijela. Molekule PAT koje sadrže ispod 10 alkilnih grupa (C<10) su se pokazale neučinkovitim kao solubilizirajuća sredstva, dok su one s preko 18 alkilnih grupa (C>18) najčešće netopljive pa samim time i neučinkovite. Ovisno o tipu naboja koji nosi
hidrofilna glava, PAT se mogu podijeliti na anionske, kationske, amfoterne i neionske PAT u slučaju izostanka naboja (Liu, 2008; Kosswig, 2000).

1.4.1. Anionske PAT

1.4.2. Kationske PAT

Kationske PAT za razliku od anionskih na hidrofilnom dijelu imaju pozitivan naboj. To su kvartersne amonijeve soli (tetradecilamonijev bromid, alkildimetilbenzilamonijev klorid i drugi) te piridinske PAT koje su važne u farmaciji zbog svoje baktericidne aktivnosti prema...
gram-požitivnim i gram-negativnim mikroorganizmima. Njihova toksičnost za mikroorganizme se javlja zbog adsorpcije kationa u membraneske strukture stanice što vodi ka staničnoj lizi i uništenju bakterija i plijesni (Liu, 2008; Florence i Attwood, 2006b).

Cetrimid je smjesa tetradeciltrimetilamonijevog bromida i manje dodecil- i heksadeciltrimetilamonijevog bromida. Otopine cetrimida se koriste dermalno, za čišćenje kože, ali i rana i opekлина. Koristi se i za čišćenje kirurške opreme. Nadalje otopine cetrimida koriste se i u šamponima za seboreju (Florence i Attwood; 2006b).

1.4.3. Neionske PAT

Glava neionskih PAT ne sadrži naboj, a hidrofilna svojstva dolaze od prisutnih hidroksilnih skupina. Amfifilnost neionskih PAT može se izraziti odnosom hidrofilnog i hidrofobnog dijela molekule. Što je vrijednost hidrofilno-lipofilnog odnosa (HLB) manja, tvar je lipofilnija i obrnuto, što je taj broj veći tvar će biti hidrofilnija. Neionske PAT najčešće se koriste u farmaceutskim oblicima zbog svoje kompatibilnosti, stabilnosti i male toksičnosti. Mogu se podijeliti na vodotopljive i netopljive u vodi. Primjeri u vodi netopljivih neionskih PAT sadrže analoge masnih kiselina dugih lanaca (gliceril esteri, esteri masnih kiselina). Kako bi se povećavala topljivost u vodi takvih PAT dodaju se polioksietilske skupine na alkoholne skupine molekule PAT. PAT koji se naveliko koriste u farmaceutskim oblicima su sorbitanski esteri, polisorbati, makrogolni eteri, poloksameri (Riu, 2008; Florence i Attwood, 2006b).

1.4.3.1. Polisorbati

Polisorbati su kao komercijalno dostupne sirovine kompleksne smjese parcijalnih estera sorbitola i njegovih monoanhidrida te dianhidrida kopolimeriziranih s približno 20 mola etilenoksida po svakom molu sorbitola i njegovih anhidrida. Polisorbate karakteriziraju više HLB vrijednosti, primjerice polisorbat 80 ima HLB vrijednost 15. Polisorbat 80 i 20 su
najčešće korišteni polisorbati u farmaceutskim oblicima proteinskih biofarmaceutika (Kerwin, 2007; Florence i Attwood, 2006b).

1.5. Uklapanje djelatne tvari u micele

1.5.1. Čimbenici koji utječu na solubilizaciju

Kada su u pitanju solubilizati steroidne strukture uočeno je da što se hidrofilnija grupa nalazi na položaju 17 prstena, manja je koncentracija PAT potrebna za solubilizaciju (slika 6).

Samim time solubilizacija hormona natrijevim laurilsulfatom bit će najbolja kod deoksikortikosterona, onog s najpolarnijom grupom na položaju 17 (Florence i Attwood, 2006b).

Povišenje temperature u većini sustava dovodi do povećane solubilizacije. To se posebice vidi kod neionskih PAT gdje je posljedica povećanja veličine micele s povećanjem temperature. Unatoč tomu povećanje topljivosti djelatne tvari u otopini PAT pokazuje se više kao

posljedica njene povećane topljivosti u vodenoj fazi, a ne uklapanja u micele (Florence i Attwood, 2006b).

1.5.2. Primjena solubilizacije u farmaciji

Neionske PAT poput polisorbata koriste se u pripremi vodenih injekcija netopljivih vitamina A, D, E i K. Mnoštvo se još lijekova formulira korištenjem solubilizacije: analgetici, sedativi, sulfonamidi, antibiotici (Florence i Attwood, 2006b).
2. OBRAZLOŽENJE TEME

Mnoštvo djelatnih tvari karakterizira slaba topljivost, a samim time i apsorpcija. Poboljšanje topljivosti takvih tvari za dobivanje konačnog farmaceutskog oblika danas ima veliku važnost jer otapanje lijeka prethodi njegovoj apsorpciji. Mnoštvo je metoda kojima se topljivost slabo topljivih djelatnih tvari može povećati; utjecajem na pH, smanjenjem veličine čestica, prilagodbom kristalnog stanja polimorfa, kompleksacijom.

Micelarna solubilizacija također je jedna od metoda poboljšanja topljivosti teško topljivih djelatnih tvari. Poboljšanje topljivosti posljedica je uklapanja teško topljivih djelatnih tvari u micele.

Cilj ovog diplomskog rada bio je ispitati potencijal solubilizacije deksametazona, teško topljive djelatne tvari steroidne strukture, u micelama neionske površinski aktivne tvari, polisorbata 80. Određen je solubilizacijski kapacitet neionskih micela korištenih za solubilizaciju deksametazona kao i veličina te disperznost micela s uklopljenim deksametazonom.
3. MATERIJALI I METODE

3.1. Kemikalije

Deksametazon, molekula steroidne strukture korišten je kao solubilizat.

Deksametazon

Kao solubilizator korišten je polisorbat 80 (zaštitno ime: Polysorbate 80, Sigma-Aldrich).

Polisorbat 80

Za pripravu Krebs-Ringerovog pufera pH vrijednosti 7,4 korišteni su kalijev klorid, natrijev klorid, kalcijev klorid (Sigma-Aldrich), natrijev hidrogenkarbonat, natrijev dihidrogenkarbonat dihidrat, magnezijev sulfat heptahidrat, glukoza monohidrat (Kemig) te
HEPES (AppliChem) analitičkog stupnja čistoće. Korištena je redistilirana voda specifične
provodnosti $< 1 \mu S \ cm^{-1}$.

Ostale korištene kemikalije bile su analitičkog stupnja čistoće (proizvođač Kemig).

3.2. Oprema

- Analitička vaga (XS 105 Analytical Balance, Mettler Toledo, Švicarska)
- Ultrazvučna kupelj (Branson 1210 Ultrasonic Cleaner, Marshall Scientific, SAD)
- Orbitalna termostatirana mješalica (Environmental shaker incubator ES 20/60, Biosan,
 Latvija)
- Spektrofotometar (Cary 50, Varian, SAD)
- Analizator veličine čestica (Zetasizer 3000HS, Malvern Instruments, UK)

3.3. Priprema ishodnih otopina

3.3.1. Priprema Krebs-Ringerova pufera

Krebs-Ringerov pufer pH 7,4, pripravljen je odvagom 0,158 g NaH$_2$PO$_4 \times 2$H$_2$O, 0,2 g
MgSO$_4 \times 7$H$_2$O, 0,26 g CaCl$_2 \times 2$H$_2$O, 0,4 g KCl, 1,1 g D-glukoza monohidrata, 2,1 g
NaHCO$_3$, 3,575 g HEPES i 6,8 g NaCl u odmjernoj tikvici od 1 l. Tikvica je zatim
nadopunjena redistiliranom vodom do oznake. pH vrijednost pufera prilagođena je na 7,4
korištenjem 10M NaOH. Prije uporabe pufer je filtriran kroz membranski filter (veličina pora
0,20μm) da se uklone potencijalno prisutne nečistoće.

3.3.2. Priprema otopine polisorbata 80

Otopina polisorbata 80 (1 %, m/V) priređena je njegovim otapanjem u dijelu potrebnog
volumena Krebs-Ringerova pufera (pH=7,4) 1 sat pri sobnoj temperaturi. Nakon otapanja
polisorbata 80 odmjerne tikvice su nadopunjene Krebs-Ringerovim puferom do oznake.
Homogenizacija mučkanjem provela se tek nakon njihova punjenja do oznake s ciljem
izbjegavanja pjenjenja i pogrešnog nadopunjavanja tikvice.
3.4. Priprema mjernih sustava

Mjerni sustavi priredeni su korištenjem ishodnih otopina polisorbata 80 i krutine deksametazona u Erlenmeyerovim tikvicama (50 ml). Krebs-Ringerov pufer imao je ulogu disperzijskog sredstva. Nadalje mjerni sustavi priredeni korištenjem koncentracijskog niza otopina polisorbata 80 (5 × 10^{-4} – 1 %, m/V) i s konstantnom masom deksametazona (10mg). Mjerni sustavi priredeni su u volumenu od 30 ml. Slijepe probe pripremljene su za svaki pojedini koncentracijski niz na isti način kao i uzorci, ali bez dodatka deksametazona. Cilj je izbjeći mogući utjecaj polisorbata 80 pri spektrofotometrijskom određivanju.

Pripremljeni mjerni sustavi s deksametazonom miješani su u orbitalnoj termostatiranoj mješalici pri 34°C, 130 rpm i tijekom 24 sata. Za određivanje topljivosti deksametazona u Krebs-Ringerovom puferu korištene su suspenzije, ali bez prisutnosti polisorbata 80. Nakon 24 sata suspenzije deksametazona filtrirane su kroz membranski filter (veličina pora 0,45 µm, Filtres Fioroni) s ciljem odjeljivanja otopljenog/solubiliziranog od neotopljenog deksametazona. Za spektrofotometrijsko određivanje sadržaja otopljenog/solubiliziranog deksametazona, za određivanje veličine i za određivanje raspodjele veličina micela (c > cmc) metodom fotonske korelacijske spektroskopije korištene su bistre otopine odnosno filtrati.

3.5. Postupak mjerenja

Sadržaj otopljenog/solubiliziranog deksametazona u filtratima određen je spektrofotometrijskom metodom pri 241 nm. Za izradu baždarnog dijagrama pripremljen je koncentracijski niz otopina deksametazona u Krebs-Ringerovom puferu iz ishodne metanolne otopine deksametazona (1 mg ml^{-1}). Značajke baždarnog pravca su: \(y = 0,0419x + 0,008; \ r^2 = 0,9991 \). Sadržaj otopljenog/solubiliziranog deksametazona određen je u filtratima razrijeđenim Krebs-Ringerovim puferom i to 1:5-1:10. Svakom mjerenom uzorku pripremljena je slijepe prova odgovarajuće koncentracije polisorbata 80 kako bi se eliminirale potencijalne apsorbancije polisorbata 80. Za sva mjerenja korišteni su svježe pripravljeni mjerni sustavi i ponovljena su tri puta. Rezultati određivanja sadržaja otopljenog/solubiliziranog deksametazona prikazani su kao ovisnost omjera otopljenog deksametazona u disperzijskom sredstvu (\(S_o \)) prema solubiliziranom deksametazonu u micelama (\(S_m \)), a o rastućoj koncentraciji polisorbata 80 u sustavima.
3.6. Mjerenje veličine i disperznosti micela

Fotonska korelacijska spektroskopija (engl. photon correlation spectroscopy; PCS) metoda je upotrebljena za određivanje veličine i disperznosti micela. U mjernim sustavima korišten je monokromatski koherentni 10 mW He-Ne laser ($\lambda = 633\text{nm}$). Kut detekcije raspršene svjetlosti je 90°. Mjerenja filtrata provedena su pri 34°C u području koncentracija polisorbata 80 većem od njegovih cmc vrijednosti. CONTIN algoritam korišten je za obrađivanje dobivenih podataka. Rezultati mjerenja prikazani su kao srednje vrijednosti triju mjerenja $d_h \pm \text{SD}$.

Koloidne čestice u tekućini se nasumično gibaju (tzv. Brownovo gibanje) što se vidi na stalnom fluktuiranju intenziteta raspršene svjetlosti tijekom vremena. Taj intenzitet raspršene svjetlosti daje informaciju o difuzijskom koeficijentu čestica. Veličina čestica dobivena PCS mjerenjem izračunata je korištenjem Stokes-Einsteinove jednadžbe:

$$d_h = \frac{kT}{3\eta D}$$

gdje je d_h hidrodinamički promjer, k Boltzmanova konstanta, T termodinamička temperatura, η viskoznost i D translacijski difuzijski koeficijent (Mansfield i sur., 2015).

PCS metoda omogućuje određivanje veličine dispergiranih čestica u području 2 nm do 3 µm (www.malvern.com).

Slika 9. Shematski prikaz analize veličine čestica metodom fotonske korelacijske spektroskopije (www.sympatec.com)

Fotonska korelacijska spektroskopija se temelji na raspršenju svjetlosti. Uzorak se obasja monokromatskom koherentnom laserskom zrakom, fotomultiplikator zabilježi intenzitet svjetlosti raspršene na česticama pod određenim kutom, a kojeg prevodi u električni signal
(slika 9). Raspršene čestice neprestano se gibaju (Brownovo gibanje) što se vidi u stalnoj fluktuaciji intenziteta raspršene svjetlosti tijekom vremena. Veličina čestica se zatim može odrediti pomoću primjerice nagiba autokorelacijske funkcije G (www.sympatec.com). PCS metodom određuje se hidrodinamički promjer, d_h, vrijednost koja govori o difuziji čestice unutar otopine. To je promjer sfere koja bi imala jednak translacijski difuzijski koeficijent kao i čestica koja se promatra (www.imbb.forth.gr).

Indeks polidisperznosti (PDI) je bezdimenzijska veličina koja daje informaciju o disperznosti sustava. Sustavi s vrijednostima PDI manjom od 0,05 su visoke monodisperznosti, dok sustavi s PDI većim od 0,7 pokazuju visku distribuciju veličina i nisu prikladni za tehniku dinamičkog raspršenja svjetlosti (www.biophysics.bioc.cam.ac.uk).
4. REZULTATI I RASPRAVA

4.1. Topljivost deksametazona u Krebs-Ringerovom puferu

Za ispitivanje topljivosti deksametazona u Krebs-Ringerovom puferu pripremljen je koncentracijski niz otopina (5, 10, 15 i 20 μg/ml) i spektofotometrijski im je izmjerena apsorbancija pri valnoj duljini od 241 nm. Mjerenje apsorbancije provedeno je 24 sata nakon otapanja deksametazona i filtracije kroz membranske filtre, a s ciljem odvajanja otopljenog odnosno solubiliziranog od neotopljenog deksametazona.

![Diagram](image)

Slika 10. Ovisnost koncentracije otopljenog deksametazona u Krebs-Ringerovom puferu o apsorbanciji λ=241 nm pri 34°C

Iz dijagrama 10 opaža se da s porastom koncentracija otopljenog odnosno solubiliziranog deksametazona raste i mjerena apsorbancija.

4.2. Veličina micela polisorbata 80

Prije uklapanja deksametazona u micele polisorbata 80 izmjerena je veličina praznih micela polisorbata 80 s ciljem procjene utjecaja uklapanja deksametazona na samu veličinu i raspodjelu veličine micela. Korištena je 0,5%-tna otopina polisorbata 80 u Krebs-Ringerovom puferu. Veličina micela otopine polisorbata 80 mjerena je prije filtracije, a zatim korištenjem različitih filtara. Ispitani su membranski filtri različite veličine pora i materijala od kojih je izrađena membrana (PET 1,2 μm, PES 0,45 μm, PES 0,2 μm i RC 0,22 μm). Takvim preliminarnim ispitivanjima procijenjeno je da je PES 0,45 μm prikladan membranski filtar za filtraciju uzorka. Pritom su se uporabom različitih filtara dobile približno jednake vrijednosti
veličine čestica, dok je kod odabranog filtra srednja vrijednost veličine praznih micela polisorbata 80 bila 9,6 nm, a PDI je bio manji od 3.

4.3. Topljivost deksametazona u Krebs-Ringerovom puferu uz dodatak polisorbata 80

Nakon određivanja topljivosti deksametazona u puferu i izbora prikladnog filtra ispitana je topljivost deksametazona u Krebs-Ringerovom puferu uz dodatak solubilizatora, polisorbata 80. Spektrofotometrijsko mjerenje provedeno je pri λ=241 nm. Izmjerena je i veličina, odnosno raspodjela veličina micela.

Iz dijagrama 11 je vidljivo da s porastom koncentracije polisorbata 80 raste topljivost deksametazona. U početku se topljivost deksametazona ne mijenja jer su koncentracije polisorbata 80 ispod cmc (kritične micelizacijske koncentracije). Tek kada koncentracije polisorbata 80 dosegnu koncentraciju višu od cmc dolazi do porasta topljivosti deksametazona. Prikazani dijagram možemo podijeliti na dva dijela, gdje će prvi prikazivati koncentracije polisorbata 80 manje od cmc (c<cmc), a drugi koncentracije polisorbata 80 više od cmc (c>cmc).

Prva jednadžba pravca određena je u koncentracijskom području gdje je koncentracija polisorbata 80 manja od cmc (c<cmc) (slika 12).
Očekivano, pri nižim koncentracijama polisorbata 80 (c<cmc) topljivost deksametazona nije povećana.

Druga jednadžba pravca određena je u koncentracijskom području gdje je koncentracija polisorbata 80 veća od cmc (c>cmc) (slika 13).

Uočava se porast topljivosti deksametazona nakon porasta koncentracije polisorbata 80 iznad cmc. Iznad cmc dolazi do porasta topljivosti deksametazona zbog stvaranja micela i njegova uklapanja u hidrofobnu jezgru procesom micelarne solubilizacije. Daljnjim porastom koncentracije polisorbata 80 raste i broj micela koje omogućuju solubilizaciju deksametazona.
Tablica 1. Veličina i raspodjela veličina micela različitih koncentracija polisorbata 80 i deksametazona u Krebs-Ringerovom puferu pri 34°C.

<table>
<thead>
<tr>
<th>Polisorbat 80 (%
m/V)</th>
<th>Veličina (nm)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Srednja vrijednost</td>
<td>SD</td>
</tr>
<tr>
<td>0,5</td>
<td>12,9</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>13,1</td>
<td>1,9</td>
</tr>
<tr>
<td>1</td>
<td>11,7</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>11,4</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Nakon izmjerene veličine micela polisorbata 80 izmjerena je veličina micela i PDI polisorbata 80 s uklopljenim deksametazonom. Mjerene otopine polisorbata 80 bile su koncentracija viših od cmc (0,5 i 1%) (tablica 2). Uspoređujući veličine micela prije i poslije micelarne solubilizacije deksametazona vidi se da je došlo do malog povećanja veličine micela polisorbata 80. Blago povećanje micela može se objasniti prisutnošću hidrofobnog solubilizata u jezgri micle neionske PAT, ali i povećanjem broja molekula PAT po miceli (agregacijskog broja) kako bi se pokrila nabubrena jezgra.
5. ZAKLJUČAK

- Neionska PAT polisorbat 80 povećava topljivost teško topljive tvari deksametazona. Stvaranjem micela dolazi do uklapanja deksametazona u jezgru polisorbata 80 procesom micelarne solubilizacije što rezultira povećanom topljivošću takve teško topljive tvari.

- Usporedba veličina praznih micela polisorbata 80 i micela polisorbata 80 s uklonjenim deksametazonom pokazuje blago povećanje veličine micela s uklonjenim deksametazonom. Povećanje ukazuje na uspješno uklapanje deksametazona u micelu polisorbata 80 i posljedično povećanje veličine micela. Blago povećanje veličine micela može se objasniti uklapanjem deksametazona u jezgru koje uzrokuje povećanje volumena hidrofobne jezgre kao i porastom broja molekula PAT po miceli kako bi se pokrila nabubrena jezgra micela.
6. LITERATURA

Benet LZ. The Role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug Disposition Classification System) in Drug Development. *J Pharm Sci*, 2013, 102, 34-42.

Micelarna je solubilizacija metoda poboljšanja topljivosti teško topljivih djelatnih tvari s ciljem izrade primjerenih farmaceutskih oblika lijekova. Deksametazon je sintetički glukokortikoid teško topljiv u vodi. U radu je ispitana potencijal solubilizacija deksametazona korištenjem polisorbata 80 kao neionske površinski aktivne tvari u složenom disperzijskom sredstvu Krebs-Ringerovog pufera (pH = 7,4).

U koncentracijskom području nižem od kritične micelizacijske koncentracije polisorbata 80 topljivost deksametazona ostaje nepromijenjena, dok se u koncentracijskom području višem od kritične micelizacijske koncentracije polisorbata 80 značajno povećava topljivosti deksametazona uslijed uklapanja deksametazona u micle polisorbata 80 procesom micelarne solubilizacije.

Veličina i raspodjela veličina micela polisorbata 80 s ili bez ukljenjenog deksametazona određena je metodom fotonske korelacijske spektroskopije. Veličina praznih micela polisorbata 80 u složenom disperzijskom sredstvu Krebs-Ringerovog pufera (pH = 7,4) je 9,6 nm s indeksom polidisperznosti manjim od 0,3. Uklapanjem deksametazona umjereno se povećava veličina micela polisorbata 80 na vrijednost približno 12-13 nm i indeksom polidisperznosti manjim od 0,3.
SUMMARY

Micellar solubilization is a method used for improving the solubility of poorly soluble drugs with the goal of preparing efficient pharmaceutical formulations. Dexamethasone is a synthetic glucocorticoid poorly soluble in water. In this work dexamethasone solubilization potential has been examined by using polysorbate 80 as a nonionic surface active agent in a complex dispersion medium of Krebs-Ringer buffer (pH = 7.4).

In the concentration area lower than the critical micellar concentration of polysorbate 80, dexamethasone solubility remained unchanged while the concentration area above the critical micellar concentration of polysorbate 80 showed a significant increase in dexamethasone solubility due to the incorporation of dexamethasone in polysorbate 80 micelles via the process of micellar solubilization.

Size and distribution of size of polysorbate 80 micelles, with or without incorporated dexamethasone, was determined by using the photon correlation spectroscopy method. The size of empty polysorbate 80 micelles in a complex dispersion medium of Krebs-Ringer buffer (pH = 7.4) is 9.6 nm with a polydispersity index lower than 0.3. By incorporating dexamethasone there is a moderate increase in the polysorbate 80 micelles' size to approximately 12-13 nm while the polydispersity index remains lower than 0.3.
IZRADA I KARAKTERIZACIJA MICELA POLISORBATA 80 S UKLOPLJENIM DEKSAMETAZONOM

Ana Perković

SAŽETAK

Micelarna je solubilizacija metoda poboljšanja topljivosti teško topljivih djelatnih tvari s ciljem izrade primjerenih farmaceutskih oblika lijekova. Deksametazon je sintetički glukokortikoid teško topljiv u vodi. U radu je ispitana potencijal solubilizacije deksametazona korištenjem polisorbata 80 kao neionske površinski aktivne tvari u složenom disperzijskom sredstvu Krebs-Ringerovog pufera (pH = 7,4). U koncentracijskom području nižem od kritične micelizacijske koncentracije polisorbata 80 topljivost deksametazona ostaje nepromijenjena, dok se u koncentracijskom području višem od kritične micelizacijske koncentracije polisorbata 80 značajno povećava topljivosti deksametazona uslijed uklopanja deksametazona u micle polisorbata 80 procesom micelarne solubilizacije. Veličina i raspodjela veličina micela polisorbata 80 s ili bez uklopljenog deksametazona određena je metodom fotonske korelacijske spektroskopije. Veličina praznih micela polisorbata 80 u složenom disperzijskom sredstvu Krebs-Ringerovog pufera (pH = 7,4) je 9,6 nm s indeksom polidisperznosti manjim od 0,3. Uklapanjem deksametazona umjereno se povećava veličina micela polisorbata 80 na vrijednost približno 12-13 nm i indeksom polidisperznosti manjim od 0,3.

Rad je pohranjen u Središnjoj knjižnici Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Rad sadrži: 29 stranica, 13 grafičkih prikaza, 1 tablica i 30 literaturnih navoda. Izvornik je na hrvatskom jeziku.

Ključne riječi: Deksametazon, polisorbat 80, micelarna solubilizacija

Mentor: Dr. sc. Ivan Pepić, docent Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

Ocenjivači: Dr. sc. Ivan Pepić, docent Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Anita Hafner, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.
Dr. sc. Dubravka Vitali Čepo, izvanredna profesorica Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta.

PREPARATION AND CHARACTERIZATION OF DEXAMETHASONE LOADED POLYSORBATE 80 MICELLES

Ana Perković

SUMMARY

Micellar solubilization is a method used for improving the solubility of poorly soluble drugs with the goal of preparing efficient pharmaceutical formulations. Dexamethasone is a synthetic glucocorticoid poorly soluble in water. In this work dexamethasone solubilization potential has been examined by using polysorbate 80 as an nonionic surface active agent in a complex dispersion medium of Krebs-Ringer buffer (pH = 7.4). In the concentration area lower than the critical micellar concentration of polysorbate 80, dexamethasone solubility remained unchanged while the concentration area above the critical micellar concentration of polysorbate 80 showed a significant increase in dexamethasone solubility due to the incorporation of dexamethasone in polysorbate 80 micelles via the process of micellar solubilization. Size and distribution of size of polysorbate 80 micelles, with or without incorporated dexamethasone, was determined by using the photon correlation spectroscopy method. The size of empty polysorbate 80 micelles in a complex dispersion medium of Krebs-Ringer buffer (pH = 7,4) is 9,6 nm with a polydispersity index lower than 0,3. By incorporating dexamethasone there is a moderate increase in the polysorbate 80 micelles' size to approximately 12-13 nm while the polydispersity index remains lower than 0,3.

The thesis is deposited in the Central Library of the University of Zagreb Faculty of Pharmacy and Biochemistry.

Thesis includes: 29 pages, 13 figures, 1 table and 30 references. Original is in Croatian language.

Keywords: Dexamethasone, polysorbate 80, micellar solubilization

Mentor: Ivan Pepić, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

Reviewers: Ivan Pepić, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Anita Hafner, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Dubravka Vitali Čepo, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

The thesis was accepted: February 2017.