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SUMMARY 

 

Background: Diving with compressed gases (SCUBA diving) is often associated with 

occurence of gas bubbles in the blood and hyperoxia, which are possible causes of endothelial 

dysfunction after diving. Endothelial dysfunction is associated with asymptomatic 

cardiovascular and neurological changes caused by SCUBA diving. 

The aim of this study is to explore the physiological and biochemical changes of vascular and 

endothelial function, as well as to examine the signs of impaired CNS integrity after diving 

with compressed gas mixtures. The following hypotheses were tested: asymptomatic dives 

with compressed air will change the biochemical parameters of endothelial function and 

oxidative stress after dive; asymptomatic dives will have different effects on vascular function 

considering different types of breathing gases; and, finally, asymptomatic dives will cause 

increased levels of humoral markers of endothelial damage and CNS integrity due to 

arterializations of gas bubbles. 

Methods: Three studies were performed. The first study including 15 participants examined 

changes of vWf,  PAI-1 and hsCRP which served as indicators of endothelial function, as well 

as adenosine, TBARS and FRAP as indicators of oxidative state while the bubble grades were 

also monitored after dives with compressed air. In the second study that included 10 divers, 

the effects of diving with air and nitrox on vascular function were compared by examining the 

indicators of arterial elasticity:  pulse wave velocity and augmentation index; indicators of 

endothelial function through assessment of flow-mediated dilation (FMD) and nitrite 

concentrations in plasma; and assessment of bubble production. Third study which included 

16 subjects  examined whether bubble arterializations lead to increase in blood levels of 

endothelin-1, S100-B and NSE, which would suggest an impaired endothelium and CNS 

integrity. 

Results: Diving resulted in significant production of bubbles in all three studies. 

Arterializations were recorded in all three studies and were accompanied by high bubble 

grade. Diving with air in the first study did not change the oxidative status with the exception 

of a slight increase in antioxidant capacity after diving. Assessment of endothelial parameters 

did not reveal any changes, except PAI-1, activity of which declined after diving (first study). 

Air dives resulted in significantly greater degree of bubble formation as compared to nitrox 

and with more frequent arterializations. The indicators of arterial stiffness showed opposite 



changes after diving with both gas mixtures: pulse wave velocity has increased, suggesting an 

increase in arterial stiffness, while the augmentation index decreased after each dive. Diving 

with nitrox resulted in significantly more decreased flow-mediated dilation as compared to 

diving with air, thus indicating a greater effect of hyperoxia on the endothelial function versus 

gas bubbles. Measurement of humoral markers of  CNS integrity revealed an increase in 

blood levels of S100-B, but without evidence of impaired CNS integrity due to similar 

increases after a control dive (without significant bubble fomation and arterializations). 

Conclusions: It was found that asymptomatic dives with air do not affect levels of 

biochemical indicators of endothelial function despite significant degree of gas bubbles in the 

blood. The triggered antioxidant defense could be the potential mechanism of protection 

against endothelial dysfunction. Significantly greater negative effect on endothelial function 

of nitrox as compared to air diving, that occurred despite lower bubble grade and less frequent 

arterializations, suggests hyperoxia-induced damage and points to necessity of further 

investigations on the mechanisms of endothelial changes after asymptomatic dives. 
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