Reaktionen mit N-(1-Benzotriazolcarbonyl)-aminosäuren. I. Synthese von Hydantoinen und Hydantoinsäure-amiden

B. Zorc und I. Butula

Pharmazeutisch-biochemische Fakultät der Universität Zagreb, 41000 Zagreb, Kroatien, Jugoslawien

Eingegangen am 7. September 1981.

Die Verbindungen III unterliegen bei der Einwirkung von Alkalien einer Cyclisierungs-Eliminierungs-Reaktion und liefern die 3,5-substituierte Hydantoine (V).

\[
\begin{align*}
R-\text{CH-COOH} & \xrightarrow{\text{SOCl}_2} R-\text{CH-COCl} \\
| & \text{NHCObT} & | \text{NHCObT} & | \text{NHCObT} \\
\text{I} & \xrightarrow{R_1-\text{NH}_2} & \text{R-CH-CO-NHR}_1 & \text{III} \\
| & \text{TEA} & | \text{NHCObT} & \| R_1\text{NH}_2 \\
\downarrow 3 R_1\text{NH}_2 & \text{R-CH-CONHR}_1 & \| \text{NH-CONHR}_1 & \text{IV}
\end{align*}
\]

Die Reaktion muss durch Zutropfen von Amin zu den Chloriden II durchgeführt werden, da bei umgekehrter Zugabe auch die Hydantoinsäure-amide IV gebildet werden. Diese wurden kontrolliert durch Einwirkung von 3 Mol Amin auf II oder 1 Mol Amin auf III hergestellt (Tabelle II). Die Reaktion ist
Tabelle I

Die Umsetzung von N-BTCO-Aminosäuren Ia-e mit Thionylchlorid und anschließend mit verschiedenen Aminen zu N-(1-Benzotriazolylcarbonyl)-aminosäure-amiden

\[
R-\text{CH-CONH-} R_1 \\
\text{NH-COBT (III)}
\]

<table>
<thead>
<tr>
<th>Mit Thionylchlorid Umgesetzte N-BTCO-Aminosäure</th>
<th>Reaktion mit Amin/Triethylamin (TEA)</th>
<th>Molverhältnis</th>
<th>(\text{BTCO-AMINOSÄURE-AMID})</th>
<th>(\text{Verbindung})</th>
<th>III</th>
<th>Ausbeute (%)</th>
<th>Schmp. (^\circ\text{C})</th>
<th>IR-Spektrum (\nu_\text{CO/cm}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTOC-Glycin (Ia)</td>
<td>Butylamin/TEA</td>
<td>1/1</td>
<td>BTOC-Glycin-butylamid</td>
<td>a</td>
<td>97</td>
<td>151—152</td>
<td>1735 u. 1660</td>
<td></td>
</tr>
<tr>
<td>BTOC-Glycin (Ia)</td>
<td>Cyclohexylamin/TEA</td>
<td>1/1</td>
<td>BTOC-Glycin-cyclohexylamid</td>
<td>b</td>
<td>100</td>
<td>180—182</td>
<td>1745 u. 1650</td>
<td></td>
</tr>
<tr>
<td>BTOC-dL-Alanin (Ib)</td>
<td>Butylamin</td>
<td>2</td>
<td>BTOC-dL-Alanin-butylamid</td>
<td>c</td>
<td>100</td>
<td>142—145</td>
<td>1725 u. 1630</td>
<td></td>
</tr>
<tr>
<td>BTOC-dL-Alanin (Ib)</td>
<td>Cyclohexylamin/TEA</td>
<td>1/1</td>
<td>BTOC-dL-Alanin-cyclohexylamid</td>
<td>d</td>
<td>100</td>
<td>174—175</td>
<td>1740 u. 1660</td>
<td></td>
</tr>
<tr>
<td>BTOC-dL-Phenylglycin (Ic)</td>
<td>Butylamin</td>
<td>2</td>
<td>BTOC-dL-Phenylglycin-butylamid</td>
<td>e</td>
<td>82</td>
<td>131—133</td>
<td>1710 u. 1650</td>
<td></td>
</tr>
<tr>
<td>BTOC-dL-Phenylglycin (Ic)</td>
<td>Cyclohexylamin</td>
<td>2</td>
<td>BTOC-dL-Phenylglycin-cyclohexylamid</td>
<td>f</td>
<td>92</td>
<td>173—175</td>
<td>1735 u. 1645</td>
<td></td>
</tr>
<tr>
<td>BTOC-dL-Phenylglycin (Ic)</td>
<td>Benzylamin/TEA</td>
<td>1/1</td>
<td>BTOC-dL-Phenylglycin-benzylamid</td>
<td>g</td>
<td>55</td>
<td>132—135</td>
<td>1730 u. 1675</td>
<td></td>
</tr>
<tr>
<td>BTOC-l-Phenylalanin (Id)</td>
<td>Butylamin/TEA</td>
<td>1/1</td>
<td>BTOC-l-Phenylalanin-butylamid</td>
<td>h</td>
<td>87</td>
<td>128—131</td>
<td>1710 u. 1660</td>
<td></td>
</tr>
<tr>
<td>BTOC-l-Phenylalanin (Id)</td>
<td>Benzylamin/TEA</td>
<td>1/1</td>
<td>BTOC-l-Phenylalanin-benzylamid</td>
<td>i</td>
<td>90</td>
<td>120—122</td>
<td>1715 u. 1650</td>
<td></td>
</tr>
</tbody>
</table>
TABELLE II
Die hergestellten Hydantoinsäure-amide

\[
\begin{array}{cccccc}
R-\text{CH}-\text{CONHR}_1 \\
\text{NH}-\text{CONHR}_1 \\
\hline
\text{Umgesetzte Verb.} & \text{Amin} & \text{Molverhältnis} & \text{Reaktionszeit/h} & \text{Reaktionsprodukt} & \text{IV} & \text{R} & \text{R}_1 & \text{Ausbeute} & \text{Schmp.} & \text{IR-Spektrum} \\
\text{} & \text{} & \text{} & \text{} & \text{} & \text{IV} & \text{R} & \text{R}_1 & \% & ^\circ\text{C} & \nu_{\text{CO}}/\text{cm}^{-1} \\
\text{BTG-Glycyl-Chlorid} (IIa) & n-\text{Butylamin} & 3:1 & 7 & \text{a} & \text{H} & \text{Butyl} & 62 & 169-171 & 1635 \\
\hline
\text{BTG-dl-Alanyl-chlorid} (IIb) & n-\text{Butylamin} & 3:1 & 2,5 & \text{c} & \text{Methyl} & \text{Butyl} & 69 & 156-157 & 1625 \\
\hline
\text{BTG-Phenyglycin-butylamid} (IIIe) & n-\text{Butylamin} & 1:1 & 0,5 & \text{e} & \text{Phenyl} & \text{Butyl} & 60 & 200-202 & 1630 \\
\text{BTG-Phenyglycin-cyclohexylamid} (IIIf) & \text{Cyclohexylamin} & 1:1 & 3,0 & \text{f} & \text{Phenyl} & \text{Cyclohexyl} & 52 & 249-251 & 1620 \\
\end{array}
\]
TABELLE III
Die Umsetzung von N-BTCO-Aminosäuren-amiden III zu Hydantoinen V

\[
\begin{align*}
R-\text{CH-CO-NH-}R_1 & \xrightarrow{\text{OH}^-/\text{BH}^-} \text{N-R}_1 (V) \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Umgesetztes Amid III</th>
<th>R</th>
<th>R₁</th>
<th>Hydantoin</th>
<th>Verbindung</th>
<th>Ausbeute</th>
<th>Schmp.</th>
<th>IR-Spektrum ν<sub>CO/cm</sub><sup>-1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>H</td>
<td>Cyclohexyl</td>
<td>3-Cyclohexyl-hydantoin</td>
<td>a</td>
<td>55</td>
<td>168—170</td>
<td>1765 u. 1695</td>
</tr>
<tr>
<td>c</td>
<td>Methyl</td>
<td>Butyl</td>
<td>3-Butyl-5-methyl-hydantoin</td>
<td>b</td>
<td>82</td>
<td>44—45</td>
<td>1770 u. 1700</td>
</tr>
<tr>
<td>d</td>
<td>Methyl</td>
<td>Cyclohexyl</td>
<td>3-Cyclohexyl-5-methyl-hydantoin</td>
<td>c</td>
<td>61</td>
<td>96—98</td>
<td>1765 u. 1700</td>
</tr>
<tr>
<td>e</td>
<td>Phenyl</td>
<td>Butyl</td>
<td>3-Butyl-5-phenyl-hydantoin</td>
<td>d</td>
<td>87</td>
<td>70—76</td>
<td>1775 u. 1705</td>
</tr>
<tr>
<td>f</td>
<td>Phenyl</td>
<td>Cyclohexyl</td>
<td>3-Cyclohexyl-5-phenyl-hydantoin</td>
<td>e</td>
<td>83</td>
<td>178—179</td>
<td>1770 u. 1700</td>
</tr>
<tr>
<td>i</td>
<td>Benzyl</td>
<td>Benzyl</td>
<td>3,5-Dibenzyl-hydantoin</td>
<td>f</td>
<td>67</td>
<td>131—133</td>
<td>1765 u. 1695</td>
</tr>
</tbody>
</table>
SYNTHESE VON HYDANTOİNE

leicht zu verstehen, da die BTOC-Bindung durch Nucleophile unter Abspaltung von Benzo-triazol (BTH) leicht angegriffen wird.5-4

Die Verbindungen III sind bei Raumtemp. gegen wässrige Säuren relativ stabil (nach 1/2 stündigen Stehen in Dioxan/5%iger Salzsäure-Lösung konnte im Dünnschichtchromatogramm keine Spaltung beobachtet werden), in wässriger Lauge oder Soda-Lösung unterliegen sie unter Abspaltung von Benzo-triazol einer sofortigen Cyclisierung und liefern entsprechende Hydantoïne V (Tabelle III). Die Reaktion ist der bekannten Cyclisierung von \(N\)-(Benzyloxy-carbonyl)-aminosäureamiden analog5.

Obwohl wir diese Reaktion auf optische Reinheit nicht näher untersucht haben, konnte durch Synthese von 3-Cyclohexyl-5-phenyl-hydantoïn (Vf), dass eine Drehung von \([\alpha]_D^{20} = +50^0\) zeigte, bewiesen werden, dass die Hydantoïn-Bildung ohne wesentliche Racemisierung verläuft.

EXPERIMENTELLER TEIL

Die Schmelzpunkte (unkorrigiert) wurden mit einem Mikroheiztisch Boëtius bestimmt, die IR-Spektren (KBr) mit einem Perkin-Elmer Gerät 257, die \(^1\)H-NMR-Spektren mit einem Varian-Gerät T-60 aufgenommen. Die Reaktionen mit BTGOCI wurden in wasserfreiem Lösungsmittel durchgeführt.

Herstellung der \(N\)-(1-Benzotriazolylcarbonyl)-aminosäure-chloriden IIa-d

0,01 Mol einer \(N\)-(1-Benzotriazolylcarbonyl)-aminosäure Ia-d1 wurde in 40 ml Thionylchlorid 1 Std. unter Rückfluss gekocht, das Thionylchlorid abdestilliert und der Rückstand mit wasserfreiem BenzoI nachgedampft. Die so gewonnenen \(N\)-(1-Benzotriazolylcarbonyl)-aminosäure-chloride (IIa-d) wurden ohne weitere Reinigung zur Umsetzung mit Aminen verwendet.

Es wurden hergestellt: BTG-Glycyl-chlorid (IIa), BTG-DL-Alanylchlorid (IIb), BTG-DL-Phenylglycylylchlorid (IIc) und BTG-L-Phenylalanylchlorid (IID). Die Reinheit der Verbindungen ist durch IR-Spektren leicht zu charakterisieren: Anstatt der assoziierten Carbonsäure-Absorptionen zwischen 3500—2200 treten NH-Absorptionen um 3400 cm\(^{-1}\) und im Bereich 1800—1740 cm\(^{-1}\) 2 CO-Absorptionsbanden des CO-Chlors und CO-Benzo-triazols auf.

\(N\)-(1-Benzotriazolylcarbonyl)-glycin-butylamid (IIIa)

Zu einer Lösung von 2,38 g (0,01 mol) IIa in 120 ml Benzol wurden unter Rühren bei 0°C 0,75 g (0,01 mol) \(n\)-Butylamin und 1,01 g (0,01 mol) Triethylamin in 30 ml Benzol getropft. Nach 1/2-stündigem Rühren bei Raumtemp. wurde die Reaktionsmischung in V. eingedampft und der Rückstand mit Wasser versetzt. Das ausgefallene Produkt wurde abgenutscht und aus Dioxan/Benzin (Sdp. 80°C) umkristallisiert. Man erhielt 2,68 g (97%) IIIa vom Schmp. 151—152°C.

IR: \(\nu_{\text{max}} = 3380, 3300, 1735, 1660\) cm\(^{-1}\).

\[
C_{13}H_{17}N_{3}O_{3} (275,31) \text{ ber.:} \ C 56,71 \ H 6,22 \ N 25,44\%
\text{gef.:} \ C 56,45 \ H 6,49 \ N 25,63\%
\]

\(N\)-(1-Benzotriazolylcarbonyl)-glycin-cyclohexylamid (IIIb)

2,38 g (0,01 mol) IIa wurden wie oben beschrieben, mit 0,99 g (0,01 mol) Cyclohexylamin und 1,01 g (0,01 mol) Triethylamin umgesetzt und aufgearbeitet. Man erhielt 3,06 g (100%) IIIb vom Schmp. 180—182°C (aus Dioxan/Benzin Sdp. 80°C).

IR: \(\nu_{\text{max}} = 3360, 2930, 1740, 1650, 1535\) cm\(^{-1}\).

\[
C_{15}H_{19}N_{3}O_{3} (301,35) \text{ ber.:} \ C 59,78 \ H 6,35 \ N 23,24\%
\text{gef.:} \ C 59,48 \ H 6,40 \ N 23,36\%
\]
N-(1-Benzotriazolylcarbonyl)-DL-alanin-butylamid (IIIc)

2,52 g (0,01 mol) IIIb wurden wie oben mit 1,50 g (0,02 mol) n-Butylamin umgesetzt. Nach 3,5-Stündigem Rühren wurde eingedampft, der Rückstand mit Wasser und verd. Salzsäure versetzt und das Produkt mit Chloroform extrahiert. Man erhielt 2,89 g (100%) IIIc mit Schmp. 142—145°C (aus Benzol/Benzin Sdp. 80°C).
IR: νmax = 3270, 1725, 1630, 1510 cm⁻¹.

C₁₄H₁₉N₂O₂ (289,34) ber.: C 58,11 H 6,62 N 24,21%
gef.: C 58,07 H 6,77 N 24,13%

N-(1-Benzotriazolylcarbonyl)-DL-alanin-cyclohexylamid (IIId)

2,52 g (0,01 mol) IIIb wurden wie oben mit 0,99 g (0,01 mol) Cyclohexylamin und 1,01 g (0,01 mol) Triethylamin umgesetzt. Nach Aufarbeitung wie in Beispielen IIIa und IIIb erhielt man 3,15 g (100%) IIId vom Schmp. 174—175°C (aus Benzol).
IR: νmax = 3350, 3290, 2940, 1740, 1660, 1540 cm⁻¹.

C₁₆H₂₁N₂O₂ (315,38) ber.: C 60,93 H 6,71 N 22,21%
gef.: C 61,30 H 6,98 N 21,93%

N-(1-Benzotriazolylcarbonyl)-DL-phenylglycin-butylamid (IIIe)

Zu einer Lösung von 5,30 g (0,017 mol) IIc in 80 ml Methylenchlorid wurde unter Rühren bei 0°C eine Lösung von 2,55 g (0,034 mol) n-Butylamin in 20 ml Methylenchlorid zuge tropft. Nach 4-stündigem Rühren bei Raumtemp. wurde die Reaktionsmischung mit verd. Salzsäure und Wasser extrahiert, die organische Phase getrocknet und eingedampft. Man erhielt 4,66 g (82%) IIIe vom Schmp. 131—133°C (aus Benzol/Benzin Sdp. 80°C).
IR: νmax = 3360, 3310, 1710, 1650, 1510 cm⁻¹.

1H-NMR (CDCl₃): δ = 8,9—7,2 (m, 9H arom., 1H CH—NH—CO); 6,1—5,8 (m, 1H, NH—C₄H₉); 5,65—5,45 (d, 1H, CH); 2,0—0,7 (m, 9H, C₄H₉).

C₁₉H₂₁N₂O₂ (351,41) ber.: C 64,93 H 6,02 N 19,93%
gef.: C 64,75 H 5,81 N 20,02%

N-(1-Benzotriazolylcarbonyl)-DL-phenylglycin-cyclohexylamid (IIIf)

0,31 g (0,001 mol) IIc in 40 ml Methylenchlorid wurden wie oben mit 0,2 g (0,002 mol) Cyclohexylamin in 10 ml Methylenchlorid umgesetzt. Nach 5-stündigem Rühren wurde das ausgefallene Cyclohexylamin-Hydrochlorid abfiltriert, das Filtrat mit verd. Salzsäure und Wasser gewaschen und eingeengt. Man erhielt 0,35 g (92%) IIIf vom Schmp. 173—175°C (aus Benzol/Benzin Sdp. 50°C).
IR: νmax = 3405, 3330, 2940, 1735, 1645, 1490 cm⁻¹.

1H-NMR: δ = 9,0—7,2 (m, 9 H arom., 1H, CH—NH—CO); 6,1—5,5 (m, 2H, NHC₅H₁₁ u. CH—NH); 2,0—0,8 (m, 11H, C₅H₁₁).

C₂₁H₂₃N₂O₂ (377,45) ber.: C 66,82 H 6,14 N 18,55%
gef.: C 66,75 H 6,35 N 18,24%

N-(1-Benzotriazolylcarbonyl)-DL-phenylglycin-benzylamid (IIIg)

11,15 g (0,035 mol) IIc in 450 ml Benzol wurden wie in Beispiel IIIa mit 3,75 g (0,035 mol) Benzylamin und 3,54 g (0,035 mol) Triethylamin in 30 ml Benzol umgesetzt. Die Reaktionsmischung wurde mit verd. Salzsäure und Wasser gewaschen und eingedampft. Man erhielt 12,3 g (91%) IIIg vom Schmp. 132—135°C (aus Benzol/Benzin Sdp. 50°C).
IR: νmax = 3410, 3360, 1730, 1675, 1490 cm⁻¹.

C₂₂H₁₉N₂O₂ (385,43) ber.: C 68,56 H 4,97 N 18,17%
gef.: C 68,41 H 4,70 N 18,15%
N-(1-Benzotriazolylcarbonyl)-l-phenylalanin-butylamid (IIIh)

1,97 g (0,006 mol) II d in 100 ml Benzol wurden mit 0,44 g (0,006 mol) n-Butylamin und 0,61 g (0,006 mol) Triethylamin in 20 ml Benzol wie im Beispiel IIIa umgesetzt und aufgearbeitet. Man erhielt 1,91 g (87%) IIIh vom Schmp. 128—131 °C (aus Benzol).
IR: \(\nu_{\text{max}} = 3340, 3220, 1710, 1660, 1525 \text{ cm}^{-1} \).

C_{29}H_{24}N_{5}O_{2} (365,44) ber.: C 65,74 H 6,34 N 19,16%
gef.: C 65,75 H 6,06 N 19,27%

N-(1-Benzotriazolylcarbonyl)-l-phenylalanin-benzylamid (IIIi)

1,97 g (0,006 mol) II d wurden wie oben mit 0,65 g (0,006 mol) Benzylamin und 0,61 g (0,006 mol) Triethylamin umgesetzt und aufgearbeitet. Man erhielt 2,16 g (90%) IIIi vom Schmp. 129—122 °C (aus Benzol). [\(\alpha \)]_{D}^{20} = + 44,1° (c 0,34, Chloroform).
IR: \(\nu_{\text{max}} = 3280, 1715, 1650, 1510 \text{ cm}^{-1} \).

C_{23}H_{21}N_{5}O_{2} (399,45) ber.: C 69,16 H 5,29 N 17,53%
gef.: C 69,00 H 5,25 N 17,78%

N-Butylicarbamoyl-glycin-butylamid (IVA)

Zu einer Lösung von 1,67 g (0,007 mol) IIa in 80 ml Benzol wurden unter Rühren bei 0 °C 1,57 g (0,021 mol) n-Butylamin in 20 ml Benzol zugetropft. Nach 7-stündigem Rühren bei Raumtemp. wurde das Lsgm. abgedampft, der Rückstand mit Wasser versetzt und das Produkt abgenutscht. Man erhielt 1,0 g (62%) IVa vom Schmp. 169—171 °C (aus Ethanol).
IR: \(\nu_{\text{max}} = 3360, 3270, 2960, 1635, 1575 \text{ cm}^{-1} \).

C_{11}H_{23}N_{5}O_{2} (229,32) ber.: C 57,61 H 10,00 N 18,32%
gef.: C 56,72 H 10,03 N 18,82%

N-Cyclohexylcarbamoyl-glycin-cyclohexylamid (IVb)

Zu einer Lösung von 0,71 g (0,003 mol) IIa in 50 ml Benzol wurden wie oben 0,99 g (0,01 mol) Cyclohexylamin in 10 ml Benzol zugetropft. Anschliessend wurde die Reaktionsmischung 1 Std. unter Rückfluss gekocht und eingedampft. Der Rückstand wurde mit Wasser versetzt und das ausgefallene Produkt abgenutscht. Man erhielt 0,88 g (100%) IVb vom Schmp. 226—228 °C (Lit. 6 234 °C).
IR: \(\nu_{\text{max}} = 3380, 3270, 2920, 1625, 1560 \text{ cm}^{-1} \).

N-Butylicarbamoyl-d,l-alamin-butylamid (IVc)

2,02 g (0,008 mol) IIb in 70 ml Methylenechlorid wurden wie in Beispiel IVa mit 2,25 g (0,03 mol) n-Butylamin in 10 ml Methylenechlorid umgesetzt und aufgearbeitet. Man erhielt 1,35 g (69%) IVc vom Schmp. 156—157 °C (aus Benzol).
IR: \(\nu_{\text{max}} = 3360, 3260, 2950, 1625, 1560 \text{ cm}^{-1} \).

C_{12}H_{25}N_{5}O_{2} (243,35) ber.: C 59,23 H 10,36 N 17,27%
gef.: C 59,11 H 10,33 N 17,45%

N-Cyclohexylcarbamoyl-d,l-alamin-cyclohexylamid (IVd)

2,52 g (0,01 mol) IIb in 100 ml Benzol wurden wie oben mit 2,97 g (0,03 mol) Cyclohexylamin im 30 ml Benzol umgesetzt und aufgearbeitet. Man erhielt 2,65 g (90%) IVd vom Schmp. 235—236 °C (aus Ethanol).
IR: \(\nu_{\text{max}} = 3340, 3270, 2930, 1630, 1560 \text{ cm}^{-1} \).

C_{16}H_{29}N_{5}O_{2} (295,43) ber.: C 65,05 H 9,90 N 14,23%
gef.: C 64,75 H 10,16 N 14,18%

N-Butylicarbamoyl-d,l-phenylglycin-butylamid (IVe)

Zu einer Suspension von 0,70 g (0,002 mol) IIIe in 15 ml Ethanol wurden unter Rühren bei Raumtemp. 0,15 g (0,002 mol) n-Butylamin in 5 ml Ethanol zugetropft und die Mischung 3 Std. gerührt. Nach Eindampfen in V, wurde der Rückstand mit 10 ml 5%-iger Natronlauge zwecks Entfernung von Benzotriazol versetzt und das
Produkt abgenutscht. Man erhielt 0,37 g (60%) IVe vom Schmp. 200—202 °C (aus Ethanol).

IR: $\nu_{\text{max}} = 3330, 3280, 2950, 1630, 1565 \text{ cm}^{-1}$.

C$_{15}$H$_{27}$N$_3$O$_2$ (303,43) ber.: C 66,65 H 8,91 N 13,76%
gef.: C 66,80 H 8,93 N 14,02%

N-Cyclohexylcarbamoyl-DL-phenylglycin-cyclohexylamid (IVf)

1,14 g (0,003 mol) IIIf in 20 ml Ethanol wurden wie oben mit 0,30 g (0,003 mol) Cyclohexylamin in 10 ml Ethanol umgesetzt. Das ausgeschiedene Produkt wurde abgenutscht. Man erhielt 0,56 g (52%) IVf vom Schmp. 249—251 °C.

IR: $\nu_{\text{max}} = 3340, 3270, 2930, 1620, 1550 \text{ cm}^{-1}$.

C$_{21}$H$_{31}$N$_3$O$_2$ (357,50) ber.: C 70,55 H 8,74 N 11,76%
gef.: C 70,30 H 8,42 N 12,00%

3-Cyclohexyl-hydantoin (Va)

Zu einer Lösung von 0,30 g (0,001 mol) IIIb in 40 ml Aceton wurden unter Rühren bei Raumtemp. 3 ml 10%-ige Soda-Lösung zugegeben, die Reaktionsmischung 20 min gerührt und mit 10 ml Wasser versetzt. Das ausgefallene Produkt wurde abgenutscht, mit Wasser gewaschen und getrocknet. Man erhielt 0,1 g (55%) Va vom Schmp. 168—170 °C (Lit. Schmp. 168—169 °C).

IR: $\nu_{\text{max}} = 3340, 2930, 1765, 1695 \text{ cm}^{-1}$.

3-Butyl-5-methyl-hydantoin (Vb)

0,29 g (0,001) IIIc in 40 ml Aceton wurden wie oben mit Soda-Lösung umgesetzt. Aceton wurde abgedampf, der Rückstand mit 10 ml Wasser versetzt und Vb mit Benzol extrahiert. Man erhielt 0,14 g (82%) Vb mit Schmp. 44—45 °C (nach Destillieren im Hochvakuum). Lit. Schmp. 47—49 °C.

IR: $\nu_{\text{max}} = 3280, 2940, 1770, 1700 \text{ cm}^{-1}$.

3-Cyclohexyl-5-methyl-hydantoin (Vc)

Eine Lösung von 1,57 g (0,005 mol) IIId in 50 ml Aceton wurde mit 15 ml 10%-iger Soda-Lösung versetzt und 1,5 Std. bei Raumtemp. gerührt. Nach Abdampfen des Acetons wurde das Vc abgenutscht. Ausbeute 0,60 g (61%), Schmp. 108—109 °C (Lit. Schmp. 119—122 °C).

IR: $\nu_{\text{max}} = 3220, 2930, 1765, 1700 \text{ cm}^{-1}$.

3-Butyl-5-phenyl-hydantoin (Vd)

0,35 g (0,001 mol) IIIe in 10 ml Aceton wurden mit 3 ml 10%-iger Soda-Lösung versetzt, die Mischung 15 min gerührt und das Aceton abgedampft. Der Rückstand wurde nach Zugabe von 10 ml 5%-iger Natronlauge mit Benzol extrahiert. Man erhielt 0,20 g (78%) Vd vom Schmp. 72—76 °C (aus Ether/Benzin Sdp. 50 °C).

IR: $\nu_{\text{max}} = 3240, 1775, 1705 \text{ cm}^{-1}$.

1H-NMR(CCl$_4$): δ = 7,8 (s, 1H, NH); 7,4—7,1 (m, 5H arom.); 4,9 (s, 1H, CH); 1,9—0,7 (m, 9H, C$_3$H$_9$).

C$_{15}$H$_{18}$N$_2$O$_2$ (232,28) ber.: C 67,22 H 6,94 N 12,06%
gef.: C 66,98 H 6,75 N 11,86%

3-Cyclohexyl-5-phenyl-hydantoin (Ve)

Eine Lösung von 0,75 g (0,002 mol) IIIf in 20 Aceton wurde mit 9 ml 10%-iger Soda-Lösung versetzt und die Reaktionsmischung 1 Std. gerührt. Aceton wurde abgedampft und das ausgefallene Produkt abgenutscht. Man erhielt 0,43 g (83%) Ve vom Schmp. 178—179 °C (aus Benzol).

IR: $\nu_{\text{max}} = 3230, 1770, 1700 \text{ cm}^{-1}$.

C$_{15}$H$_{18}$N$_2$O$_2$ (258,32) ber.: C 69,74 H 7,02 N 12,39%
gef.: C 69,56 H 7,23 N 12,21%
3,5-Dibenzyl-hydantoin (Vf)

1,19 g (0,003 mol) III in 35 ml Aceton wurden wie oben mit 10 ml 10\%-iger Soda-Lösung umgesetzt und aufgearbeitet. Man erhielt 0,56 g (67\%) Vf vom Schmp. 141—143 °C (Lit.10 Schmp. 145—146 °C). \([\alpha]_D^{20} = +50,0^\circ\) (c 0,80, Aceton).
IR: \(\nu_{\text{max}} = 3300, 1765, 1695\) cm\(^{-1}\).

LITERATUR

SAŽETAK

Reakcije s N-(1-benzotriazolilkarbonil)-aminokiselinama. I. Sinteza hidantoina i amida hidantoinskih kiselina.

B. Zorc i I. Butula

Djelovanjem tionilklorida na N-(1-benzotriazolilkarbonil)-aminokiseline pripremljeni su kloridi N-BTCO zaštićenih aminokiselina. Ovi se mogu prevesti s različitim aminima neizravno preko amida N-(1-benzotriazolilkarbonil)-aminokiselina, ili izravno u amide hidantoinskih kiselina.

Amidi N-(1-benzotriazolilkarbonil)-aminokiselina cikliziraju u lužnatoj sredini uz odjepljenje benzotriazola u 3,5-supstituirane hidantoine.

FARMACEUTSKO-BIOMIJSKI FAKULTET, SVEUČILIŠTA U ZAGREBU

Prispjelo 7. rujna 1981.