Gastritis: bolest modernog doba

Rubčić, Paula

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Pharmacy and Biochemistry / Sveučilište u Zagrebu, Farmaceutsko-biokemijski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:163:163947

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-01-31

Repository / Repozitorij:

Repository of Faculty of Pharmacy and Biochemistry University of Zagreb - Diplomski radovi Farmaceutsko-biokemijskog fakulteta
Paula Rubčić

Gastritis: bolest modernog doba

DIPLOMSKI RAD

Predan Sveučilištu u Zagrebu Farmaceutsko-biokemijskom fakultetu

Zagreb, 2018.
Ovaj diplomski rad je prijavljen na kolegiju Farmakologija, Sveučilišta u Zagrebu Farmaceutsko-biokemijskog fakulteta i izrađen u Zavodu za farmakologiju pod stručnim vodstvom doc.dr.sc. Petre Turčić.

Zahvaljujem mentorici doc.dr.sc. Petri Turčić na mentorstvu te svim savjetima, uputama, materijalima i velikoj pomoći tijekom izrade ovog diplomskog rada. Hvala na strpljenju i razumijevanju kao i podršci tijekom izrade.
SADRŽAJ:

1. UVOD ... 4
 1.1. DEFINICIJA .. 5
 1.2. INCIDENCIJA ... 6
 1.3. ETIOLOGIJA .. 8
 1.3.1. INFEKCIJA HELICOBACTER PYLORI ... 9
 1.3.2. NSAID I FAKTORI RIZIKA .. 9
 1.3.3. PUŠENJE ... 9
 1.3.4. PSIHOLOŠKI STRES .. 10
 1.3.5. PREHRAMBENI FAHRTOI .. 10
 1.4. PATOFIZIOLOGIJA .. 10
 1.4.1. HELICOBACTER PYLORI .. 11
 1.4.2. NSAID .. 14
 1.5. DIJAGNOZA ... 14
 1.5.1. DIJAGNOZA INFEKCIJE HELICOBACTER PYLORI .. 14
 1.5.1.1. NEINVAZI VNA DIJAGNOSTIKA HELICOBACTER PYLORI 15
 1.5.1.2. INVAZIVNA DIJAGNOSTIKA INFEKCIJE HELICOBACTER PYLORI 20
 2. OBRAZLOŽENJE TEME .. 23
 3. MATERIJALI I METODE .. 25
 4. REZULTATI I DISKUSIJA ... 27
 4.1. INHIBITORI PROTONSKE PUMPE .. 28
 4.1.2. USPOREDBA FARMAKOKINETIČKA SVOJSTVA IPP .. 34
 4.1.3. NUSPOJAVE I SIGURNOST DUGOTRAJNE UPOTREBE IPP 35
 4.1.4. KORIST I RIZIK PRIMJENE INHIBITORA PROTONSKE PUMPE 38
 4.2. TERAPIJA ERADIKACIJE H.PYLORI .. 39
 4.2.2. TROJNA TERAPIJA .. 39
 4.2.3. ČETVEROSTRUKA TERAPIJA BAZIRANA NA BIZMUT ... 40
 4.2.4. SEKVENCIJSKA TERAPIJA ... 40
 4.2.5. ADJUVANTNA TERAPIJA: DODATAK PROBIOTIKA .. 40
 4.2.6. CJEPIVO PROTIV H.PYLORI ... 41
 4.3. ULJGA LJEKARNIKA U LIJEČENJU BOLESTI .. 42
 4.3.1. PREVENCIJA ... 42
 4.3.2. PREHRANA I NIEZINA VAŽNA ULJGA KOD ULKUSNIH BOLESTI 44
 4.3.3. PROMJENE ŽIVOTNOGA STILA ... 53
 5. ZAKLJUČCI ... 56
 6. LITERATURA .. 58
 7. SAŽETAK/SUMMARY ... 61
 8. TEMELJNA DOKUMENTACIJSKA KARTICA/BASIC DOCUMENTATION CARD 63
1. UVOD
1.1. DEFINICIJA

![Slika 1: Akutni gastritis s površinskim erozijama (preuzeto s www.medcape.com)](image)

Postoji više različitih vrsta gastritisa i prema tome različitih uzroka nastanka pojedinih gastritisa. Akutni gastritis (Slika 1) možemo podijeliti u dvije kategorije, a to su erozivni i ne erozivni (najčešći uzročnik je Helicobacter pylori). Erozivni gastritis najčešće je posljedica uzimanja nesteroidnih protuupalnih lijekova (NSAID) koji djelujući na cikloooskigenazu blokiraju stvaranje prostaglandina. Smanjenje prostaglandina dovodi do smanjenja sekrecije bikarbonata i poveća sekrecije kiseline ili može doći do izravnog oštećenja sluznice. Erozivni gastritis mogu pratiti jaka krvarenja pogotovo ako se razvije ulkus. Ponekad može doći i do perforacije želučane stjenke s teškim komplikacijama (M.Kujundžić i sur., 2003). Ne erozivni gastritis je obično ograničen na sluznicu antruma i najčešće je uzrokovana infekcijom

Infektivne vrste gastritisa su:
- Gastritis uzrokovani infekcijom Helicobacter pylori
- Gastritis uzrokovani infekcijom Helicobacter heilmanni
- Gastritis uzrokovani virusnim infekcijama (CMV, herpessvirus)
- Gastritis uzrokovani parazitarnim infekcijama (Strongloides sp.)
- Gastritis uzrokovani gljivičnim infekcijama (Candida albicans)
- Granulomatozni gastritis

Neinfektivne vrste gastritisa su:
- Autoimuni gastritis
- Kronični neinfektivni granulomazotni gastrits
- Limfocitni gastritis
- Eozinofilni gastritis
- Ishemični gastritis
- Sekundarni gastritis uslijed terapije lijekovima (NSAID, aspirin)

Dosadašnjim istraživanjima potvrđena je temeljna uloga bakterije Helicobacter pylori u razvoju kroničnog gastritisa, želučanog i duodenalnog ulkaza kao i njegova ulogu u patogenezi želučanog karcinoma i MALT limfoma. (M. Katičić i suradnici, 2014.).

1.2. INCIDENCIJA

Infekcija Helicobacter pylori predstavlja jednu od najčešćih bakterijskih infekcija u ljudi (www.medcape.com). Rezultati pokazuju da je oko 50% svjetske populacije inficirano. Infekcija neizbježno rezultira razvojem raznim stupnjeva gastritisa u 80-100% osoba, među
kojima će 80% tijekom života biti bez znatnijih gastrointestinalnih problema. Prevalencija infekcije je promjenjiva u različitim dijelovima svijeta. Ovisno o etničkoj pripadnosti, dobi i socioekonomskom statusu. Kreće se oko 35% u razvijenim zemljama i više od 90% u zemljama u razvoju (Katičić i sur., 2014.). Godišnja incidencija u zemljama u razvoju iznosi 3-10%, a u razvijenim zemljama 0,5%. Prosječna prevalencija u Hrvatskoj kreće se oko 67%. Najviša je bila u sjevernim područjima 72,9%, a niža u priobalnim područjima 66% (Katičić i sur., 2014). Ovdje je važno naglasiti da je socioekonomski status i razlike u njemu važan čimbenik koji doprinosi prevalenciji infekcije. Viši socioekonomski status i životni standard povezuje s većom educiranošću i boljim higijenskim uvjetima te se smanjuje pojavnost infekcija. Epidemiološke studije pokazuju da je kronični gastritis uzrokovano Helicobacter pylori povezan s nižim socioekonomskim statusom (www.medsape.com). Moderne dobro definirane smjernice ne postoje, ali je zabilježeno da u razvijenim zemljama s dobrim sanitarnim uvjetima i svježom opskrbom vode stopa infekcije se smanjuje. Ukupan broj inficiranih osoba u odnosu na cijelu populaciju vidljiv je na sljedećem prikazu (Slika 2).

Slika 2: Prikaz ukupnog broja inficiranih osoba sa H.pylori u odnosu na cijelu populaciju (preuzeto i prilagođeno s www.refluxcentar.com).
1.3. ETIOLOGIJA

Mnogo oštećenja želučane sluznice javlja se u prisутности kiseline, pepsina, *Helicobacter pylori*, NSAID ili drugih faktora. Tada su narušeni zaštitni mehanizmi obrane i zacjeljivanje želučane sluznice je usporeno (DiPiro i sur., 2014.). Neki od uzroka gastritisa su: bakterijske, virusne, parazitarne i gljivične infekcije, lijekovi, alkohol, akutni stres, radijacija, alergija, refluks žuči, otrovanje hranom, ishemija i direktna trauma (Tablica 1).

Tablica 1: Mogući uzroci gastritisa (preuzeto i prilagođeno s www.medsape.com i M.Kujundžić i sur, 2003.).

<table>
<thead>
<tr>
<th>MOGUĆI UZROCI GASTRITISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lijekovi</td>
</tr>
<tr>
<td>NSAID (aspirin, ibuprofen, naproksen), kokain, kolhinic, željezo, kemoterapeutici (mitomicin, floksuridin)</td>
</tr>
<tr>
<td>Žestoka alkoholna pića</td>
</tr>
<tr>
<td>viski, votka, džin</td>
</tr>
<tr>
<td>Bakterijske infekcije</td>
</tr>
<tr>
<td>H.pylori, H.heilmanii, Streptococcus sp., Staphylococcus sp., Clostridium sp., Proteus sp., E.coli, tuberkuloza, sekundarni sifilis</td>
</tr>
<tr>
<td>Virusne infekcije</td>
</tr>
<tr>
<td>CMV, Herpes virus</td>
</tr>
<tr>
<td>Gljivične infekcije</td>
</tr>
<tr>
<td>Candida sp., Hystoplasma sp.</td>
</tr>
<tr>
<td>Parazitarne infekcije</td>
</tr>
<tr>
<td>Strongloides sp.</td>
</tr>
<tr>
<td>Akutni stres</td>
</tr>
<tr>
<td>stanje šoka, nakon operacije, velike opekline, vise organsko zatajenje, trauma centralnog živčanog sustava, ishemija</td>
</tr>
<tr>
<td>Radijacija</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Alergija</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Otrovanje hranom</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Refluks žučnih soli</td>
</tr>
<tr>
<td>nakon operacije antruma i pirolusa</td>
</tr>
<tr>
<td>Direktna trauma</td>
</tr>
<tr>
<td>gastroskopiya, strana tijela</td>
</tr>
</tbody>
</table>
1.3.1. INFEKCIJA HELICOBACTER PYLORI

1.3.2. NSAID I FAKTORI RIZIKA

NSAID se u svijetu učestalo koriste u svrhu smanjivanja bolova i upale. Acetilsalilcilna kiselina u malim dozama smanjuje cerebrovaskularni i kardiovaskularni rizik. Dok je dokazano da kronična primjena NSAID uzrokuje različite ozljede gornje gastrointestinalnog trakta (DiPiro i sur., 2014). Unutar nekoliko minuta ingestije javljaju se petehije (inramukozna krvarenja) i kontinuiranom primjenom prelaze u eroziju. Dodatni neovisni faktor rizika je i starija dob pacijenta jer tada dolazi do promjena u obrani gastrične mukoze. Neki od ostalih faktora rizika vezani uz NSAID su:

- dob veća od 65 godina
- prethodno bolovanje od ulkusa
- prethodne ulkusne povezane komplikacije gornjeg gastrointestinalnog trakta
- višestruka doza NSAID
- kronična primjena NSAID
- infekcija *Helicobacter pylori*
- pušenje
- konzumacija alkohola

Dokazano je i da *Helicobacter pylori* i NSAID djeluju neovisno, ali čini se da imaju aditivan učinak (DiPiro i sur., 2014).

1.3.3. PUŠENJE

1.3.4. PSIHOLOŠKI STRES

1.3.5. PREHRAMBENI FAZTORI

Uloga prehrane nije još u potpunosti istražena. Kava, čaj, pivo, mlijeko i začini mogu uzrokovati dispepsiju. Iako kofein inducira gastričnu sekreciju, sastavnice u drugim namirnicama mogu također povećati gastričnu sekreciju. Obilna konzumacija alkohola se povezuje s oštećenjem mukoze i krvarenjem u gornjem gastrointestinalnom traktu (DiPiro i sur., 2014).

1.4. PATOFIZIOLOGIJA

Želudac ima tri važne motoričke funkcije, a to su: pohrana velikih količina hrane, miješanje hrane sa želučanim sokovima dok ne nastane himus i polagano otpremanje himusa u tanko crijevje. Anatomski želudac dijelimo u dva glavna dijela, a to su tijelo i antrum. Fiziološka podjela obuhvaća također dva dijela, a to su oralni dio (obuhvaća gornje dvije trećine) i kaudalni dio (obuhvaća ostali dio i antrum) (Slika 3). (Guyton i sur., 2006.).

Slika 3: Prikaz želuca (preuzeto i prilagođeno s www.reflux.com)

1.4.1. HELICOBACTER PYLORI

Helicobacter pylori (Slika 4) je gram-negativna, zavijena, mikroaerofilna bakterija koja obitava između sloja mukoze i površine epitelnih stanica (Katičić i sur., 2014.).

Slika 4: Bakterija Helicobacter pylori (preuzeto s www.bu.edu)
metronidazol ili tertraciklin. Neuspjeh je najčešće povezan s rezistencijom, a ne reinfekcijom (Kalenić i sur., 2013.). Također na donjim prikazima vidimo evoluciju i posljедice infekcije \textit{H.pylori} (Slika 5 i Slika 6).

Slika 5: Evolucija infekcije \textit{H.pylori} (preuzeto i prilagođeno s www.reflux.com)

Slika 6: Posljedice infekcije \textit{H.pylori} (preuzeto i prilagođeno s www.reflux.com)
1.4.2. NSAID

1.5. DIJAGNOZA

1.5.1. DIJAGNOZA INFEKCIJE HELICOBACTER PYLORI

Metode dijagnoze infekcije Helicobacter pylori dijele se na invazivne i neinvazivne ovisno o primjeni endoskopskih metoda. Testovi koji se primjenjuju u neinvazivnoj dijagnostici su: urea izdisajni test, test antigena Helicobacter pylori u stolici i serološki test i nisu vezani za upotrebu endoskopa. Invazivne metode su: histološka analiza, brzi test ureaze, mikrobiološka analiza i molekularni testovi. Vezane su uz ezofagogastroduodenoskopiju s uzimanjem uzoraka želucu sluznice za patchistološku analizu. (Katićić i sur., 2014) (Tablica 2).

Tablica 2. Postupci dijagnoze infekcije H.pylori (preuzeto i prilagođeno s Katićić i sur., 2014.)

<table>
<thead>
<tr>
<th>Neinvazivni postupci</th>
<th>Invazivni postupci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea izdisajni test</td>
<td>Histološka analiza</td>
</tr>
<tr>
<td>Test antigena H.pylori u stolici</td>
<td>Brzi test ureaze</td>
</tr>
<tr>
<td>Serološki testovi</td>
<td>Mikrobiološka analiza</td>
</tr>
<tr>
<td></td>
<td>Molekularni testovi</td>
</tr>
<tr>
<td></td>
<td>Endoskopija</td>
</tr>
</tbody>
</table>
1.5.1.1. NEINVAZIVNA DIJAGNOSTIKA HELICOBACTER PYLORI

Neinvazivnim testovima dobivamo podatke o postojanju infekcije. Njima ne možemo ispitati endoskopski i histološkom nalaz i rezistenciju na antibiotike. U rutinskoj praksi rabe se svi navedeni neinvazivni testovi od kojih su najčešći urea izdisajni test i test antigena u stolici. (Katičić i sur., 2014)

UREA IZDISAJNI TEST

Helicobacter pylori je bakterija koja proizvodi izrazito velike količine enzima ureaze. Ureaza je smještena u citoplazmi i na površini bakterijske stanice (Katičić i sur., 2002.). Ureaza koja se nalazi u citoplazmi stanice opskrbljuje bakterijsku stanicu spojevima amonijaka i dušika koji su potrebi za sintezu aminokiselin. Ureaza koja se nalazi na površini stanice ima funkciju neutralizacije želučane kiseline. Ona hidrolizira pretvorbu ureje u amonijak i karbamat. Karbamat dalje hidrolizira spontano do amonijaka i karboksilne kiseline. Amonijak u reakciji s vodom stvara amonijev hidroksid koji uzrokuje brzi porast pH vrijednosti (Slika 7). Na taj način dolazi do alkaličacije mikrookoliša bakterije što je izrazito povoljno za nju i omogućuje perzistiranje infekcije. (Katičić i sur., 2002.).

Slika 7: Prikaz mehanizma djelovanja ureze (preuzeto s Katičić i sur., 2002.)

Pomoću urea izdisajnog tesat procjenjujemo aktivnost enzima ureaze koju proizvodi živa bakterija i na taj način utvrđujemo prisutnost žive i funkcionalne bakterije na želučanoj sluznici. Bakterija će pomoću ureaze hidrolizirati ureu na amonijak i ugljični dioksid neovisno radi li se o endogenoj urei, koja je produkt metabolizma, ili egzogenoj urei, koja je unesena hranom. Amonijak se izlučuje pomoću mokraće, a ugljični dioksid preko želučane sluznice dolazi u krvotok odakle dolazi u pluća i ulazi u sastav izdahnutog zraka (Katičić i sur., 2002.) (Slika 8).
Slika 8: Princip urea izdisajnog testa (preuzeto i prilagođeno s www.reflux.com)

Urea izdisajni test baziran na 13C urei (Slika 9) najbolji je neinvazivni test za otkrivanje infekcije i praćenje uspjeha terapije zbog svoje pouzdanosti i jednostavnosti. Ovdje se rabi urea označena 13C-izotopom. Radi se o prirodnom i ne radioaktivnom izotopu koji se nalazi u 1,11% izdahnutoga zraka. Određuje se omjer 13C/12C u izdahnutome zraku prije i poslije davanja obilježene uree i zbog toga nije potrebno odrediti volumen izdahnutog plina. Rezultati se iskazuju kao razlika omjera 13CO$_2$/^{12}CO_2$. Uzorci se mogu analizirati spektrometrijom mase (IRMS – engl. Isotope Ratio Mass Spectrometry), infracrvenim spektroskopom (NDIRS - engl. Non-Dispersive Infrared Spectroscopy) i laserskim mjeračem (LARA - engl. Laser Assisted Ratio Analizer) (Katićić i sur., 2002.).
Urea izdisajni test baziran na 14C ureii (Slika 10) podjednako je pouzdan, ali zbog niske razine radioaktivnosti ne preporučuje se u trudnica i male djece. Osjetljivost testa je 88-95%, specifičnost 95-100%, a pouzdanost 95%. Ovdje se primjenjuje radioaktivni izotop 14C kojim je obilježena urea. Izotop zrači beta zrake, a izdahnuti zrak se analizira putem beta-brojača. Rezultati se iskazuju kao udio (%) 14C u odnosu na upotrijebljenu dozu u urei i zbog toga i zbog individualnih razlika endogeno stvorenog 12CO$_2$, koji se natječe sa stvorenim 14CO$_2$. Ovdje je važno definirati volumen izdahnutog zraka koji se skuplja kao uzorak. Nedostatak testa je primjena radioaktivnih izotopa koji zahtjeva posebnu pozornost pri rukovanju i dodatne dozvale. (Katičić i sur., 2002.).
Metoda izvođenja urea izdisajnog testa je jednostavna bez obzira na to koji se izotop rabi. Ne preporuča se uzimanje hrane barem 4 sata prije izvođenja testa zbog toga što hrana utječe na ekskreciju izotopa i djelotvornost testa. Danas je dokazano da u rutinskom kliničkom radu, uz održavanje osjetljivosti i specifičnosti testa iznad 95%, dovoljno uzeti dva uzorka, jedan prije, a drugi poslije ingestije označene uree. Pacijent prvo daje prvi uzorak izdahnutog zraka. Nakon toga popije malu količinu uree (najčešće od 75-100 mg) označene izotopom (13C ili 14C) otopljenje u voćnom soku (limun ili naranča). Za odrasle je dovoljna doza od 75 mg, a za djecu 50 ili 40 mg. Nakon toga se pričeka 30 min i pacijent daje drugi uzorak zraka. Nakon toga se može pristupiti testiranju (Slika 11). Označena urea se razgrađuje i daje 13CO$_2$ ili 14CO$_2$ koji su prisutni u izdahnutom zraku i moguće ih je kvalitativno i kvantitativno mjeriti (Katičić i sur., 2002.).
Njihova osjetljivost i specifičnost u većini slučajeva je veća od ostalih neinvazivnih testova. Lažno negativni rezultati primijećeni su kod bolesnika liječenih inhibitorima protonske pumpe, antibioticima i bizmutom. Kako bi se izbjegao utjecaj lijekova pacijent mora biti bez terapije inhibitorima protonske pumpe 2 tjedna, a antibioticima barem 4 tjedna prije testiranja. (Katićić i sur., 2014). Usprkos njihovoj osjetljivosti i specifičnosti urea izdisajni testovi su često nedostupni, može doći do nepotrebnog testiranja bolesnika i test nije na pozitivnoj listi pretraga i pacijenti djelomice ili u cijelosti pregled moraju platiti sami (Katićić i sur., 2002.).

**TEST ANTIGENA **

H.PYLORE U STOLICI

Kod inficiranih osoba dokazana je prisutnost bakterijskih antigena u stolici na čemu se temelje testovi antigena u stolici. Dostupna su dva testa: laboratorijski ELISA test i brzi test temeljen na imunokromatografskoj tehnici. U metaanalizi studija pokazano je da laboratorijski testovi temeljeni na monoklonskim (Mab) protutijelima imaju visoku razinu pouzdanosti za razliku od brzih testova s niskom razinom pouzdanosti u primarnoj dijagnostici i praćenju uspjeha liječenja. Zbog toga se u ovom slučaju primjenjuje ELISA test s Mab protutijelom. Osjetljivost testa je 94%, a specifičnost 92%. Test antigena u stolici je manje pouzdan od urea izdisajnog testa, ali je pouzdan u primarnoj dijagnostici i praćenju uspjeha terapije. Primjena inhibitora protonske pumpe utječe ne rezultate testa. Preporučuje se primjena testa barem 2 tjedna nakon prekida terapije inhibitora protonske pumpe (Katićić i sur., 2014)
SEROLOŠKI TESTOVI

Serologija je jedini test koji nije pod utjecajem lokalnog nalaza želučane sluznice povezanog s niskim brojem bakterija i zbog toga lažnim negativnim nalazima drugih testova. Pri serološkoj dijagnostici potrebno je rabiti samo validirane IgG kvantitativne testove. U rutinskim testovima se ne preporučuje zbog dugotrajno pozitivnog nalaza čak i nakon uspješne eradikacije. Pad broja bakterija povezan je s primjenom antibiotika, antisekretornih lijekova, krvarećim ulkusima i drugim. U ovom slučaju radi se o kroničnoj infekciji i potrebno je rabiti metode bazirane na detekciji IgG s prednosti ELISA-e. Dostupno je više testova čija je osjetljivost viša od 90%, a specifičnost 76 – 96%. (Katičić i sur., 2014.)

PRISUTNOST KRVARENJA

Prisutnost krvarenja značajno smanjuje pouzdanost nekih testova. Radi se o invazivnim testovima, testovima antigena u stolici i drugih. Urea izdisajni test je pod najmanjih utjecajem pa se savjetuje njegova primjena s osjetljivošću od 93% i specifičnosti od 92%. Ako test primjenjujemo neposredno nakon krvarenja i negativan je preporučuje se test ponoviti četiri do osam tjedana nakon završetka epizode krvarenja. (Katičić i sur., 2014)

1.5.1.2. INVAZIVNA DIJAGNOSTIKA INFEKCIJE HELICOBACTER PYLORI

Osnova ovih testova je endoskopski pregled s ciljem uzimanja biopsijskih uzoraka (Slika 12). Možemo vršiti izravnu dijagnostiku postojanja (histologija, kultura) i neizravnu dijagnostiku postojanja (brzi test ureaze). Endoskopskim se pregledom ne može razlikovati pozitivan od negativnog nalaza bakterije na sluznici bez dodatnih pregleda. Standardni dijagnostički postupak je testiranje jednog ili dvaju biopsijskih uzoraka (jednom iz antruma, drugi iz korpusa) brzin testom ureaze, uzimanje jednog do dva uzoraka za histološki test i po potrebi još po jednog uzorka korpusa ili antruma za mikrobiološki pregled. Za potpunu analizu nužna je histološka analiza 5 uzoraka i to dvaju iz korpusa, dvaju iz antruma i jednog iz angularnog područja. Rezultati ovise od mjesta uzimanja uzoraka. Helicobacter pylori i njezino naseljavanje dovodi do kronične aktivne upale. U antrumu ju prati povišena želučana sekrecija, a ako se proširila i na korpus aciditet može biti normalna ili čak snižen. Terapija inhibitorima protonske pumpe utječe na naseljenost bakterija u želucu i može dovesti do lažno
negativnih rezultata, ako uzimamo biopsiju samo antralne sluznice jer dolazi do redistribucije prema želučanom fundusu. (Katičić i sur., 2014)

Slika 12. Endoskopija gornjeg dijela gastrointestinalnog trakta (preuzeto s www.reflux.centar.com)

HISTOLOŠKA IDENTIFIKACIJA

Biopsijski uzorci sluznice uzeti kod endoskopije s antruma i/ili korpusa boje se hematoksilinom i eozinom. To je osnovna metoda da utvrđivanje stanja želučane sluznice, težine gastritisa, prisutnosti premalignih i malignih promjena. Prema preporukama hjustonske radne grupe za bolji prikaz bakterije preporučuje se upotreba posebnih bojenja (postupak prema Giemsi, Gimenezu, Warthin-Starryu i imunoistokemijskom bojenju Mab). (Katičić i sur., 2014)

BRZI TEST UREAZE

Ovim testom dokazujemo prisutnost enzima ureaze kojeg u velikim količinama proizvodi bakterija. Biopat se uranja u podlogu koja sadržaja ureu i indikator pH. Ureza cijepa ureu na amonijak i ugljik dioksid što dovodi do promjene pH indikatora i promjene boje. Rezultata je brz, a osjetljivost testa raste s 1 na 6 sati s 71 na 96%. (Katičić i sur., 2014)
KULTURA H. PYLORI

Kultura se primjenjuje za određivanje osjetljivost na različite antibiotike i za identifikaciju fenotipova i genotipova bakterije. Za kulturu se rabe uzorci želučane služnice iz antruma i korpusa. One su vrlo senzitivne, a osjetljivost iznosi oko 95%. Tako se javlja i pojava križne rezistencije na antibiotike unutar jedne grupe npr. ako se javlja rezistencija na klaritromicin javlja se i na sve antibiotike iz grupe makrolida. (Katičić i sur., 2014)

MOLEKULARNE METODE

Molekularne metode se temelje na poznavanju slijeda aminokisline na razini DNA. Primjenjuju se za dijagnostiku, epidemiološka istraživanja, određivanju rezistenciju na antibiotike i tipizaciji sojeva. *Helicobacter pylori* pripada skupini bakterija koja je jako genski raznolika pa serološka tipizacija predstavlja veliki izazov. U dijagnostičke svrhe se primjenjuju postupci temeljeni na principima lančane reakcije polimerazom (PCR – *polymerase chain reaction*). Ti se postupci rabe za otkrivanje DNS bakterije u različitim uzorcima materijala bolesnika (uzorak sline, želučane služnice, stolice). (Katičić i sur., 2014)
2. OBRAZLOŽENJE TEME
3. МАТЕРИЈАЛІ И МЕТОДЕ
4. REZULTATI I DISKUSIJA
4.1. INHIBITORI PROTONSKE PUMPE

Inhibitori protonske pumpe (IPP) su lijekovi koji pripadaju skupini lijekova koji smanjuju lučenje želučane kiseline. Njihov se učinak ostvaruje blokiranjem protonske pumpe, smještene na apikalnoj membrani parijetalnih stanica, koja je zadužena za lučenje želučane kiseline (Mikolašević i sur., 2016.). Protonska pumpa je H+, K+, ATPaza koja je beta-heterodimerni enzim. Sastoje se od alfa podjedinice molekulske mase 100 kDa, koja ima katalitičku ulogu, i beta podjedinice molekulske mase 35 kDa (Shin i sur., 2013). Alfa podjedinica ima 3 domene, a to su: N domena (vezanje ATP-a), P domena (fosforilacija) i A domena (aktivacija) s citoplazmatske strane. Beta podjedinica ima kratku citoplazmatsku regiju, jedan transmembranski dio i jako glikoziliranu ekstracelularnu regiju (Shin i sur., 2013). (Slika 13)

Slika 13. Prikaz strukture protonske pumpe (preuzeto i prilagođeno s Shin i sur., 2013)

Ovaj učinak na zadnji korak stvaranja želučane kiseline ovisi o dozi i omogućuje visoko učinkovito inhibiciju bazalne i stimulirane sekrecije želučane kiseline, neovisno o podražaju (www.halmed.hr) (Slika 14). Inhibitori protonske pumpe prvi puta su se pojavili na tržištu 1988. godine kao skupina lijekova za. Prvi od njih koji se pojavio u kliničkoj praksi bio je omeprazol.
Slika 14. Prikaz parijetalne stanice i mehanizam djelovanja IPP (preuzeto i prilagođeno s www.map.org.rs)

Danas su za kliničku primjenu dostupni sljedeći IPP: omeprazol, esomeprazol, pantoprazol, lanzoprazol, dekslanzoprazol i rabeprazol (Katzung i sur., 2012.). Svi imaju sličnu strukturu koja se sastoji od benzimidazolskog i priridinskog prstena (www.medcape.com) (Slika 15)

Slika 15. Prikaz strukture inhibitora protonske pumpe (preuzeto i prilagođeno s www.medcape.com)
Primjenjuju se kao inaktivni lijekovi pro-lijekovi (Katzung i sur., 2012.). Svi su oni slabe baze koji se akumuliraju u kiselom okolišu sekretornih kanalića gdje prelaze u tiofilne intermedijere (ciklični sulfenamid) koji se vežu na cistein sulfhidrilne skupine na luminalnoj strani protonskih pumpe stvarajući kovalentne disulfidne veze (www.medcape.com). Zbog kovalentne prirode veza inhibicija traje duže (Shin i sur., 2013) (Slika 16).

Slika 16. Prikaz aktivacije inhibitora protonskih pumpe (preuzeto i prilagođeno s www.medcape.com)

Tablica 3. Farmakokinetička svojstva inhibitora protonske pumpe (preuzeto i prilagođeno s Katzun i sur., 2012.)

<table>
<thead>
<tr>
<th>Lijek</th>
<th>pKa</th>
<th>Bioraspoloživost (%</th>
<th>t ½ (h)</th>
<th>t max (h)</th>
<th>Preporučena doza kod peptičkog ulkusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omeprazol</td>
<td>4</td>
<td>40-65</td>
<td>0,5-1</td>
<td>1-3</td>
<td>20-40</td>
</tr>
<tr>
<td>Esomeprazol</td>
<td>4</td>
<td>>80</td>
<td>1,5</td>
<td>1,6</td>
<td>20-40</td>
</tr>
<tr>
<td>Lanzoprazol</td>
<td>4</td>
<td>>80</td>
<td>1-2</td>
<td>1,7</td>
<td>30</td>
</tr>
<tr>
<td>Dekslanzoprazol</td>
<td>4</td>
<td>nema dostupnih podataka</td>
<td>1-2</td>
<td>5</td>
<td>30-60</td>
</tr>
<tr>
<td>Pantoprazol</td>
<td>3,9</td>
<td>77</td>
<td>1-1,9</td>
<td>2,5-4</td>
<td>40</td>
</tr>
<tr>
<td>Rabeprazol</td>
<td>5</td>
<td>52</td>
<td>1-2</td>
<td>3,1</td>
<td>20</td>
</tr>
</tbody>
</table>

OMEPRAZOL

Omeprazol je racemična smjesa dva enantiomera koji smanjuje sekreciju želučane kiseline putem visoko specifičnog mehanizma djelovanja. Vrlo brzo djeluje i uspostavlja kontrolu putem reverzibilne inhibicije sekrecije želučane kiseline. Omeprazol je slaba baza koja se koncentrira i pretvara u aktivni oblik u kiselom okruženju intracelularnih kanalića parijetalnih stanica. Indiciran je za eradikaciju infekcije _H. pylori_, za liječenje želučanog i duodenalnog ulkusa i za profilaksu ulkusa želuca i duodenuma zbog primjene NSAID. Može se primjenjivati kod djece mlađe od 12 godine (www.halmed.hr). Uzima se 20 ili 40 mg omeprazola 2-3 puta dnevno kroz 7 dana (www.halmed.hr). Preporuča se uzeti ujutro po mogućnosti bez hrane i progutati cijele kapsule s pola čaše vode. Ne smije ih se žvakati niti drobiti (www.halmed.hr). Omeprazol se smije upotrebljavati u trudnoći. Rezultati triju prospektivnih epidemioloških studija su pokazali da nije bilo štetnih učinaka omeprazola na trudnoću niti na zdravlje fetusa/novorođenčeta. Omeprazol se izlučuje u majčino mliječno mliječko, ali vjerojatno nema utjecaja na novorođenče u terapijskim dozama (www.halmed.hr). Može doći do omaglice i poremećaja vida, pa u tom slučaju treba upozoriti pacijenta da ne vozi (www.halmed.hr).

Apsorpcija omeprazola je brza i događa se u tankome crijevu, s postizanjem vršne koncentracije u plazmi 1-2 sata nakon primjene. Istodobno uzimanje hrane nema utjecaja na bioraspoloživost. Bioraspoloživost omeprazola iz jedne oralne doze iznosi približno 40%.
Nakon ponovljene primjene jednom dnevno, bioraspoloživost se povećava na 60%. Prividni volumen distribucije u zdravim pojedinacima je približno 0,3 l/kg tjelesne težine, a postotak vezanja omeprazola na proteine plazme je 97% (www.halmed.hr). Glavni dio metabolizma omeprazola je ovisan o polimorfno izraženom CYP2C19, odgovornom za stvaranje hidroksiomeprazola, koji je glavni metabolit u plazmi. Ostali dio je ovisan o CYP3A4 enzimu koji stvara omeprazol sulfona. Zbog visokog afiniteta omeprazola za CYP2C19, postoji mogućnost za kompetitivnu inhibiciju i metaboličke interakcije s drugim supstratima za CYP2C9, ali zbog malog afiniteta za CYP3A4 nema potencijala za inhibiciju metabolizma supstrata za CYP3A4. Omeprazol nema inhibicijski učinak na glavne CYP enzime. Poluvrijeme eliminacije omeprazola u plazmi je kraće od jednog sata nakon jednokratnog i ponavljanih oralnih doziranja jednom dnevno. U potpunosti se izlučuje iz plazme između doza i nema sklonost nakupljanju tijekom primjene jednom dnevno. Gotovo 80% oralne doze omeprazola se izlučuje u obliku metabolita u urinu, a ostatak stolicom (sekrecija putem žuči) (www.halmed.hr).

PANTOPRAZOL

Pantoprazol se brzo apsorbira i maksimalna koncentracija u plazmi postiže se već nakon pojedinačne oralne doze od 40 mg. Maksimalna koncentracija u serumu od 2-3 µg/ml postiže
se nakon 2,5 sata nakon primjene i ostaje stalna nakon uzastopnog uzimanja. Apsolutna bioraspoloživost iznosi oko 77%. Istodobno uzimanje hrane nema utjecaja na bioraspoloživost, povećava se samo varijabilnost vremena početka apsorpcije. Vezanje za proteine seruma iznosi oko 98%. Volumen raspodjele je oko 0,15 l/kg. Gotovo isključivo se metabolizira u jetri. Glavni metabolički put je demetilacija putem CYP2C19 s posljedičnom konjugacijom sulfatima. Drugi metabolički put uključuje oksidaciju putem CYP3A4. Poluvrijeme eliminacije je oko 1 sat, a klirens oko 0,1 l/h/kg. Zabilježeno je nekoliko slučajeva odgođene eliminacije. Zbog specifičnog vezanja pantoprazola na protonske pumpe u parijetalnim stanicama poluvrijeme eliminacije ne koreliira s mnogo dužim trajanjem djelovanja (inhibicijom lučenja kiseline). Metaboliti pantoprazola najvećim se dijelom izlučuju putem bubrega (oko 80%), a ostatak se izlučuje fecesom. Glavni metabolit u serumu i urinu je desmetilpantoprazol koji je konjugiran sa sulfatom (www.halmed.hr).

LANZOPRAZOL

4.1.2. USPOREDBA FARMAKOKINETIČKA SVOJSTVA IPP

Što se tiče apsorpcije maksimalna koncentracija se postiže kod omeprazola nakon 1-2 sata, kod pantoprazola nakon 2,5 sata, a kod lanzoprazola nakon 1,5-2 sata. Bioraspoloživost omeprazola je 40%, a višestrukim uzimanje može se povećati na 60%. Bioraspoloživost pantoprazola je 77%, a bioraspoloživost lanzoprazola je 80-90% i postiže se samo jednom dozom. Hrana kod omeprazola ne utječe na bioraspoloživost, kod pantoprazola utječe, a kod lanzoprazola kako utječe. Hrana usporava brzinu apsorpcije lanzoprazola i smanjuje bioraspoloživost za 50%. Svi se jako vežu na proteine plazme i to pantoprazol 98%, a omeprazol i lanzoprazol 97%. Sva tri je metaboliziraju pomoću enzima CYP2C19 I CYP3A4. Vrijeme polueliminacije za omeprazol je duže od 1 h, za pantoprazol iznosi 1 sat, a za lanzoprazol je 1-2 sata. Većina lijeka i metabolita se izlučuju preko urina što je slučaj kod omeprazola i pantoprazola, dok se većina kod lanzoprazola izlučuje putem žuči (www.halmed.hr). Djelovanje pantoprazola je duže od ostalih zbog toga što je se on veže dodatno na cistein 822 na luminalnoj strani protonske pumpe (www.medcape.com)

Tablica 4. Farmakokinetička svojstva omeprazola, pantoprazola i lanzoprazola (preuzeto i prilagođeno s Shin i sur., 2013.)

<table>
<thead>
<tr>
<th></th>
<th>t_{max} (h)</th>
<th>C_{max} (µmol/L)</th>
<th>AUC (µmolh/L)</th>
<th>V(ml/min)</th>
<th>$t_{1/2}$ (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omeprazol 20 mg</td>
<td>1-4</td>
<td>0,23-23,2</td>
<td>0,58-3,47</td>
<td>0,13-0,35</td>
<td>0,5-1,2</td>
</tr>
<tr>
<td>Pantoprazol 40 mg</td>
<td>2-4</td>
<td>2,87-8,61</td>
<td>5,22-13,04</td>
<td>0,15</td>
<td>0,8-2</td>
</tr>
<tr>
<td>Lanzoprazol 30 mg</td>
<td>1,2-2,1</td>
<td>1,62-3,25</td>
<td>4,6-13,5</td>
<td>0,4</td>
<td>0,9-2,1</td>
</tr>
</tbody>
</table>
4.1.3. NUSPOJAVE I SIGURNOST DUGOTRAJNE UPOTREBE IPP

Inhibitori protonske pumpe su lijekovi koji su se prvi puta pojavili na tržištu 1988. godine i od tada su promijenili način liječenja bolesti u čijoj je pozadini pojačano lučenje želučane kiseline kao što je peptički ulkus, gastreofagelana refluksna bolest, funkcionalna dispepsija. Također oni imaju važnu ulogu i gastroprotekciji. Na tržištu se danas nalaze omeprazol, pantoprazol, lanzoprazol, esomeprazol i rabeprazol (Mikolašević i sur., 2016.). Zbog navedenih indikacija oni su široko propisivani lijekovi i sve veći broj pacijenata ih uzima u sklopu kronične terapije ili kao nadopunu terapiji. To se odnosi na bolesti kao što su gastroezofagelane reflusne bolest i funkcionalna dispepsija. Što se tiče gastroprotekcije ona se primjenjuje kod kronične primjene NSAID i kortikosteroida te kronične hemodijalize i niza drugih stanja (Mikolašević i sur., 2016.). Zbog toga je važno istražiti potencijalne dugoročne posljedice i nuspojave njihove primjene. Pod pojmom dugoročna primjena podrazumijevamo razdoblje od najmanje 12 mjeseci. Posljednjih godina sve veća pozornost posvećena je potencijalnim neželjenim učincima koji uključuju: respiratorne infekcije, tubulointersticijalni nefritis, Clostridium difficile nefritis, deficit vitamina B12 i željeza, polipi želuca, osteoporoza, hipomagnezemija i interakcije s drugim lijekovima (Mikolašević i sur., 2016.).

HIPOMAGNEZEMIJA

Magnezij je unutarstanični kation važan za različite stanične funkcije kao što je sinteza proteina i enzimske reakcije. U enzimskim reakcijama unutarstanični magnezij djeluje kao koenzim u preko 300 staničnih enzima koji su uključeni u procese stvaranja i pohrane energije. U organizmu odrasle osobe nalazi se otprilike 22 do 26 grama magnezija. Okvirna raspodjela u organizmu je takva da se više od polovine magnezija nalazi u kostima, oko 30% u mišićima, 6-7% u drugim stanicama, a manje od 1% izvan stanica (Mikolašević i sur., 2016.). Homeostaza magnezija ostvaruje se pomoću dva mehanizma. Prvi mehanizam je apsorpcija u probavnom sustavu, a drugi je proces filtracije i reapsorpcije u bubrezima. Magnezij se apsorbira većinom u tankome crijevu i to veće količine pasivnom difuzijom. Dosadašnja istraživanja upućuju da je glavni mehanizam koji dovodi do hipomagnezemije inhibicija apsorpcije magnezija u probavnom sustavu (Mikolašević i sur., 2016.). Smatra se da je pasivni transport magnezija očuvan, ali je poremećen aktivni transport kroz TRPC6/7 kanale. IPP tako smanjuju afinitet navedenih kanala za magnezij u crijevima i tako smanjuju apsorpciju. Kod blokadora H₂ receptora takvo što nije opaženo. Smatra se da je mali deficit magnezija povezan s kardiovaskularnim i ukupnim mortalitetom. Simptomi manjka...
magnezija šire se od tetanije, konvulzija, bradikardije pa sve do hipotenziije i smrti. Prva dva slučaja hipomagnezemije povezani s primjenom inhibitora protonске pumpe zabilježeni su 2006. godine. U navedenim slučajevima uz to je zapažen i razvoj hipokaliejemije i regresije simptoma prestankom primjene. Hipomagnezemija je relativno nova posljedica dugotrajne primjene inhibitora protonске pumpe, ali je opažena kao posljedica dugotrajne primjene. Međutim studije koje potvrđuju navedeno vrlo su heterogene i potrebna su daljnja istraživanja. Pri odabiru lijekova i pacijenta potrebno je pravilno procijeniti stvarnu potrebu za navedenim lijekovima. Nadalje prema preporuci Agencije za hranu i lijekove (Food and Drug Administration, FDA) zdravstveni djelatnici bi trebali periodično pratiti vrijednost serumskog magnezija kod pacijenta na dugotrajnoj terapiji pogotovo one koji uzimaju diuretike ili druge lijekove koji mogu dovesti do hipomagnezemije (Mikolašević i sur., 2016.). Rizični čimbenici su starija životna dob, ženski spol, dugotrajna primjena inhibitora protonске pumpe, reducirana bubrežna funkcija i primjena određenih lijekova povezanih s jatrogenom hipomagnezemijom (tiazidski diuretici, aminoglikozidi, digoksin, citostaici, amfotericin B, ciklosporin). Ako smo uočili hipomagnezemiju kod pacijenata može se razmisлитi o primjeni antagonista H₂ receptora. I naposljetku kod pacijenata s hipomagnezemijom koji uzimaju inhibitore protonске pumpe možemo provesti jednostavan test prekida primjene inhibitora protonске pumpe i mjerenje serumskih razina magnezija (više od četiri dana) od prekida primjene i tako vidjeti da li je primjena kod određenih pacijenata povezana s nastankom hipomagnezemije (Mikolašević i sur., 2016.).

DEFICIT VITAMINA B12

Vitamin B12 je vitamin topljiv u vodi za čiju je apsorpciju nužna želučana kiselina. Vitamin B12 je u hrani vezan za proteine i pritom želučana kiselina pomaže njihovom odvajanju. To se događa aktivacijom kiselog medija pri čemu pepsin prelazi u pepsinogen i vrši cijepanje veze. Vitamin B12 tako postaje slobodan, može se vezati za unutarnji čimbenik i apsorbirati se u terminalnom ileumu. IPP su upravo lijekovi koji djeluju na smanjenje lučenja želučane kiseline i tako ugrožavaju apsorpciju vitamina B12. Deficit se očituje u neurološkim poremećajima, depresiji, demenciji, neuropatiji, degeneraciji ledne moždine, poremećajima hoda, makrocitnom anemijom. Uočena je povezanost deficita B12 kod starijih pacijenata, onih s atrofičnim gastritisom i gastrinomom, ali nema dokaza da je primjena IPP udružena s tom pojavom u općoj populaciji. Strogo praćenje razine B12 se rutinski ne preporučuje, već samo kod visokorižičnih pacijenata (Mikolašević i sur., 2016.).
DEFICIT ŽELJEZA
Željezo možemo naći u obliku dvовалентnog (fero) i trovalentnog (feri) željeza. Želučana kiselina poboljšava apsorpciju trovalentnog oblika željeza. Posljedično smanjenjem apsorpcije željeza javlja se njegov nedostatak i dolazi do sideropenične anemije. Poznato je da su pacijenti s vagotomijom, resekcijom željeza ili atrofičnim gastritisom imaju znakove sideropenične anemije. Kronična primjene inhibitora protonske pumpe može dovesti do hipokloiridije ili akloridije što onda dovodi do manjka željeza. To potvrđuju nekoliko prikaza slučaja i jedna retrospektivna analiza. Međutim nema dovoljno dokaza da dugotrajna primjena inhibitora protonske pumpe uzrokuje sideropeničnu anemiju i zbog toga se rutinsko praćenje statusa željeza kod takvih pacijenata ne preporučuje (Mikolašević i sur., 2016.).

DEFICIT I METABOLIZAM KALCIJA
POLIPI I KARCINOM ŽELUCA

Primjena inhibitora protonske pumpe povezana je s hiperplazijom parijentalnih stanica i povećanim rizikom razvoja hiperplastičnih polipa želuca, pri čemu prestanak uzimanja dovodi do njihove regresije. Do sada je prijavljen samo jedan slučaj razvoja karcinoma želuca kod pacijenta s gastrinomom na dugotrajnoj terapiji inhibitorima protonske pumpe. Međutim hipergastirnemija je fiziološki odgovor na smanjenje lučenja želučane kiseline i čak kod takvih pacijenata razvoj karcinoma je izuzetno rijedak. Prema tome zaključujemo da dugotrajna primjena inhibitora protonske pumpe može biti poveza s hiperplazijom polipa želuca, koji regrediraju nakon prestanka primjene i uglavnom su benigne, a prema dostupnoj literaturi dugoročna primjena inhibitora protonske pumpe ne povećava rizik obolijevanja od karcinoma želuca (Mikolašević i sur., 2016.).

INFEKCIJE

Želučana kiselina predstavlja prirodnu barijeru za obranu od mikroorganizama (bakterija) iz probavnog sustava. Inhibitori protonske pumpe mogu uzrokovati hipokloridiju koja dovodi do respiratornih infekcija i mogu negativno utjecati na neutrofile koji su također važan dio stanične obrane od bakterija. Infekcije koje se osobito povezuju s primjenom IPP su: pneumonije, Clostridium difficile kolitis u bolničkim uvjetima i bakterijski gastroenteritis. Nekoliko opservacijskih studija koja govore o Clostridium difficile kolitisu i studije o pneumonijama su heterogene i nema dovoljno dokaza za ovu povezanost. Potrebno je u kliničkoj praksi pažljivo i opravdano vrednovati stvarnu potrebu za primjenom inhibitora protonske pumpe. Osobitu pažnju treba posvetiti kod pacijenata koji imaju povećani rizik obolijevanja od pneumonija (stariji pacijenti s kroničnim plućnim bolestima, pacijenti na terapiji imunosupresivima i pacijenti s rekurentnim pneumonijama) (Mikolašević i sur., 2016.).

4.1.4. KORIST I RIZIK PRIMJENE INHIBITORA PROTONSKE PUMPE

Inhibitori protonske pumpe su lijekovi koji su u potpunosti promijenili način liječenja bolesti povezanih s povećanim lučenjem želučane kiseline. Često su korišteni i propisivani lijekovi te njihovo učinkovito djelovanje nije sporno. Međutim kao i ostali lijekovi oni imaju određene nuspojave i nose rizike kod dugoročne primjene. Potrebno je osigurati individualan pristup za svakoga pacijenta i pažljivo procijeniti da li je određenom pacijentu uistinu potrebna primjena određenih lijekova u smislu da korist nadmašuje rizik. Potrebno je i pratiti jasne preporuke o
duljini uzmanja inhibitora protonske pumpe za pojedina oboljenja gornjeg dijela gastrointestinalnog traka. Kod gastritisa preporučena je primjena kroz 8 do 12 tjedana. Dodatni problem predstavljaju pacijenti koji vrše neracionalnu primjenu kroz dulji vremenski period (Mikolašević i sur., 2016.).

4.2. TERAPIJA ERADIKACIJE H. PYLORI

Eradikacije infekcije Helicobacter pylori je važan korak terapije zbog visoke prevalencije infekcije kod bolesnika s dispeptičkim tegobama i ulkusom. Iako je ona vrlo osjetljiva na antibiotike in vitro, takvo djelovanje je in vivo puno slabije. Ima više različitih čimbenika koji utječu na uspješnost terapije u većem ili manjem omjeru. Neki od njih su: izbor antimikrobnoj lijek, izbor popratnih lijekova, otpornost bakterije i suradljivost pacijenta (Katičić i sur., 2014.)

4.2.2. TROJNA TERAPIJA

Trojna terapija se sastoji od dva antibiotika i protekrecijskog lijeka. Kao protekrecijski lijek preporučuje se jedan od trih inhibitora protonske pumpe: omeprazol (2x20 mg), lanzoprazol (2x30 mg), pantoprazol (2x40 mg). Od antibiotika daje se prednost makrolidnom antibiotiku klaritromicinu uz koji se kao drugi antibiotik preporučuje amoksicilin ili metronidazol/tinidazol. Predložena trojna terapija postala je preporuka svjetskih postupnika. Najčešće se preporučuje jedna od triju antibiotičkih terapija:

1. Klaritromicin (2x250 mg) i metronidazol (2x400 mg) ili tinidazol (2x500 mg)
2. Klaritromicin (2x500 mg) i amoksicilin (2x1000 mg)
3. Amoksicilin (2x1000 mg) i metronidazol (2x400 mg) ili tinidazol (2x500 mg)

Novije studije međutim pokazuju značajan pad djelotvornosti uobičajene korištene terapije. Kontroliranim studijama utvrđeno je da se može eradicirati tek 70% bolesnika što je puno niže od željenih vrijednosti (80-90%). Jedan od glavnih razloga je porast rezistencije Helicobacter pylori na klaritromicin. Iako je rezistencija u Europi visoka taj problem može se prevladati povišenjem doze i dužom terapijom ili dodatkom preparata bizmuta. Traže se nove kombinacije postojećih antibiotika i uspoređuju se rezultati s četverostrukom terapijom baziranom na bizmutu i sekvencijskom terapijom. (Katičić i sur., 2014.)
4.2.3. ČETVEROSTRUKA TERAPIJA BAZIRANA NA BIZMUTU

Već 1987. godine korišten je terapijski postupak koji je uz tertraciklin i metronidazol sadržavao i bizmut. Međutim on nije zaživio jer se nije javio takav veliki problem s primarnom rezistencijom na klaritromicin. Prednosti terapije su svakako da je primarna rezistencija na tetraciklin rijetka dok rezistencija na bizmut još nije zabilježena. Sistemska pregled i metaanaliza randomiziranih kliničkih studija koje su evaluirale nuspojave nisu zabilježile značajnije nuspojave u usporedbi s drugim eradikacijskim pristupcima. Javila se i nova formulacija dosadašnje četverostruke terapije koja sadrži sol bizmuta. (Katičić i sur., 2014.)

4.2.4. SEKVENCIJSKA TERAPIJA

Sekvencijska terapija koristi inhibitore protonske pumpe koji se uzimaju s amoksicilinom ili s klaritromicinom i metronidazolom/tinidazolom. Radi se o vremenskoj odvojenosti uzimanja antibiotika. Terapija traje 10 dana. Inhibitori protonske pumpe i amoksicilin se primjenjuju 5 dana, nakon toga slijedi 5 dana terapije s inhibitorom protonske pumpe i klaritromicinom imetronidazolom/tinidazolom. Ova terapija se temelji na hipotezi da prvobitno uzimanje amoksicilina reducira broj rezistentnih bakterija mutanata na klaritromicin te je u drugoj fazi terapija s klaritromicinom učinkovitija. (Katičić i sur., 2014.)

4.2.5. ADJUVANTNA TERAPIJA: DODATAK PROBIOTIKA

U svrhu poboljšavanja uspjeha terapije eradikacije *Helicobacter pylori* razmatra se uvođenje probiotika kao dodatne adjuvantne terapije. Temeljnim i kliničkim istraživanjima i meta-analizama kliničkih studija još nema dovoljno dokaza koji nam potvrđuju njihovu primjenu, međutim nekoliko kliničkih studija upućuje na pozitivne učinke probiotičkih sojeva u terapiji eradikacije *Helicobacter pylori*. Istraživanje i njegova vrijednost ograničena je oblikom i dizajnom istraživanja, ali i raznolikim postojećim sojevima. Pretpostavlja se da će probiotici kada se dodaju u terapiju imati pozitivan učinak na crijevnu mikrofloru domaćina. Smanjuju se neželjene posljedice terapije antibioticima kao što je dijareja. Djelujući tako na mikrofoloru mogli bi smanjiti učestalost nuspojava terapije i omogućiti bolje podnošenje terapije. Time bi se utjecalo na poboljšanje adherencije pacijenta. Neki probiotički sojevi pokazuju i
antimikrobne učinke pri čemu je tada moguća aktivnija terapija eradicacije. Jedna meta-analiza soja *Saccharomyces boulardii*, koji je dobro istražen soj u liječenju infekcije *Helicobacter pylori*, pokazala je da se stopa eradikacije uz trojnu terapiju povećava i smanjuje rizik od nuspojava standardne terapije. Iz ovoga je vidljivo da u svakom slučaju treba nastaviti istraživanje vezanja uz pozitivne učinke probiotika jer možemo smanjiti nuspojave antibiotičke terapije indirektno utjecati na povišenje stope eradikacije. (Katičić i sur., 2014.)

PRAĆENJE I KONTROLA BOLESNIKA NAKON ERADIKACIJSKE TERAPIJE

Intenzivno se raspravlja o najboljem vremenu provjere uspjeha eradikacijske terapije. Prema sadašnjim preporukama potrebno je učiniti kontrolu 4 tjedna nakon završetka terapije. Navedena preporuka se daje zbog toga što je opaženo da u slučaju odsutnosti preneoplastičnih lezija uspješna eradikacija *Helicobacter pylori* rezultira obnavljanjem oštećene sluznice želuca. Nakon 4 tjedna nakon završetka terapije dolazi do regresije upalnog infiltrata polimormonukleranih stanica. (Katičić i sur., 2014.)

4.2.6. CJEPIVO PROTIV *H.PYLORI*

4.3. ULOGA LJEKARNIKA U LIJEČENJU BOLESTI

4.3.1. PREVENCIJA

1. Uzimati više manjih obroka

Uzimanjem više manjih obroka izbjegava se prejedanje i potiče se metabolizam. Nasuprot tome konzumiranje velikih obroka može izazvati osjećaj nadutosti, bol u trbuhu, žgaravicu, plinove, mučninu i povraćanje. Konzumacija 5-6 manjih obroka koji sadrže mješavinu ugljikohidrata i proteina s malo masnoća. Treba izbjegavati ležanje nakon obroka. Takav pristup prevenira nastanak pretilosti i izravno može pomoći u sprečavanju probavnih tegoba (Banić i sur., 2015).

2. Konzumacija više vlaknaste hrane

3. Piti dovoljno vode

Odgovarajuća hidracija je vrlo važna za održavanje homeostaze organizma. Doprinosi balansu unutarstaničnih i vanstaničnih elektrolita što je važno za pravilno funkcioniranje peristaltike crijeva. Također je važna za sprječavanje konstipacije. Smatra se da je optimalan unos vode 35 ml/kg tjelesne mase, a unos treba prilagoditi ovisno o zahtjevima (tjelesni napor, pojačano znojenje, vrućina, visoka temperatura, dijareja, povraćanje). Potrebno je održavati odgovarajuću fizičku aktivnost koja je isto važna za peristaltiku i sprječavanje konstipacije (Banić i sur., 2015).

4. Izbjegavati pušenje, prekomjerno konzumiranje alkohola i održavati optimalnu tjelesnu težinu

Pušenje može pogoršati i izazvati već postojeću žgaravicu i simptome refluksne bolesti. Prekomjerna konzumacija alkohola etiološki je čimbenik nastanka ciroze jetre, akutnog i kroničnog pankreatitisa i krvarenja probavnoga trakta. Prekomjerna tjelesna masa pogoduje razvoju gastroezofagelane refluksne bolesti.

5. Racionalna primjena lijekova

Dvije skupine lijekova imaju veliki utjecaj na probavni sustav to su NSAID i psihofarmaci. Za lijekove iz skupine NSAID poznato je da izazivaju česte gastrointestinalne tegobe (gastritis, ulkusna bolest) dok psihofarmaci remete peristaltiku probavnog sustava i uzrokuju opstipaciju koja postaje kronična. Što se tiče NSAID važno je prepoznati indikacije kada se oni koriste, trajanje primjene i korištenje alternativne terapije za kontrolu kronične boli. Ako je primjena lijeka neizbježna lijek bi se trebao uzimati nakon obroka i uz farmakološku gastroprotekciju da se minimaliziraju irritacije. Važno je upozoriti bolesnika na nuspojave kako bih mogao rano prepoznati i sprječiti eventualne kasnije komplikacije. Što se tiče antipsihotika upozoriti pacijenta na nuspojave takvih lijekova i upoznati ga s učinkovitim ne farmakološkim mjerama i kako ih pravilno primijeniti (odgovarajuća hidratacija, vlaknasta hrana, probiotici, fizička aktivnost) (Banić i sur., 2015).
Javiti se liječniku na vrijeme

Potrebno je pažljivo pratiti uočene nuspojave i slušati svoj organizam. Kronični problemi vezani u gastrointestinalno sustav (bolovi u trbuhu, kronična dijareja, krv u stolici, crna stolica) može uputiti na ozbiljnije zdravstvene probleme i nikako ne smiju biti zanemareni. Prevencija, rano otkrivanje i edukacija pacijenta ovdje igra veliku ulogu (M. Banić i sur., 2015).

4.3.2. PREHRANA I NJEZINA VAŽNA ULOGA KOD ULKUSNIH BOLESTI

Kronične nezarazne bolesti postaju sve učestalije. Pretilost, nedostatak tjelesne aktivnosti, nepravilna prehrana, pušenje i konzumacija alkohola rizični su čimbenici za nastanak gastrointestinalnih bolesti (Pavić i sur., 2008.). Dijetoterapija koja se primjenjuje kod određenih bolesnika doprinosi ozdravljenju i ima terapijsku ulogu. Populacijske studije pokazuju da prehrana znatno utječe na tijek bolesti. Dijetoterapija zahtjeva individualan pristup za svakog bolesnika i mora bit prilagođena vrsti, stupnju bolesti i potrebama bolesnika. Mora se obratiti pažnja pri izboru namirnica na njihovu vrstu, sastav, prikladnost primjene, energetsku vrijednost, način pripreme, broj i raspored obroka (Pavić i sur., 2008).

PREHRANA KOD PEPTIČKOG ULKUSA

Hrana i piće koju unosimo u naš organizam može ublažiti ili pogoršati simptome ulkusne bolesti. Važno je da se izabere pravilna hrana i piće koja pomaže u kontroli lučenja kiseline i ojačati obranu želučnih stanica. Bolesniku se mora osigurati adekvatan unos mikronutrijenata i makronutrijenata (Pavić i sur., 2008.). Prema tome kalorijski unos ugljikohidrata trebao bi iznositi 50-60% ukupnog kalorijskog unosa, udio proteina 10-12%, udio masti 30% ukupnog kalorijskog unosa pri čemu se prednost daje mono-nezasićenim i poli-nezasićenim masnim kiselinama. Izvor ugljikohidrata su: žitarice, kruh, dvopek, tjestenina, riža, kukuruzna i pšenična kruška, voće i povrće. Izvori proteina su: nenasno bijelo meso, riba, svježi posni sir, fermentirani mliječni proizvodi i jaja. Izvor masti trebao bi biti maslinovo ulje i ostala biljna ulja. Dnevni energetski unos morao bi biti 2000-2200 kcal (Pavić i sur., 2008). Također bolesnicima se savjetuje nekoliko preporuka:

1. Jela ne smiju biti vruća, prehladna, preslatka ili prekisela.
2. Treba se polako jesti i hranu dobro sažvakati.
3. Ne preporučuje se uzimanje veće količine tekućine tijekom, nakon ili između obroka.
4. Potrebno je nastaviti dijetoterapiju i nakon prekida liječenja jer se sprjećava pogoršanje i povratak bolesti.
5. Ne preporučuje se pušenje i konzumacija alkohola.

Slijedi tablica 5. s namirnicama koje se općenito preporučuju i ne preporučuju uvrstiti u prehranu.

Tablica 5: Namirnice koje se preporučuju i ne preporučuju kod peptičkog ulkusa (preuzeto s Pavić i sur., 2008.)

<table>
<thead>
<tr>
<th>Namirnice</th>
<th>Preporučuje se</th>
<th>Preporučuje se u manjim količinama</th>
<th>Ne preporučuje se</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUHE</td>
<td>Nemasne juhe od pasiranaog povrća (ukuhati sitnu jastretninu, rizu, krapić, juha od teletine i peradl. Riblja juha)</td>
<td>Masne juhe, industrijske gotove juhe, juha od suhog mesa</td>
<td></td>
</tr>
<tr>
<td>MESA</td>
<td>Nemasno mlado meso pripaženo u vlastitom soku, kuhano, pećeno u foliji (teletina, junčetina, kurčić, bijelo meso peradi)</td>
<td>Pureča prsa u ovitku, toast, sanka, nemasno svinjsko meso</td>
<td>Pržena i pokhana mese, dimljena mese, salame i trajne kobasice, pastete, mesne konzerve</td>
</tr>
<tr>
<td>RIBE</td>
<td>Bijele ribe kuhane ili pećene u foliji prije serviranja prelivene maslinovim uljem</td>
<td>Nemasno kuhana pastrova</td>
<td>Masne ribe (šuška, tuna, ardeja, šaran, srn), riblje konzerve, sušenja, marinirana, dimljena i soljena rica, ligore, dagnje, rakovi</td>
</tr>
<tr>
<td>JAJA</td>
<td>Tvaro kuhana jaja</td>
<td></td>
<td>Pržena jaja</td>
</tr>
<tr>
<td>MLJEKO I MLJEČNI PROIZVODI</td>
<td>Obrano miljeko 1% m.m., posad svježi sir, jogurt, acidofil, jogurt s probiotikom, mlöćenica</td>
<td>Svježe vrhije 12% m.m.</td>
<td>Punomasno miljeko, zeli, masni sirski, sir, dimljeno, vrhije s većim postotkom mlöčne masti</td>
</tr>
<tr>
<td>KRUK I ŽITARICE</td>
<td>Bijeli, odstajali krk, dvopek, toast, jastretninu, rizu, kukuruzne i plinčarne krušice</td>
<td></td>
<td>Svježi i tepli kruh i peciva, dizana i liblota tjestena, kroketi</td>
</tr>
<tr>
<td>POVRĆE I SALATE</td>
<td>Kuhano i pasirano povrće (krompir, špinat, bitava, mrkva, mladi grašak, mlada mahune, ovjetača, brokula, likvica, aguljera rajačica, korabiča)</td>
<td>Mlada salata s limunovim sokom (cilika, zeleno salata, matolavac) pasirani grah, svježi kupus</td>
<td>Paprika, kiseli kupus, krozavci, kelli, pakistani, konzervirano povrće, prženi i pečeni krumpt, grah, bob, leço</td>
</tr>
<tr>
<td>MASNOČE</td>
<td>Maslinovo, sunčanato ulje i ulje kukuruznih klica</td>
<td>Maslac, margarin</td>
<td>Svinjska i gušča mast, majoneza</td>
</tr>
<tr>
<td>SLASTICE</td>
<td>Blaški, pudinčik, krupica i riz o ni miljeku, međ (lavanda, ružmarin)</td>
<td></td>
<td>Pržena i dizana tjestena, palačinke, čoko-laca, kolačići s racijevom (orasi, maft, lješnjači, badem)</td>
</tr>
<tr>
<td>VOĆE</td>
<td>Kuhano voće, prirodni voćni sokovi, kašice od voća, banane</td>
<td>Džem</td>
<td>Neugljenjeno, nedozvoljeno i kiselo voće, grožđe, konzervirano voće</td>
</tr>
<tr>
<td>PIČA</td>
<td>Blagi biljni čaj (kamilica), stilisnik, metvica, zeleni čaj, sok od ovjesc kupusa</td>
<td>Slasa kava, blagi kakao, mineralno vodo</td>
<td>Čmi čaj, čri kava, pivo, alkoholna želatina plđa, alatki gasirani naplici, gasirani naplici</td>
</tr>
<tr>
<td>ZAČINI</td>
<td>Razrizioci limunov sok, lover, peršinov list</td>
<td>Jabačni ocat, razrizioci, ocol</td>
<td>Lük, čočjak, hren, alkoholni ocat, senf, začinska paprika, papar</td>
</tr>
</tbody>
</table>
NAMIRINICE I PIĆA KOJA MOGU POGORŠATI ULKUS

Poznato je da određene namirnice utječu na pogoršanje i razvoj ulkusne bolesti. Smatra se da treba izbjegavati „proizvođače kiselina“ kao što su: kava, čokolada, slatkiši, zaslađeni sokovi, gazirana pića, žestoka pića, začinjena hrana, mentol i luk (Pavić i sur., 2008.).

MLIJEKO
Dugo se smatralo da mlijeko i vrhnje neutraliziraju kiseli želučani sok, ali se danas zna da mlijeko ima samo privremeni kratkotrajni neutralizirajući učinak zbog bogatog sadržaja kalcija i proteine. Dokazano je da mlijeko 2-3 sata nakon konzumacije povisuje sekreciju želučane kiseline jer se povisuje sekreciju gastrina zbog aromatskih aminokiselina iz proteina mlijeka. Time se djelovanje mlijeka smatra nepovoljnim, ali mlijeko ima i pozitivne učinke. Ako ga konzumiramo u obliku žitarica s mlijekom kao što su zobene pahuljice, proso, riža s lijekom nastaje sluz koja povoljno djeluje na sluznicu želuca i zacjeljivanje (Pavić i sur., 2008.).

ALKOHOL
Istraživanja pokazuju da alkoholna pića mogu stvoriti oštećenja na želučanoj sluznici, smanjiti difuziju vodikovih kationa i citoprotekciju. Bijelo vino i pivo jednako uzrokuju refluxs osim što se kod piva smatra da problem uzrokuje fermentacija zbog dodatka kvasca. Bolesnik bi trebao ograničiti konzumaciju alkohola odnosno izbjegavati ga (Pavić i sur., 2008.).

KAVA
Dokazano je da kava (s kofeinom i bez njega) povećava izlučivanje kiseline u želucu što može produljiti zacjeljivanje ulkusa. Kofein smanjuje priljev krvi u želučano tkivo i zbog toga smanjuje njegovu prokrvljenost. Tako se i smanjuje lučenje zaštitnih čimbenika. Konzumiranje kave se mora ograničiti, a kod ulkusnih bolesnika u potpunosti izbaciti (Pavić i sur., 2008.).

PROBIOTICI
Poznato je da je bakterija Helicobacter pylori jedan od glavnih uzročnika gastritisa i daljnjih komplikacija gastrointestinalnog trakta. Probiotici predstavljaju korisne bakterije čija primjena daje pozitivan učinak za domaćina tako da se poboljšava mikroflora probavnog trakta. Probiotici se često dodaju mliječnim proizvodima posebno onim koji su fermentirani.
Njihov mehanizam djelovanja sastoji se od inhibiciji rasta patogenim mikroorganizmima, modifikaciji metaboličkih procesa i stimulaciji imunosnog sustava domaćina. In vitro studije pokazuju da kulture iz rodova Lactobacillus i Bifidobacterium mogu inhibirati rast Helicobacter pylori i smanjiti njezinu adheziju na epitelne želučane stanice. Bakterijske kulture iz navedenih sojeva se najčešće rabe (Pavić i sur., 2008.).

NAMIRINICE KOJE MOGU UBLAŽITI ULKUS

MASLINONO ULJE

RIBA
Konzumacija ribe pozitivno djeluje na bolesnike s kroničnim ulkusom. Prednost se očituje u lako probavljivim proteinima i višestruko nezasićenim masnim kiselinama. Preporučuje se konzumacija kuhane ribe i riblje juhe od škarpine, oslića, brancina (Pavić i sur., 2008.).
MAHUNARKE
Nedavno je otkriveno da pasirani crveni i bijeli grah također imaju veliku aktivnost protiv stvaranja kiseline. Praćen je i utjecaj frakcije lipida dobivenog iz mahunarke Dolichos biflorus na peptički ulkus štakora i pokazano je da ima zaštitnu ulogu i da djeluje na zacjeljivanje (Pavić i sur., 2008.).

BANANA
Banana ima pozitivan učinak na želučanu sluznicu. Ona potiče razmnožavanje stanica i sluzi koja stvara barijeru između želučane sluznice i želučane kiseline. Smatra se da pektin i fosfatičkolin svježih zelenih slatkih banana mogu zaštitno djelovati na sluznicu želudca. Povoljni učinak pripisuje se kori banana Palo i Horn sa sjeveroistoka Tajlanda (Pavić i sur., 2008.).

CRVENI KUPUS I SOK OD ROTKVICA
Crveni kupus i sok od rotkvica sadrže antocijane koji su polifenolne komponente koje imaju pozitivan učinak na gastrointestinalne bolesti što je dokazano in vitro studijima i mnogim studijama na životinjama. Polifenoli imaju antioksidativna, antibakterijska, antivirusna i protuupalna svojstva (Pavić i sur., 2008.).

BRUSNICA
Utjecaj soka brusnice smanjuje infekciju H.pylori. Ispitivanje je vršeno randomiziranim, dvostruko slijepim studijama kontroliranim placebo. Dvije grupe od 189 ispitanika 90 je dana uzimalo 250 ml soka od brusnice i placebo piće (Pavić i sur., 2008).

LJEKOVITO BILJE
Čajevi koji pozitivno djeluju mogu se pripremiti od: kamilice, stolisnika (Achillea milefolium), matičnjaka (Melisa officinalis), trpuca (Plantago sp.) i imele (Viscum album) (Pavić i sur., 2008.).

APITERAPIJA ILI TERAPIJA MEDOM
Med doprinosi regeneraciji sluznice želuca, ublažavanju boli i smanjenju žgaravice. Može se koristiti med od lavande ili ružmarina. Preporučeno je uzimati po jednu čajnu žlicu otopljenu u mlakoj vodi ili čaju uvijek poslije jela jer u suprotnome povećava kiselost želuca (Pavić i sur., 2008.).
MINERALNA VODA

Određene mineralne vode imaju pozitivan učinak na probavne funkcije. Djeluju tako da kiseli želučani sadržaj čine bazičnim. Preporučuju se čiste kiselice tj. one mineralne vode koje sadrže malo ugljičnog dioksida (ne više od 1 g u litri) jer on može iritirati sluznicu. Mineralne vode mogu se piti više puta na dan ili kada nastupi osjećaj žgaravice (Pavić i sur., 2008.).

OPĆE PREPORUKE

1. Važno je izbaciti iz prehrane namirnice koje se ne podnose.
2. Zadnji obrok treba biti barem 3 sata prije spavanja jer kasni obroci mogu potaknuti lučenje želučane kiseline tijekom noći.
3. Smanjiti ili izbjegavati konzumaciju kave (s ili bez kofeina), gaziranih pića jer mogu povećati lučenje želučane kiseline.
4. Izbjegavati pržena jela, pohana jela i jela koja su pripremljena na zapršci
5. Treba polagano jesi i dobro sažvakati hranu. Biti opušten i sjediti u uspravnom položaju.
6. Ograničiti namirnice koje sadrže velike količine šećera jer šećer može uzrokovati pojačano lučenje želučane kiseline.
7. Ograničiti ili izbjegavati alkohol i cigarete.
8. Mlijeko ne koristiti u svrhu olakšavanja simptoma bolesti jer nasuprot mišljenju povećava lučenje želučane kiseline.

Pravilna prehrana predstavlja važnu komponentu i nadopunu u liječenju gastrointestinalnih bolesti i često je zanemarena. Populacijske studije pokazuju da prehrana znatno utječe na tijek
bolesti. Poznato je da kava, alkoholna pića, gazirana pića, slastice, jaki začini mogu pogoršati simptome bolesti, a prehrana bogata voćem, povrćem, prehrambenim vlaknima, probioticima može poboljšati kvalitetu života i povoljno utjecati na samu bolest (www.plivazdravlje.hr, Pavić i sur., 2008.).

Tablica 6: Primjer jelovnika kod ulkusa i GERB-a (preuzeto s Pavić i sur., 2008.)

<table>
<thead>
<tr>
<th>Čas</th>
<th>Jelo</th>
<th>Ručak*</th>
<th>Večera</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. dan</td>
<td>Čaj od metrive, svježi sir s probioticom, kruh polubičić, prej od jabuke s cimetom</td>
<td>Juha od povrća, kuhana junešina, umak od r Rajice i mrvice, zelena salata s celerom</td>
<td>Rija na miljeku, banana</td>
</tr>
<tr>
<td>Energetska vrijednost: 7980 kJ/1908 kcal; Bjelančevina: 72 g; Masti: 53 g; Ugljohidrata: 293 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. dan</td>
<td>Čaj od lipka, mastac, mazac, meso, pecivo</td>
<td>Juha od rajčice s rižom, kuhani file osliča, blitva lešo s krumpirov, kompot od jabuke</td>
<td>Okruglice od sir i grisa, acidofil</td>
</tr>
<tr>
<td>Energetska vrijednost: 7173 kJ/1706 kcal; Bjelančevina: 64 g; Masti: 46 g; Ugljohidrata: 266 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. dan</td>
<td>Obraćen miljek, corn flakes, banan</td>
<td>Juha od brokule, pirjana pureći file s dumbru, pirjana riža, salata od cikle s maslinovim uljem</td>
<td>Pleća prsa u ovitku, maslinovo ulje, salata od rajčice, kruh, zeleni čaj</td>
</tr>
<tr>
<td>Energetska vrijednost: 8052 kJ/1933 kcal; Bjelančevina: 75 g; Masti: 65 g; Ugljohidrata: 265 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. dan</td>
<td>Čaj od stolinski, margo, marmelada, kruh miješani, sok od naranče - ocijenjeni</td>
<td>Pleća juha, pirjana piletina, miješano povrće s maslinovim uljem, kompot od kruske i jabuke</td>
<td>Joneći hača, špageti, kupus salata, kruh</td>
</tr>
<tr>
<td>Energetska vrijednost: 8539 kJ/2041 kcal; Bjelančevina: 76 g; Masti: 73 g; Ugljohidrata: 276 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. dan</td>
<td>Čaj od kamflice, zobe pahuljice s miljekom i cimetom, pečene jabuke</td>
<td>Riblja juha, škarina lešo s maslinovim uljem, kuhani krumpir s peršinom, salata od matavlica i radića</td>
<td>Kukuruzna krupica sa sirom, jogurt s probioticom</td>
</tr>
<tr>
<td>Energetska vrijednost: 8101 kJ/1936 kcal; Bjelančevina: 70 g; Masti: 50 g; Ugljohidrata: 309 g</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ŽGARAVICA I DISPEPSIJA

Prema American Gastroenterological Association problemi i simptomi vezani uz gastrointestinalni sustav su najčešći razlog zbog kojeg pacijenti uzimaju lijekove na recep, lijekove bez recepta i savjete zdravstvenih djelatnika. Žgaravica se može opisati kao osjećaj pečenja koji se penje od želuca ili donjeg dijela prsa prema grlu i vratu (www.coursehero.com). Žgaravica se najčešće povezuje s gastroezofagelanih refluksom:

Tablica 7: Faktori rizika koji mogu pridonijeti nastanku žgaravice (preuzeto i prilagođeno s www.coursehero.com)

<table>
<thead>
<tr>
<th>Faktori rizika koji mogu doprinijeti nastanku žgaravice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prehrambeni</td>
</tr>
<tr>
<td>Alkohol</td>
</tr>
<tr>
<td>Pića s kofeinom</td>
</tr>
<tr>
<td>Pića s CO2</td>
</tr>
<tr>
<td>Čokolada</td>
</tr>
<tr>
<td>Citrusi ili sokovi</td>
</tr>
<tr>
<td>Masna hrana</td>
</tr>
</tbody>
</table>
Dispepsija je opći pojam kojim se opisuju simptomi gastrointestinalnog sustava. I čest je razlog zbog kojeg se pojedinci odlučuju na samoliječenje. Dispepsija je skupina simptoma koju karakteriziraju: nelagoda u gornjem dijelu trbuha, žgaravica, bol iza prsne kosti, bol u gornjem dijelu trbuha, mučnina, povraćanje, nadutost, osjećaj punoće, obilno podrigivanje, gubitak apetita (Pavić i sur., 2008.). Dispepsiju mogu uzrokovati brojna hrana, medikamenti, bolesti probavnoga sustava ili patološka stanja drugih organskih sustava (dijabetes, bolest štitnjače...). Mnogi pacijenti imaju dispepsiju bez jasnog uzroka pa se ona klasificira kao funkcionalna. Njezina patologija još nije u potpunosti istražena i smatra se da ulogu fiziološki i psihološki faktori. Fiziološki faktori kao što su: usporeno gastrično pražnjenje, smanjena gastrična akomodacija, infekcija H.pylori, dok u psihološke faktore spada stres. Iako puno pacijenata osjeća dispepsiju nakon ingestije odrđene hrane ili pića ne može sa sigurnošću uspostaviti uzročno posljedična veza. Medikamenti koji često uzrokuju dispepsiju su aspirin i NSAID koji to rade u 20-25% pacijenata (www.coursehero.com).

Tablica 8: Lijekovi koji mogu uzrokovati dispepsiju (preuzeto i prilagođeno s www.coursehero.com)

<table>
<thead>
<tr>
<th>Lijekovi koji mogu uzrokovati dispepsiju</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akarboza</td>
</tr>
<tr>
<td>Antibiotici (makrolidi, sulfonamidi, metronidazol)</td>
</tr>
<tr>
<td>Aspirin i drugi NSAID</td>
</tr>
<tr>
<td>Bisfosfonati</td>
</tr>
<tr>
<td>Kolhicin</td>
</tr>
<tr>
<td>Digitalis</td>
</tr>
<tr>
<td>Estrogeni</td>
</tr>
<tr>
<td>Gemfibrozil</td>
</tr>
<tr>
<td>Glukokortikoidi</td>
</tr>
<tr>
<td>Željezo</td>
</tr>
<tr>
<td>Levodopa</td>
</tr>
<tr>
<td>Narkotici</td>
</tr>
<tr>
<td>Niacin</td>
</tr>
<tr>
<td>Oralni kontraceptivi</td>
</tr>
<tr>
<td>Orlistat</td>
</tr>
</tbody>
</table>
4.3.3. PROMJENE ŽIVOTNOGA STILA

Kod pacijenata koji uoči povezanost između žgaravice i dispepsije i konzumacije određene hrane ili pića trebali bi smanjiti njihovu konzumaciju ili ih u potpunosti izbjegavati. Za neke pacijente to će biti dovoljno za potpunu eliminaciju simptoma. Što se tiče lijekova potrebno je osigurati da ih pacijent primjenjuje na pravilan način što je recimo slučaj s bisfosfonatima ili ako nije moguće da se lijek zamjeni s drugim lijekom koji se bolje podnosi, daje u najmanjoj efektivnoj dozi ili da se primjeni druga strategija smanjivanja simptoma. (www.coursehero.com). Kod NSAID lijekova može se uvesti upotreba antacida, antagonist H₂ receptora ili inhibitora protonske pumpe. Ostale promjene životnoga stila mogu biti sljedeći:

1. Izbjegavanje velikih obroka.
2. Izbjegavanje hrane i pića koji doprinose refluku.
3. Ako je moguće izbjeći lijekove koji pojačavaju žgaravicu.
5. Ako pacijent ima preveliku tjelesnu masu smanjiti ju na idealnu.

BEZRECEPTNI LIJEKOVI

ANTACIDI

Antacidi su lijekovi koji se sastoje od anorganskih soli primarno natrijevog bikarbonata, kalcijevog karbonata, aluminijevih soli (fosfata i hidroksida) i magnezijevih soli (karbonata i hidroksida). Indicirani su za blagu povremenu žgaravicu u pacijenata starijih od 12 godina. Oni se ne mogu koristiti kao preventivna terapija jer djeluju na već nastalu kiselinu u želucu. Mehanizam djelovanja je reakcija sa želučanom kiselinom i njezina neutralizacija tj. pretvorba u sol i vodu što rezultira povećanjem gastričnoga pH. Mogu imati i djelovanja koja nisu povezana uz reakciju s kiselinom kao što su aluminijev hidroksid i kalcijev karbonat koji
apsorbiraju pepsin ili magnezijev i aluminijski hidroksid koji vežu žučene soli. Djelovanje antacida je kratko i traje oko 20 min ako se uzm u prazan želudac do 3 sata ako se uzm s hranom. Ako je upotreba antacida češća od dva puta tjedno ili redovito više od 2 tjedna pacijenti bi trebali dobiti drugu farmakoterapiju u obliku H2 antagonista samih ili u kombinaciji s antacidima ili inhibitorima protonske pumpe. Nuspojave antacida uključuju dijareju i konstipaciju koja se pojačava s većim dozama. Primjena natrijevog bikarbonata je povezana s rizikom od sistemskih alkaloze. Primjena kalcijevog karbonata je povezana s rizikom od hiperkalsemije i mliječno-alkalijskog sindroma. Antacidi uzrokuju interakcije u kombinaciji s drugim lijekovima promjenom pH u gastričnom i urinarnom traktu, te vezanjem drugoga lijeka. Pacijenti bi zbog toga ne bi smjeli uzimati antacid unutar 2 sata od primjene drugoga lijeka.

ANTAGONISTI H2 RECEPTORA

INHIBIROTI PROTONSKE PUMPE
Inhibitori protonske pumpe kao što i sama riječ kaže inhibiraju protonsku pumpu u parijetalnim stanicama želuca i tako blokiraju završni korak lučenja želučane kiseline. Indicirani su za primjenu kod česte žgaravice tj. ona koja se javlja 2 puta ili češće u tjednu u pacijenata u dobi od 18 ili više godina. Nisu namijenjeni za trenutno olakšanje simptoma, već je za njihovo potpuno djelovanje potrebno do 4 dana. Omeprazol i lanzoprazol su inhibitori protonske pumpe odobreni kao bezreceptni lijekovi. Inhibitori protonske pumpe su osjetljivi na želučanu kiselinu pa se primjenjuju u acidorezistentnim formulacijama. Nakon njihove ingestije apsorbiraju se i akumuliraju u parijetalnim stanicama i vežu samo na protonske pumpe koje aktivno luče kiselinu. Dnevna doza inhibitora protonske pumpe trebala bi se uzeti...
30 min prije doručka kako bi osigurali da je maksimalan broj protonskih pumpi aktivirano kod najvećih plazmatskih koncentracija lijeka. Inhibitori protonске pumpe se uglavnom dobro podnose s malo nuspojava. Najčešće nuspojave su glavobolja, konstipacija i diareja. Pošto su inhibitori protonске pumpe jako djelotvorni u svojem mehanizmu mogu ući u interakcije s lijekovima za čiju apsorpciju je potrebna adekvatna kiselost želuca (www.coursehero.com).
5. ZAKLJUČCI

Smanjuje se kvaliteta života bolesnika i ograničuje ih u obavljanju svakodnevnih obaveza i poslova. Postoje različite metode dijagnostike infekcije *H. pylori* koje se suvremeni rizici s neinvazivnih kao što su:

- urei izdisajni test
- test antigena u stolici
- prisutnost specifičnih protutijela u serumu
- invazivni kao što su: histološki pregled, bijeli presek i izolacija.

Urea izdisajni test je neinvazivna metoda koja ima visoku osjetljivost i specifičnost, ali nije svima dostupna i zahtjeva posebne instrumente i skupe reagense. Infekcija *H. pylori* liječi se kombinacijom inhibitora protonske pumpe, makrolida i beta-laktamskog antibiotika. Trajanje liječenja je 7-10 dana. Neuspjeh je najčešće povezan s rezistencijom, a ne reinfekcijom. Vezano uz terapiju potrebno je pažljivo procijeniti stvarnu potrebu za primjenom lijekova i izabrati ih prema individualnim svojstvima pacijenta. Moramo uzeti u obzir njegovu dob, masu, komorbiditete, postojeće bolesti, druge lijekove koje uzima i naposljetku njegov životni stil. Trojna terapija, iako djelotvorna kod eradikacije *H. pylori* postavljanja je pred problem rezistencije. IPP kao uspješni i široko primjenjivani lijekovi meracionalno i napravilo se upotrebljavaju, a dugoročne posljedice njihove primjene sviže su rezistence. Uz farmakoterapiju važno je primijeniti i ne farmakološke mjere koje se mogu inkorporirati u svakodnevne životne navike i time polučiti dodatni uspjeh terapije. Važno je slušati svoj organizam i izbjegavati hranu koja dovodi do simptoma ili ih pomerava, a u svoju prehranu uvrstiti namirnice koje donose benefit i poboljšavaju stanje. Tako bi trebalo izbjegavati jako začinjenu hranu, velike temperaturne razlike u hrani, rafinirane proizvode pune šećera i trans masti, a uvrstiti namirnice bogate prehrambenim vlaknima, esencijalnim masnim kiselinama, vitaminima i mineralima. Već malene promjene mogu polučiti velike rezultate. Ono što unosimo u naš organizam utječe na njega i pomaže mu ili odmaže u nastanku ili prevenciji određenih bolesti. Kako su stari Grci uvijek govorili „Neka vaša hrana bude lijek, a vaš lijek vaša hrana“ (Hipokrat, 460-380.g. B.C.). Moramo se uvijek imati na umu da bilo koji postupak ili terapija treba polučiti dobrobit za pacijenta. Neka nam naša znatiželja i potraga za istinom budu glavnim motivatorima za postizanje toga cilja.
6. LITERATURA

7. SAŽETAK/SUMMARY
SAŽETAK

Gastritis kao bolest modernoga doba i širokom rasprostranjenosću diljem svijeta svakako zaslužuje pažnju. On predstavlja veliki javno zdravstveni problem ne samo zbog posljedične hospitalizacije i povećanja troškova liječenja, već i zbog smanjene kvalitete života pacijenta. Velik je napredak postignut u definiciji i terapiji gastritisa od otkrića bakterije H.pylori 1982. godine do danas. Liječenje infekcije H.pylori provodi se kombinacijom IPP-a, makrolida i beta laktamskog antibiotika. Neuspjeh je najčešće povezan s rezistencijom, a ne s reinfekcijom. IPP su visoko efektivni lijekovi čije nuspojave dugoročne primjene moramo temeljito istražiti. Potreban je individualan pristup za svakoga pacijenta te pažljiv i svrsishodan izbor terapije. Uz farmakološke mjere ne smijemo zaboraviti i ne farmakološke mjere koje su jednako važne i služe kao nadopuna. Ulaganjem u znanost i nova istraživanja povećavamo razumijevanje bolesti i problema koje ona nosi. Iskrena znatiželja, potraga za istinom i dobrobit pacijenta neka budu naši glavni motivatori.

SUMMARY

Gastritis, being a widespread illness of the modern era, certainly deserves our attention. It represents a serious public healthcare problem, because of not only the consequent hospitalization and increased healthcare expenses, but also because it reduces the life quality of those afflicted. Since the initial discovery of the H. pylori bacteria in 1982, there has been significant progress in the definition and treatment of Gastritis. The infection caused by the H. pylori bacteria is treated with a combination of Proton pump inhibitors (PPIs), macrolides and β-lactam antibiotic, unsuccessful treatment usually being a result of patient resistance, rather than reinfection. PPIs are highly effective drugs whose side effects are yet to be thoroughly examined, keeping in mind the necessity of an individual approach for each patient, as well as a mindful choice of appropriate therapy. In addition to pharmacological measures, we should not neglect equally important non-pharmacological measures, which can be additionally helpful. By investing in new scientific research, we can help raise awareness about this illness and its resulting problems. Honest curiosity, the search for truth, as well as the well-being of our patients, should be our main motivators moving forward.
TEMELJNA DOKUMENTACIJSKA KARTICA
BASIC DOCUMENTATION CARD
Gastritis: bolest modernog doba

Paula Rubčić

SAŽETAK

Gastritis kao bolest modernoga doba i širokom rasprostranjenošću diljem svijeta svakako zaslužuje pažnju. On predstavlja veliki javno zdravstveni problem ne samo zbog posljedične hospitalizacije i povećanja troškova liječenja, već i zbog smanjene kvalitete života pacijenta. Velik je napredak postignut u definiciji i terapiji gastritisu od otkrića bakterije H.pylori 1982. godine do danas. Liječenje infekcije H.pylori provodi se kombinacijom IPP-a, makrolida i beta laktamskog antibiotika. Neuspjeh je najčešće povezan s rezistencijom, a ne s reinfekcijom. IPP su visoko efektivni lijekovi čije nuspojave dugoročne primjene moramo temeljito istražiti. Potreban je individualan pristup za svakoga pacijenta te pažljiv i svršnog izbor terapije. Uz farmakološke mjere ne smijemo zaboraviti i ne farmakološke mjere koje su jednako važne i služe kao nadopuna. Ulaganjem u znanost i nova istraživanja povećavamo razumijevanje bolesti i problema koje ona nosi. Iskrena znatiželja, potraga za istinom i dobrobit pacijenta neka budu naši glavni motivatori.
Gastritis:

Paula Rubčić

SUMMARY

Gastritis, being a widespread illness of the modern era, certainly deserves our attention. It represents a serious public healthcare problem, because of not only the consequent hospitalization and increased healthcare expenses, but also because it reduces the life quality of those afflicted. Since the initial discovery of the H. pylori bacteria in 1982, there has been significant progress in the definition and treatment of Gastritis. The infection caused by the H. pylori bacteria is treated with a combination of Proton pump inhibitors (PPIs), macrolides and β-lactam antibiotic, unsuccessful treatment usually being a result of patient resistance, rather than reinfection. PPIs are highly effective drugs whose side effects are yet to be thoroughly examined, keeping in mind the necessity of an individual approach for each patient, as well as a mindful choice of appropriate therapy. In addition to pharmacological measures, we should not neglect equally important non-pharmacological measures, which can be additionally helpful. By investing in new scientific research, we can help raise awareness about this illness and its resulting problems. Honest curiosity, the search for truth, as well as the well-being of our patients, should be our main motivators moving forward.

The thesis is deposited in the Central Library of Faculty of Pharmacy and Biochemistry.

Thesis includes: 62 pages, 16 figure, 8 tables and 21 references. Original is in Croatian language.

Keywords: Gastritis, therapy, H.pylori, role of pharmacist

Menthor: Petra Turčić, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry

Reviewers: Petra Turčić, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Dubravka Vitalić Čepo, Ph.D. Associate Professor, University of Zagreb Faculty of Pharmacy and Biochemistry
Ivan Pepić, Ph.D. Assistant Professor, University of Zagreb Faculty of Pharmacy and Biochemistry